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THEORY OF ORIENTED NUCLEATION
WITH ASYMMETRIC SINGLE ELEMENTS .
-
I1I. EFFECTS OF ROTATIONAL DIFFUSION

INTRCDUCTION

Nucleation of new phase in amorphous matrix proceeds via
aggregation of single elements into clusters which can grow in
size if some thermodynamic conditions are satisfied.It is wide-
1y assumed in the theories of nucleation that bimolecular reac-
tions of addition and dissociatiorn between single elements a of
the amorphous matrix znd aggregates B are dominating over other
types of possible reactions of aggregation. Denoting f_ . as a
cluster composed of g-1 single elements a, the bimolecular re-
action between the cluster and a kinetic element a reads

e UG B = 2,340, (1

where the rate constants k;_1 for the reaction of addition,
and k; for dissociation control kinetics of the aggregation
procegs.

In the classical approach the kinetic theories of nuclea-
tio:r.1'_-5 consider single elements « as spherical particles and
are valid for monoatomic materials (metals, inert gases). Net
rate of production of clusters Bg per unit volume, jg, by the
addition - dissociation reaction (1) reads in those theories

*) Part I "Equilibrium Orientation Distribution" was published

in IFTR Reports 2C/1981.
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and the rate constanss k a k, are ccntrolled by activation
energy of translational d1L5L51on and by change in chemical
potential of the kiretic element a accompanying addition to
the cluster pn 1. Recently arbitrariness in evaluating the
rate corstants has been el iminated, ana k e k have been
explicitly defined4. [«] densctes molar fractlon of single ele-
ments

N, ng are numhers of particles o and clusters 55 per unit vo-
lume, respectively, and n  denotes number of solvent particles
{if present) in the unit ‘volume. Usually, for non-diluted
systens {al is assumed to be unity in the classical agproach
to the rucleation theory. Trhe system of coupled kinetic eqs.

2) is completed ‘chere‘}'-5 by the system of continuity eguat-

ions for number of clusters which for descreete variable g
:
read
dn
2 4 i = (o= 3
3% g T gt 0 (g=2,35,4...) (4)

Mo diffusicn or other transport terms apvear in eg.(4) because
the apcregating system is assumed to be uniform and isotropic.
Other types of nossible bimolecular rezctions, for
example between the aggregates, and higher order multimolecular
reactions are assumed ususlly to be much less frecuent and are
neglected in the centinuity es.(4). One explains it by the

fact that molar fractions of agsregates of a particular size g

http://rcin.org.pl



are much smeller in comparison to the fraction of single kine-
tic elements a at the initial and intermediate stages of the
agcregation process. Also mobilities of the aggregates are
much lower, and rate constants for aggregation reaction be-
tween two clusters are considerably reduced.

; This approach originally aprlied by Turnbull and Fisher
for metals has been adapted next for polymers in isotropic
state by Frank and Tosi’ and by Hoffman and Lauritzen® without
any change in the form of kinetic egs.(2), and-spherical symme-
try of single kinetic element remained silently assumed. It ig
obvious that in the case of polymers (chain segments) and the
majority of real transforming systems the single elements ex-
hibit shape asymmetry and can not be treated as spherical
particles. Despite of the incorrect assumption the thecories
provide qualitatively good conclusions for isotroric systers,
where orientation distribution of the asymmetric kinetic ele-
merts « is uniform. The asymmetry which should affect the
coupled system of bimolecular reaction (1), and modify kinetic
eqs.(2) becomes ineffective on the macroscopic level in the
case of isctrorpic systemse.

2

Macroscopic anisotropy induced by external forces orient-
ing asymmetric single elements requires introduction of the
asymmetrf into the system of eqs.(2) and (4) to describe kine-
tics of nucleation in a proper way. The role of molecular
asymmetry on kinetic egs.(2) has been touch first by Ziabicki',
who has introduced e criterion for complient orientation of a
single kinetic element and a cluster to have the bimolecular
reaction of addition effective. The criterion for complient
orientation was defined there’ by introducing so called "tole-
rance angle" A, first as a molel parameter and next it has
been derived from first principles using statistical physics
methods> and has become a physical parameter. The complient
orientation condition reduces fraction of single kinetic ele-
ments effective in the bimolecular reaction of agpregation (1),
and kinetic ecuations assume a differential form dependent on
the orientation angle 8 = (§,0,n) 5
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a3(2) = k;_y an,_((8)[alew,(2)>, -k an (3}, (5)

(g = 2'3’4r'-°)

\

The differential flux of production of clusters Bg within
the differential range of orientaticn angle, 48, (per unit vo-
lume) is controlled by a modyfied rate constant for the react-
icn of addition

- )
g-1 g-1 - (6

where A/§. is fraction occupied by the tolerance angle A in
the full range of the orientation angle, (.. For example, for
uniaxial asymmetry of the single kinetic elements

4= [['sind ad dp , Q = 4
A

The dissociation rate constant, k;, is not affected by the
particle asymmetry. <w1(g)> is an average value of a normaliz-
ed orientation distribution function of single elements « in
the range of the tolerance angle, 4, calculated around the
orientation angle $

w, (8>, = [ w,(2) a8 (7)

e

1
A

(=3

w1(§) denotes the orientation distribution function of single
elements, dng(ﬁ) denotes differential number of clusters of
size g at the orientation angle, £, within the range dg.

Por small tolerance angle &, and/or not to sharp orientat-
ion distribution of single elements, w,(8), the average value




(eg.7) can be apvroximated by the distribution function alone

5%, (202 = w,(8) (&)

The angle-dependt kinetic egs.(5) reduce for the case of iso-
tropic state of the system to the following form independent
cf the orientation angle

3 o
dag 33 ;
it = .Q. = constg » (g = '4'3!41"') (';f
where
(o) = T 5 # £ 103
35 = kg__1 ng_1[a] - kg z, 1¢)

is total flux of production of clusters Eg (per unit volume}
in the full range of orientation angle in the isotropic, un-
oriented system.

Egs.(10) are similar ir their form to the kinetic egs.{2)
proposed by the clasical theories for spherical single ele-
ments, and the difference concerns only the rate constant for
the reaction of addition, ?+_7, modified by the asvmmetry (see
ea.6). This fact allows to apply the classical approach propos-
ed originally for metals and inert pases for rhase transformat-
ions in uncriented systems composed of asymmetric single ele-
ments ‘with the only change concerning interpretation of the
rate constants for the reaction of addition. But the system of
kinetic ecuations (5) is not reduceble to the classical form
if the sfstem composed of asymmetric single elements exhibits
anv degree of orientation. Kinetics of aggregation appears to
be strongly affected by the external forces inducing molecular
orientation in the system, and the total flux of clusters of

gsize g in full range of the orientation angle calculated for



oriented systems varies from that predicted by the classical

\

approach, and reads

X, = Q[ w, (R ow (8)>, a8 (12)
2 ok

where w_(§) denotes normalized orientation distribdbution funct-
ior of :lusters 8_. For the i‘sotropic case, X, = 1.

To solve basic guestions concerning kinetics of nucleation
in anisotropic state it is necessary to complete the system of
angle-dependent kinetic egs.(5) with a system of continuity
eguations for number of single elements a and for number of
clusters of any cluster size g. Continuity equations {4) pro-
posed in earlier papers for srhericzl elemente are no longer
valid for nucleation in an anizotropic state. Rotationszl dif-
fusion terms should appear in the continuity eguations as a re-
sult of anizotropy produced by externalkorienting forces. 1t
introduces rotational diffusion constants of single elements
and clusters intc the theory of nucleation as adaitional kine-
tic persmeters controlling the process.

Continuity ecuations will be formulated in this paper for
ecation from anisotropic phase composed o0f asymmetric

gsingle elements and oriented by external potential forces.-It
will allow to formulate the problem of nucleation in such

ms in a correct wav. Sorme asymptotic ceses of the correct-
cleation thecrv will bpe discussed irn this paper ir terms
lative role of characteristic times which will zppear, name-
rectlv relzted tc rotational

izaticn half period, t3.
lational diffusion effects will be neglected in thie



paper, and the system under consideration is assumed to be an
uniform, but anizotropic continuum. Example computations are
performed for polyethylene.

EQUATIONS OF CONTINUITY

In general, continuity equations for angular distribut-
ions of number of clusters sg (g = 2,%,4,+..) as well as for
the angular distribution of single elements (g= 1) should be
defined in a space of translational (r) and rotational (%)
variables. It ie assumed in this paper that clusters of all
sizes, g, as well as single kinetic elements ¢ exhibit shape
asymmetry, so the orientation distributicn functions can be
easily defined as distributions of symmetry axes of the ele-
ments.

Let d¥_(r,8,t) will be a number of clusters ﬁ or number
of single elements {g= 1) within the volume element dr around
a point r of the translational space, and oriented within the
differential angle range, df, around an orientation angle
at any moment of time, t. Distribution function of clusters 58
or single elements (g= 1) normalized in the translational-ro-
tational space, RBI fl, at any moment of time, %, reads

1 dxg(glgvt)

¥ (r,$ = . = AR 13)
gz &%) W% dg af (8 = 1,2,3,...) (13)

Ng(t) denotes total number of clusters of size g or single
elements (g= 1) at the moment of time t in a mzcroscopic vo=-
lume of the system, V.

Conservation ecuations for the number of clusters dﬁg and
for the number cf single elements dN, reead
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ey ng(g.g.t) = Tdivr(zg ng) - dive(gg ng) -

[a3,,(zs80t) - aig(z.8it)ar , (g = 1,2,3,...) (14)

aiv, and divg denote operators of divergence in 3-dimension-
al translational (physical) space, and in the rotational space
of the orientation (Euler) angles, respectively. Cluster size
g is treated here, after Frank and Tosi3, as a discreete vari-
able. The change in number of clusters of particular size g in
time at the point (r,8) (see eg.14) is controlled, in general,
by translational and rotational diffusions of the clusters as
well as by net effect of production of the clusters, djg. in
the aggregation process and g consumption in the process
of their further growth, djg+1. For g= 1 (single elements) the
flux dj, will be defined later in this paper. It is assumed in
this paper that the system under consideration is subjected to
external orienting potential forces, and that the resulting
potential energy of any cluster or single element, Ug(g), is
uniform and constant in time, and it depends only on the
orientation angle 8. With this uniform potential energy tzken
into consideration the translational velocity.‘jg, of any
cluster or any single element a is controlled only by translat-
ional diffusion resulting from translational Brownian motion

fg iy 2;r(§) grad, 1n Yg(r,g,t). (15)

Tensor of translation diffusion Q;rtg) of a cluster §

single element depends also on the orientation angle $.

Angular velocity, §, is controllied both, by the rotaticnal dif-
fusion resulting from rotational Brownian motion znd by the

. angle-dependent potential energy Ug(ﬁ) of the cluster or
single element a. Assuming slow rctational motions, what is



generally satisfied for polymers and other high viscosity ma-
. 2 G
terials, the angulasr rate of rotation reads”

&, = - D2°° eradglin Y(z,8,t) + U (8)/xT] , (16)

where Q;Ot denotes rotationel diffusion tensor of the
cluster of size g. Substituting translational and rotational
velocities (egs.15 and 16) into the conservation ecs.(14) one
obtains following expressions with two diffusion terms or the
right hand side

dj aj
6 g+1 2

Mn y \ e
at LN (t) (r 8,t) ] 5 :

- Yas tr ] : OGRS
- Lg(t,dlvr[gg (i)gradrYgJ + h t)dlv&(D gradevg +

I et R e R (17)

To solve the problem of nucleation the system will be corn-
sidered in this paper, starting from this voint, as uniform
but anisotropic continuum. Similar assumption of uniformity
has been also put in the classical theories of nucleation
which have dealt with isotropic states of the matter, and the
transiational transport term in the continuity ecuatior has
vanished as well as the rotationzl diffusion term. With the
assumption of uniform and anisotropic continuum the rotaticnal
diffusion term still remains on the right hand side of eas.
(17), and it is respondible for rotational Brownian motion of
clusters and the orienting potentiazl effects. The distribution
function Y .(r,§,t) car be expressed then by an orientation
dlqtr1butﬂcn function of clusters (or single elements),

w ( =t



Y (E’Qit> = W ('S‘,t) ’ (15“)

where the distribution function, wg, is normelized

I wg(ﬂ.t)dﬂ =1l
Q

and V(t) denotes volume of the system at the mcment of time, t.
Thus, the continuity egs.(17) assume following form with only
one diffusional term responsgible for rotational diffusion in
the presence of orienting potential forces ;

; aj aj

9 Jg+1 g

—_ 8 — e — =

ax ne(®) wg(2 )] + =5 =
U(8)

DrOt n (t)dlva[grad5w +wggrad8 =7 =5 SIS (g =l o 5 ) (19

g

ng(c) = Ng(t)/v(t) is time-dependent number of clusters of
size g or single elements a in unit volume of the system.

Egs.(19) integrated by sides over the full range of the
orientation angle § reduce to the continuity eos.(4) proposed
in classical thecries formulated for spherical particles. The
continuity eas.(19) proposed here for anisotropic, uniform
systems reduce aﬁeo to the classical form (eos.4) for the case
of isotropic state (gradew =0, gradg = O g = 2 ey

Continuity equation for angular distribution of orientat-
ion of total mass, dm/dﬂ, in the system car be obtained from
e0s.(19) by multiplying them by sides by the mass m,g of
cluster ﬁg for all sizes g startineg with g= 1 (single elements

), and adding them next by sides. One obtaine then
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8 dm(2) d3g+1 g ng
—_——— .o 7. G - z =
3t as e G...”"L a8 gy @B :
i U (Q)]
= I —*—*“
m, lim f eng g dlveLgradawg + wogrady — . (20)

m, denotes mess of single element a, dm/dg is ‘angular distri-
bution of total mass in unit volume of the system. Any change
in the angular distribution of mass is possible only via rotat-
ional diffusion term on the right hand side of eqg.(20), and

dj dj

G+1 G

1im[G L k] l=0 (21)
G d.. g=1 dﬂ =4

because there is no creation of mass at any orientation angle,
8. Condition eguation (21) allows to determine angular distri-
bution of rate of consumption of single elements, dj,/d8,
oriented at §. Assuming that 1im dJG+1/dB O one obtains frecm
ec.(21)

aj,

rTa = - 552 d,jgjag (22)

STEADY-STATE NUCLEATIOX AND MOBILE SINGLE ELEMENTS

Earlier theories of nucleation, valid for spherical
particles and for isotropic systems, have discussed kinetics
¢f trensformation at so called steady-state approximationl'S'S.

T.at apvroximation hae concerned steady-state distributicn of
ciusters (seeegs.4), and it has made possible to solve the



system of kinetic e0s.{2) analyticelly. The steady-state appro-
ximation for the number of clusters in egs-{4) implies constant
fluxes of cluster production of all sizes g

Jg = Jguq = comst., (g = 2,3,...) (23}

In the case of asymmetric single elements and anisotropic
systems the set of kinetic eqs.(5) is ever more complex and it
is necessary to make an approximation analogous to that one
done in the clzssical approach, otherwise analytical solution
of the nucleation problem becomes impossible to obtain. Such

6i8 o

an approximation has besen already done in recent papers
this subject, where by the analogy to the classical approach
the angular distributions of cluster production, djg/dg, have
been assumed to be ccnstant for all cluster sizes, g2 2. It
results in equal left hand sides of all kinetic egs.(5), what
makes the system of eguations much easier to be sclved analy-
tically, and the solution can be found following widely accept-
ed classical procedure of calculations. Physical meaning of

the simpifying steady-state approximation in this theory is
easy to understand from the continuity egs.(12) if some addit-
ional approximations are made concerning. rotational mobilities
of clusters and that of single elemente. Rotational motions of
clusters aré much reduced in comparison to rotational motions
of single kinetic elements, particularly for bigger ones, be-
cause of higher mass and bigger dimensions of clusters. The
aprroximation of vanishing rotational diffusion constants for
2ll clusters

D§°‘ =0, (g32)

and non-zerc rotational diffusion for girgle ¥inetic elements

D{Dt £ 0
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emphasize the role of higher rotational mobility of single ele-
ments in the rucleation process, and they also simplify the
system of continuity eoguations in this theory. Thus, for
clussers the continuity ecuations reduce to the following form
with zerec rotational diffusion term

daj (8,%) a3 (485 t)
a . "3*1 e E 2
i s 5 - =0 24
3t [nokt) dg( ,t)] + P : ’ (24)

It means that at the steady-state approximaticn the angular
distributions of number of clusters Eg with the particular
gize g2 2 1s constant in time

3 ;
33 (g8 w(2,t)] =0 . (25)

The steady-state approximation ané the assumption of hindered
rotaticnal motions of ciusters result in egual angular distri-
buticns of the cluster productior fluxes for all sizes g at

any moment of time, t

djz(ﬁrt) djj(i,t) djst(
i ag

, (26)

and the steady-state angular distributicrn of nucleation rate,
djst(ﬁ,t)/dé, may vary in time, but the angular distribution
of clusters for any cluster size remains still stezdy.

The steady-state approximation does t concern the dis-

no
bution of single kinetic elemente if the so called steady-

trib )
-state anpgular diztribution of nucleation rate is non-zeroc,
gz (8 %) fab # O, Then the single kinetic elements gre

| B T e o g
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consumed in the agcregsticn processes 1if the reactions of
addition are dominasting or they are produced if dominating are
reactions of dissociation. Steady-state distribution of single
elements is possible only in the case of equilibrium state at
temperatures above the melting point, where djst/dﬁ = 0, ani
the orientation distribution assumes stationary Boltzmann form,
controlled only by the angle-dependent potential energv of
single elementsa, gi(i}

wilg) =¢C EXP[-U1(§)/kT] : (27)

Angular distribution of nucleation rate has been already
derived from the system of kinetic eas.(2) recently6 with the
steady-state approximation for rod-like single elements, and

reads

da AF. b ]
A st r iso »
= const. w,(8,t) expi- 4

Re 12 T 4

n,(t) a3 kT[1- __-——-ln(Ax[a1]w1)}

L iso
(28)

where & = (&,9) denotes two spherical angles. AFY ., AT are

critical free energy of cluster formation and bulk rreelzgergy
£ the transformation per unit volume in isotropic, undeformed
state, respectively. For crystallization from melt [a1] = 1.
Similar expressicn with slightly modified logarythmic term in
the exponernt was derived recently for polymer chains with
chain statistice and distribution of chain conformations taken
into considerationjo. One concludes fronm eq.(ZB) that kinetics
of phase transformation in oriented systems is very sensitive
tc actual orientation distribution of single elements, w,(2,1t),
at the moment of time, t. Recen;lya, kinetics of nucleation was
discussed with the approximation of eguilibrium, Beltzmann

distribution, controlled by the orienting potential alone
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‘. )+ Tnere was no satisfactory
ezrianzatiorn for such o¥xinaticn drovided in that peper.
ir gereral, functior w. depenis also on time, and should
sztisfy concservatior equatior for single elements.

For the purpcse of this paper single elementis will be
considerea as rod-like particies with uniaxial symmetry and-
twp sphericzl angles £,¢ describing oriemtation of the element.
Thus, toe cerntinuity ecustion for orientation distribution of
single xinetic elements w,, obiained from ec.(1¢) for g= 1V by
substitution of eguation (22) for the flux of single elenmerts,
d;,, essumes following form

w.(5,t) dj dj
L - 2% e E rot
+ nt——a o —— | oy Lal{w, 0,) (29)
2t ndt) 11 .8 g=2 af B

woere Lg{w,,0,} = divgleradgw, + wﬁgradsﬁ1/kfj. and n, is the
razte of consumption of single elements ir the zggreration pro-
cess. This equation when integrated by eides over the full
ranges o the orientation angle £ reduces to the following form
whick 213ows to exrress ﬁT in terms of the integral of angular
distributions of =11 fluxes, defhf

-
- r 13 " =
a.{t) + J (3, + L dj ) =0, (30)
] e =
Q B
tecsusze
r - -
) L%(wT,Ui)ai =0 and f 31(£,:}q; = 1.
n Q
Potal rzte 6f transformaticn of sinfle elemenis intc eggre-

gates per unit volure of the syetem, n., can be expressed by

http://rcin.org.pl



the integral {eg.30) of angular distribution cf consumption
rate of single elements by all grawing clusters over full
range of the orientation angle.

On the other hand, the total rate of consumption of
single elements in the aggregation process, ﬁj, as well as
‘number of untransformed single elements, N4, can be expressed
by normalized to unity time-dependent degree of transformation,
X(t), by following formulas

n, (1) n?[? - X(t)] , (31)

A (4) = -nf () , (32)

where n? denotes initizl numbe£ of single elements per unit
volume at zero degree of transformation, X = C, and i(t) is

the rate of transformation at any moment of time, t. Substitut-
ing eags.(30)=(32) into eq.{29) the continuity equation for
orientation distribution of single elements in the aggregating
anisotropic system assumeé following form

632 § E dgg‘ 1
dw.(8,1t) > ag as
182 X(%) x g=2 °= ; rot- :
T T 2 e B el
Fldias e Baiad)
\ IJL T ey e
. (33)
and X(t)=1 - exp[—gdt']‘(é‘d;’g/m(t') e Let P, (332)

Continuity eg.(3%) can be used for transformatiorn pro-
cesses followingz schemes of primary, secondary or both, pri-
mary and secondary nuclestions by choosing proper expressions
for the fluxes, dj?(i,t). Assuming only primarv, steady-state
nucleaticn the kinetic term in ec.{3%2) reduces to the form de=-

pendent on angular distribution of the nucleation rate

http://rcin.org.pl



43, e dig digy

éd 2 de€ dad
x T (34)

. I aj

(di, + T dj) d it
L A T Q
and eq.{33) reads
el T \
2t + 7—:—§L_7_:T_‘“ - W1J Dy Le(w g ) . (35)
ey J Gdgy

The second order differential eguation (25) conitazins non-ii-

near term

{compare eq. 28} and has to be sclved nurerically. Neverthe-

less, some asymptotic behaviour of the ecguation and its
effect on the nucleatvion process can be discussed in cualita-
tive terms without the necessity of performing of complex nu-
merical caleculaticens.
Two global kirnetic characteristics control orientation
distribution of single elements: the total trarnsformation rate,
X, and rotationsl diffusion gonstant, Dfo”
kinetiec term on the left hand side of eg.(%5),

y 0f single kinetie
eiements. The
proportional %o X,accounts for the effects related to angle~-
-jependent nucleatior rate, while the rigzht hand side terg is
ticnal diffusion and the orienting po-

respensible for rotat
those twoe terms accounting for

tential effects. The role of

twe indeverdent processes is conirolled by the two global (in-
devendent of the angle of criertation) kinetic characteristies,
i and DY, The rotational diffusiorn term will predominate the

http://rcin.org.pl
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effects of angle-dependent kinetics in eo0,(35) in those cases
where i/Df°t<< 1, anéd solution of ec.{25) will be cortrolled
mainly by rotational diffusion of single elemente and the
orienting potential energy of single elements, U1(§). The
angle-dependent kinetics of nucleation will affect the result-
ing orientation distribution of single elements marginally.
For the other asyvmptotic case where DfOt/i<< 1, the rotational
diffusion term will be suppressed by the kinetic one, and the
orientation distribution, w,, will be controlled mainly by the
orientation-dependent nucleation rate.

ORIENTATION DISTRIBUTICN CONTRCLLED BY ROTATIONAL DIFFUSION

At temperatures, above critical melting proint, Tg, process
of transformation.does not occur (X=0, X=0) and eq.(35) re-
duces to typical rotational diffusion equation with orienting

potential present

Ow

1 s ot v
Et—' i Dﬁ. Le(w1711) 1) (36)

and a general solutior of eo.(36) assumes form

A
wy(2.4) = C exol-0,(£)/kr] + T expl-A 050 +1510(8) ,  (37)
i
(3
where A, and zil’ are the corresponding eigenvalues and eigen-

functions, respectively. Solution (37) converges in time to

n

)
the stationary, Boltzmann form giver by the first term, where
C denotes normalization constant. T?% e

"
™
o
()
L}
o

c

above the meltins point is no mcre interesting from the veoint
of view of this paper dealing witr nucleation, Boltzmann
orientation distribution will be assured 25 an initisgl con-
dition for nucleation which car proceec below the eguilibrium

melting voint, o,

m
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For small undercoolings (temperatures close to the equi=-
librium melting point, Tg) crystallization rate is small, and
rotational diffusior conetant high enough to fulfil the condi-
tion i/D§°t<< 1. In this case the non-linear term in eqg.(35)
is -small, and thus orientation distribution of single elements
is practicelly controlled by the diffusion term on the right-
~-nand side of the equation.

Initial condition for the solution is assumed in the form
of Boltzmann distribution controlled only by the orienting po-
tential, which corresponds to the stationary distribution, as

it is at temperztures abcve the melting point, Tg

w,(8,t=0) = w3(8) = ¢ expl-U,(8)/x1], (38)

where C is a normalizing constant.
Introducing a small parameter ¢ defined as the ratio of
the initial nucleation rate and the diffusion constant

¢ = =i, (w)/n, ()DI°F = o* [ 430 /Tt , (39)
)

where dj0. =dj .(w((#)) and G* is a constant,continuity eq.(35)
can be expressed for small undercoolings in the following form

ow caj . (w,)/a8 .
1 1 st* "1
% o e = b 0
m;ot TRt ()l P il = Lg(wy,Uy) (40)

where the time-dependent coefficient K(t) = f djst/f dj:t is
expected to be not higher than unity. Solution of the ecuaticn
can be found in terms of a series expansion over the small pa-
rameter ¢

vi(g,t) = T et wltla,n. (41)

0 1

al

The expansion approach allows to transform the non-linear



conservation eq.(40) the fcllowing system of linear, ncn-

)
-uniform equations for the expansion terms, wgi’(g,t)
e e (1) (1 (1-1)
- '-ki Y = i, 1) (1=17), ( 3
Drot 3 Lel#1 ,Ujj fi\w.l,w1 yoee WS = A2
4

(=1, 20T s)

where the non-uniformity terms f,(.) on the right-hand side
of any i~th equation are determined by the solutions of
previous i-1 equations, and by the initial distribution, w?.

For the purpose of this paper orientation distribution
of single elements at small undercoolings will be determined
with the first order approximation with respect to the small
parameter

wi(8t) = wd(@) + ¢ wi(8,t) + O(). (43)

The first correction term, w51). satigfies following linear
equation i

s i
1 aw] (1) ! d;st/dS 5
ST O e
1 J ddgt
Q

where (dj:t/da)/f dj:t shows angular density cf the nuclea-
ticn rate resulting directly from the initial Boltzmann dis-
tribution, w3.

Example solution of eq.(44) is obtained ir this paper
for rod-like single elements subjected to a unisxial potent-
ial

o 2 2 ¢ \
U1(%) = = AT cos“é. (44a)

It represent one of the most interesting types of uniaxial
orientation, where the potential exhibits its minimum at the
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i
tentizl governe, for example, orientation distribution of

stical gsegments cf pclymer chains in uniaxially extend-
ed Gaussian network at not to high extension511, where the
coefficient Azzrﬁp vo/kT. Ap denctes difference of the normal
stresses, v, is volume per one statistical segment of a chain.
For exzmple, for polyeihylene chains Vol 1.63% x 10'22 cm3, and
for the orienting stress, Ap, in the range of 107— 109
dynes/cm2 values of the coefficient A2 are in the range of
C.0% - % at temperatures close to the melting point.

The initi?l condition {eq.38) reguires that the correct-
icn terms, wgi’(g,t), should satisfy following iritial condi-
tions

W{Pig,0) = 0. (46a)

Boundary conditions for the functions cortrolled by the "co-
sine sguare” potential {eg.44a} concern only the zenithal

angle 8, and reguire periodicity of the correction functions
corresponding to the periodicity of the applied potential U1

wgl)(e; oty wgi)(6==nﬂ,t), (46p)

awgi)

=0, {nl a0 o R (46c)
e e :

wnat satisfies the cordition of zero flux of the rotational
diffusion ¢f single elements at the orientatior axis (&=nm).

The first correction function at the case of uniaxial
potential given by eg.(442) is found in the form of a series
expansion into even Legendre polynomials

(1) =
wi1(8,6) = T n (t) P, (cosd) , (47)

http://rcin.org.pl
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with time dependent expansion coefficients

;
[ By (cos®) Wi (8,1) alcosd).  (47a)
-1

4n + 1

The series expansion over even Legendre polynomiales satisfies
boundary conditions (egs.46b,c). The expansion coefficients
b, (t) determined for the initial condition (eq.46e2) read

b (t) = 0,

b () = f

1
1

Bns(1 - exp(-2;%)), n 21 (48)

1

'
where ﬁﬁi are coefficients dependent on the applied orienting
potential.

Eigenvalges Ai are determined applying the theory of
perturbationT‘ in the second corder ¢f approximation with re-
spect to the applied potential, and they are inereasing with
increasing subscript "i",

The perturbation theory reguires not to high values of the
ccefficient A2 of the pctentizl. The smallest eigenvaliue A,
which approximately reads

A /D50V = 6 - 4a%/7 + saat/aa3 - Ll (49)

corresponds t¢ the longesi charactericstic time, T_ = 1/
being a "settle time" for the systen.



At the case of small undercoolings sclution (eq.47) con-
verges to its stationary form during the nucleation, and
crientation distribution of single elements approaches its

stationary form

wit(8) = lim  w,(8,t) = ¢ exp[-U,(8)/x?] +
t/tg~= :
s

@ -
+ e n£1 151 B Pon(cosd) + O (). (50)

For the terms related to the ‘settle time (i=1) the coeffi-
cients ﬁni read

DR 2 o T 20 v ot o B 08 2 0.0}
E o — Fap— - - - —— 1 = es -
Prym gt iv e Eog AL - T, 575 A ( 535k * Neg-gg )

12 2 3
Byy = - 3§.A2(1 e A ces)Byg s P

5n1 =0 for b s 3, °

fz, f; are crystalline and amorphous orientation factore, re-

spectively, corresponding to the initial Boltzmann distribu-
tion, and

o]
1 djst/ds

o -
gc

P, (cos8) d{cos8) ,
0 4
daat

(52)

cosd) d(cosd) .
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The stationary solution {eq.50) slightly deviates off
the Bol%zmann form, and the deviation is the smalier the slo-
wer is the nucleation process, and the faster is rotational
diffusion. The solution shows that at small undercoolings roita-
tional diffusion predominates kinetic effects of nucleation.
The settle time, T is slightly increased by the orienting po-
tential (compare eg.49) in comparison to the isotropic, un-
stressed state. 1t means that the orienting forces slightly
delay achievement of stationary orientation distribution.
At the discussed condition €<< 1 crystallization half period

>>
L) T 1

and the stationary state is achieved practically at the ini-
tialstages of the fransformaticon process with the degree of
crystallinity close to zero.

Example numerical computaticns are performed for polye-
thylene subjected tc the uniaxial ®cosine square” potential
assuming 4%=1. Stationary orientation distributions of stati-
stical segments, assumed in this paper as amorphous =single ele-
ments,computed from eq.{50) for small undercoolings, and ini-
tial Boltzmann distridbution are presemted in Figure 1 for seve-
ral values of small parameter €. Deviation from the Boltzmann
distribution incresses with increasing small parameter, and
the stationary distribution flattens.

Pigure 2 shows angular distributions of nucleation rate
reduced by total initial nucleation rate {integrated over the
whole range of the orientation angle)

5 Y
djgq(wy)/a8
digy

peso

computed from eq.(28) for polyethylene, and corresponding to
the initial as well as to final, stationary orientation

http://rcin.org.pl



distributions (egs.27, 50,51) for several values of the small
parameter, €,

The results presented in Fig.1 and 2 confirm extremely
strong effects of the amorphous oriertation on the nucleation
rate and 1ts angular distributicn., It leads to the conclusion
tnat a decrease of the rotational diffusion constant and/or an
increase in the rate of transformation (increase of €) result
in depression of the nucleation rate.

014+

w

012

010+

0.08+

ORIENTATION DISTRIBUTION,

0.06-1

0.0L T T L L
0 15 30 45 60 75 90

ORIENTATION ANGLE, ¥ (deg)

Pig.1. Normalized orientation distribution of statistical

chain segments acccmpanying nucleation, and controlled by rota-
tional diffusion, for polyethylenezsubjected to the uniaxial
orienting potential (eq.45) with A°=1. Curve (1) - Boltzmann
distribution (zero nucleation rzte). Curves (2,3,4) show sta-
tionary distributions computed from eg.(50) for € = .01,.1,.2,

SRz SR 0
respectively. Temperature of the transition, Tr Tm - 5K.
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Fig. 2. Reduced angular distribution of nucleation rate in
polyethylene, subjected to the uniaxial orienting potential
(eg.45) at A“=1, computed for Boltzmann distribution of single
elements (curve 1), and stationary distributicns (2,%,4)corre-
sponds _to €=.01, .1, .2). Temperature of the transition,
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CRIZNTATICY DISTRIBUTION CONTROLLED BY KIKETICS
QF NUCLEATION AND CRYSTALLIZATION

The other extireme form, reverse to that one already dis-
cussed in this peper is assumed by the tcontinuity eg.(35) for
DTO%/% << 1. In this case Giffusional terr in the equation is
réduced censideratvly, and the resultant orientation distribut-
ion of single elements is expected to be controlled by kinetic
term being responsible for kinetic effects of nucleation and

erystallizetion. Introducing another small parameter

5 = D7 k(w) , (53)
X(w?) denotes rate of crystallization corresponding to w?. and
the continuity equation assumes in this case following form

which contains fully expressed nor-linear kinetic term on the
left-hand side

3w dj.4(w,)/d8
1 1 ST st'™1 ~
- - = 5T U st (5
X 4t = 4= XL I djet w‘l:[ 5 S(w‘} ‘ﬂ”(ﬁ t) (
9
Had M(E’t) = f djst(wg)/>f djst(wiL

Condition (53) is satisfied for systems exhititing high
crystallization rate (e.g. nigh-speed spinning of fibers)
and/or high supercooling where rotational diffusion constant
is much reduced by hipher viscous friction forces of rotat-
ional motion at lower temveratures. It should be also mention-
ed that depree of transformation, X, ir the systems is assumed
to be far from the total one (X=1).

The solution of the non-linear, gecond crder differential

{
of Boltzmann distribution and zero-degree of transformation

at the initial moment of the nucleation process

=0

Tit=0

http://rcin.org.pl



Then, arplying conversion of time, 1 into degree of
transformation, X, and assuming that dX/dt> 0 at any moment of
time, the equation (54) can be rewritten in the form dependent
on variables X and £

3w, Sy tway /a8

g (-1t Louagpy R S AP T O 389

e e i s N, | (55)
a

An asymptotic case of eq.(55) obtained for small para-
meter 5~ 0 will be discussed first. It corresponds to rotat-
iocnal diffusion constants tending to zero and/or to crystalii-
zation rates increasing to infinity. The asymptotic form of
the equation with.diffusional term on the right-hand side re-
duced to zero, shows first order, non-linear differential
gquation with orientation angle, §, remaining as a parameter

du (u )/a8

1 r ”B'E
= e (56)
ax = 5a fd;s_c

Q

The asymptotic eq.(56) is no longer controlled by the orient-
ing potential, U., but the potential still =ffects solution of
the equaticon via boundary {initial) condition which assumes
EZoltzmann orisntation distribution, at zero degr=e of trans-

formaticn

,\
W
=

-

5Y shouid be rormzlized,

Soelutvion of the asymptotic e

series exvansicn over the

http://rcin.org.pl



u, (§5%) = T X gy(9) (58)

where the first few expansion functions, 84s read

8o(£) = w3(8) = C expl-U,(#)/k1] , (59a)

5 259, (%) /az
BBt () e (59b)

] digylwy)

Q
y s a.;‘j /a%
Bo(8) = g (D18 £1 o] + 2= [ g (8) £ a8 . (59)
Wy z(f djst} lw1
kY)

a  digy/a2
where £' = —( ; ) .
iwg £y A digeg FW?

The expansion ftunctions gi(g) are dependent on the init-
al orientation distribution (ec.57) controlled by the orient-
e potential. Solution (58) of the continuity equation in the
asymptotic form (eq.56) vroposed for hindered rotational dif-
fusion does not converges to any stationary form with increas-
ing degree of transformetion, X.

(o8

(V8

Solution of ea.{57) can be obtained very easily using nu-
merical methods and it confirms the conclusion, that stationary
solution of the conservation ecuation does'noj exists at the
conditiorie of hindered rotational diffusion and very fast
crystailization. Numerical computations were performed for po-
lyethylene assuming uniaxial "cosine scuare" orienting potent-
ial, and the ccmputed orientation distributions of single ele-
ments are shown in PFigure % for various degrees of

http://rcin.org.pl
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tansformation. It is seer in this Figure tnat orientation
distributiorn of single element flattens with increasing degree
¢f transformation, X, from the highest crientation at the
initial moment of transformation {X= 0}, to the uniform orne at
2z certain degree of transformation {(X=.3). Thus, nuclieazion
oroceeds at the condition of non-statiorary orientation distri-
bution of single elements, and its rate should lower in time
of transformation as a result of the observed flattening of
the orientation distribution. The corresponding decrease and
flattening of the angular distribution of nucleation rate is
hown in Fizure 4 where the curves Dresented are computed for
polyethylene from eg.{28) =t the undercooling, AT=50°C.
Coming back to the continuity egq.{55) with rotational d&if-
fusion term on the order of small parameter,solution of the
eguation can be expressed in the form of a series expansion

over ithe parameter, 9

st u (8,0 , (60)

s
~
@
)
L)
v
1l
1]
(=]
—
L] _46
]
-
+
" rq8

whers u denotee solutior of eg.{5f) ocbtained for zero rotat-
ional 4iffusion constant {(6=10). Substitution of the series
expansion {eq.60) into the contimuity eo.{55) leads to the

following systez of first order linear differential ecuations

for the expransion functions Uy
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where
Uy e )ds
; a dgpivgi/dzg
f'({u.) = — ’
¥ vy I digy fa
o
&a

and f"(uoi denctes the secornd corresponding derivative. Solut-
ion of egs.{61,f2) read

w(8,%7) Lelu (2,%7),U,1q, (e (€3)

0o
u,(8,X) = L )f € ‘f’)*( () -—u1—— f(u )}dx' (64)
TR R R T T
etc.
where T R e
¢ = 3
p\f,x) = expl g i aY.J (65)

Obtained formulas (eas.6%,64) are not easy for gualita-
tive discussion unless they are shown ir the series expansion
over degree of transformation X

us (8,X) = (A=t ) (%6)

NTL
b
o
I
p

o id

4
o

The expansion furctions, U4, Can be derived directly from
eos.{(63%,64) by substitution the functions u; in the form of
the series expansion, and the solution uc cf the continuity
€0.({58), 0btained for 5= C,alsc as the expansicn over X into
the ecuations.
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Functicon u, which is first correction term to the orientat-
ion distribution of single elements, proporticnal to smell pa-
rameter &, appears to ‘' have the first non-zero term of the
order of X2 in the series expansion form. Thus, for i= 1

Uyg = Uy =0, (67a)

830, (W1/ag 430, (w))/ag

+

0 0
i digt J 4t
n o

U= -4 divglgradg gradg U,] q,(u,)

(67v)

The second cdrrection of the order of 62 to the orientat-
ion distribution, Uy, is even less sensitive to X than u, at
unitial stages of transformation, and first non-zero term is
of the order of 13 in the series expansion form.

Combining the resulis for the case of nucleation at the
regime of slow rotational diffusion and relatively fast trans-
formation, the resultant orientation distribution can be appro-

ximated, for not to high de¢srees of transformations, by follow-
ing formula

wi (8,5 = u (8,%) + [xPuy, +0(x)]s + [O(xX)]6? + ..., (68)

where the first term on the right-hand side, Yo is solution
ol the asymptotic continuity eouation for 6= 0 (completely
hindered rotational diffusion) given by ea.(58). The effect of
small parsameter & on the orientation distribution appears to
be much reduced, particularly st initial stages of the trans-
formation process where X << 1, by lack of terms ¢f orders
lower than i in the correction terms. So, the solution of
continuity ecuation for the regime of i/DfOt << 1 can be very
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well aprroximated by the solution (eg.58) obtained for zero
rotational diffusion constant. One concludes also that at the
regime i/D:Ot << 1, orientation distribution of single ele-
mente does not achieve any stationary and criented form

as the 5=0 solution dces.

CRYSTALLINE VS. AMORPHOUS ORIENTATION °

. Continuity equation for crientation distribution of the
mass of the system transformed into clusters, i.e. the crystal-
line mass orientation distribution, can be derived from the
system of continuity equations for orientation distribution of
clusters, formulated earlier in this paper. Following the
assumtion of totally hindered rotaticnal motion of clusters,
the continuity eguation for the orientation distribution of
transformed mass,derived from the system of egs.(24) by adding
all the eguations by sides and assuming steady-state nucleat-
ion, reads

v d3gy(w,)/a8

g T TSN ’ (69)
a .

where the normalized orientation distribution of transformed
mass is defined

8,t) . (70)

It is also assumed, that

lim (dj,/d8) = 0 .
g =
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Solution of the first order, linear ec.(69) with the
assumytion of gero degree of transformstion at the initial mo-
ment of time, X(t=0) = 0O, reads

7t A5 (w.(8,2'))/ab
¥(8,t) = X dt? s 15
(s, X(t)‘I I djst 7

o

where X(t) is degree of transformation at the moment of time,t.
The function under integral in eq.(71) depends, in general, on
the orientation distribution, w,, which is time-dependent, and
the distribution ¥ is affected ét any moment of time by history
of amorphous orientation during the transformation process.
Thus, rotational diffusion of sinzle elements should influence
crystalline orientation according to the ratio Dfot/i the same
way as it'does for amorrhous orientaticn.

At the initial moment of the transformation process, so-
lution (eo.71) reduces to

: ’ 430, (w9)/ag
¥(8) = 1im ¥(g;%) = —— (72)
- r =
t=0 | dzst
a

and the crystalline orientaticn distribution function at t=0
ecuals to initial angular distribution of nucleation rate re-
sulting from w?, and it is not affected, obviously, by the ro-
tational diffusion.

Amorphous and cryvstalline uniaxial orientations are usual-

o

iy characterized by orientation factors

£ =2ﬁj W, Pz(cosﬁ)d(cosﬁ) and f =2n! ¥ P,(cosd)d(cost)

a c
(77)

-1 -1



Effects of rotational diffusion cccuring in amorphous matrix
on the orientation factors fa and f, will be discussed below
for the regimes i/Dfot << 1 and D:Ot/i cc T

1. Amorphous and frystalline Orientation
at the Regime i/Dfot < 1,

For an uniaxial orientation the orientation distribution
of single elements expanded in a series over Legendre polyno-
mials with the occuracy to the correction term of the order
of € reads

w1(8,t) = w? (%) + cn§1 1§1pni(1 = exp(-t/ti)) PZn(coaG) (74)

where Ti=1/Ai are time characteristics of the system, and Bni
are constants. The corresponding orientation factor of the

amorphous matrizx, Ia, converges to its stationary value, and
reads

s

£,(8) = £2 + (42/5) ci§1su(1 - exp(-t/v,))  (75)

where f: denotes initial amorphous orientatior factor.

Taking into consideration effects of the settle time only
(TB=11) the orientation factor f, assumes following form with
the occuracy to the term linear in € (compare eqs.50,51)

Ea(ty = f‘; —_16_e (1 - exp(-t/7 ))(1 + 242/21 - 17724%/21609 +..)

x [£9 - £2 - 1084%(1 - 22%/539 + ...)(g2-g2)/245] +{(<?)

(76)
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where rg is the initial orientation factor of resulting aggre-

gates, and gz and gg are the moments presented bv egs.(52).
Amorphous orientation fector, me predicted by eq.(76),

drore down with increasing time starting from its initial value

f;, and achieves stationary value as t/TE --,

2 =il s £ () (77)
2 t/18-

The final, stationary orientation factor for amorphous matrix
is slightly lower than the initial one by the correction term
of the order of €. The decrease in the orientation factor is
Felated to the kinetics of the transformation process and it

is the higher, the slower is rotational diffusion of the single
elements and the faster is the transition process. Under this
regime the main change in the amorphous orientation, according
to eq.(76), occurs at very early stages of the transformation
process (at t << ti).’where the degree of transformation is
very low, X << 1. Thue,the transformation under the regime is
accompanied practically by the stationary orientation of amor-
phous matrix. Kinetic effects of transformation are very much
reduced by rotational diffusion of single elements, and do not
affect much the eguilibrium” distribution. Under the regime
crystalline orientation distribution also changes in time, main-
ly at the beginning of the tranformation process, and the dis-
tribution of transformed material can be derived from eq.(71)
substituting

t- G*S{ djge/n,(£=0) ,

and essumirng X << 1. Then for low degrees of transformation,



t AFIso/kT ]
[ w,(8,t) expl- dt
é 1 L clem (k1/284 ) 1ln(4nw,)
{8,t) ¥ (78)
' % { ¢ [ AF{so/kT ] } ;
J w, expl- dfr dt
4 Q 1= (kT/Afiso)ln(dﬂw1)

where w,(%,t} 1s given by eq.(74)

At higher degrees of transformation the ratio bz Sty
and orientation distribution of single elements as well as re-
sultant orientation distribution of transformed mass, ¥,
appraach their stationary forms. Thus, for X< 1 eq.(71) reduces
to

453 /a8

11 ‘IB, =¥ @ = ’ B
et e T vi
a

and cryvstalline orientation distribution function ecuals to
angular distribution of nucleation rate at the stationary
amorphous distribution, uft.

Figure 5 shows the behaviour of amorphous, fa. and crys-
talline, fc’ orientation factors predicted bty the present
theory for polyethylene crystallizing at low undercoolings,
and oriented by "cosine sguare" uniaxial potential (eq.50).
The orientation factor f, s’ightlvdrousdown witnin a range of
low degrees of transforwatior from their initial values f
(computed for w?. and fg computed for YO (ec.72)) to va]up
remaining constant ocver the whole ranze of the transformation,
X.Fig.5 shows relatively high values for thne crystalline
orientation factcer, fc. which remain practically constant at
the time of transformation. .



2. Amorphous and Crystalline Orientation
at the Regime DfOt/X <<

Amorphous and crvstélline orientation factors will be
discussed first for the asymptotic cease, D§°t/i= 0. The
asymptotic amorphcus orientation factor, fa,5=c can be comput-
ed numerically using orientation distribution w, determined nu-
merically from the continuity equation in the asymtotic form
(ez.5€) for any degree of transformation.

Por lower degrees of transformation, the distribution of
single elements, W has been determined in the form of series’
expansion over X (eg.58), and the related amorphous orientat-
ion factor drops down linearly with increasing X at initial
stages of the transformation .process

: gl ol !
2 heolX) Bh wllf] < 20X F (2R, 0 (80)

where fg, fg are initial .amorphous and crystalline orientation

factors corresponding, respectively, vo w? and YO initial
orientation distributions, and fc - fa >0,

For the case of DfOt/i = 0 continuity eguations for
amorphous and crvstalline orientation distributions read

aw 1 3 djet(w‘)/dﬁ
R { - -w,l=0 , (81)
ax  1-X Ty .

iol

av 1, igglwyd/ag
e o ER

and their combination leads to



-43-

d
?a'x‘[“ - Xw, + X2} =0 (83)

Eo.(8%) with the initial condition w, = w? at X= 0 provides

)
Fe_o(8,X) =5 [w? = (1-X)w1(§,x)] , for X >0 (82)
where
5 djst(w?)/d?,

lim ¥, _~(8,X) = ¥¥(8,X) = —— | (85)

. X=0 6=0" ~ ~ Jr- d.0

ist

fn

And, conseguently, cryvstalline orientation factor is expressed
by the corresponding amorphous orientation factor and degree
of transformation

:
fo,520(0) =3 (£ - (1-%)2, 50(X)] (86)
and
. 1 a3% /a8
im £ g0 =g = 20 [ By(coss) ———— d{cos?) . (87)
A0 = d']st
a

For low degrees of transformation substitution of ea.(80)
into eq.{86) provides

2
1.95¢F
! ) 0 0 a
£ DG E s (e S S
S riEad ¢ R e 'x=o

1x+ B1x3)

(88)



Zc¢.(B88) predicts similar behaviour of the crystalline orientat-
ion factor as it is predicted for awmorphous orientation with
higher slope related to the second derivative term in the eg.
Assuming Dfot/i << 1 the differential eq.(8%) assumes fol-
lowing form with correction term of the order of 6= DX0Y%/%

a7 [0 -1y + 18] = 801 =D 2g00, 008,10, (89)

where w,($,X) and operator L&(-} are given by egs.(60) and
{29), respectively, and l!(e.l)’.,1 e[ ag (w])/ [ a3 elw, (D).

Crystalline orientation distribution determined from ecq.
(89) with the first correction proportional to & taken into
account, reads _

X
:
2,580 = ¥, 5 008X + 521 £ (1= X*)Ly(wy, 5mp +Uy)"

W& X))y, aX'- (1-Xu (0] ¢ oef) . (90)

¥y, 5=0 denotes orientation distribution of single elements at
D¥°%/% = 0, u, is given by ec.(63).
Subgtitution of the orientation distribution w, in the
form of series expansion over degree of transformation (eq.EB)
into ea.(9C) leads, for low degrees of trensformation, to

¥, :(8,X) = ?0.5=0(§.X) + 6[Xu12 +

3 X
30 Q=2 glwy g0 2Ty ME8,X) + Bs?) (91
0 Ty

u,, in the correction term is given by eq.(67b).
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ed by 2 term related tz Ihe correction ir the crvstalline
orientation distriduvion in ecs.{9G,91).

Xumericzl computaticns of amorrhous angd crystaliline
orientation factors are performed fcr polvethviéne, sné the
results are shown in Pic.S also for the asympiotic case of com-
plet

elr hindered rotatioral diffusion effect fﬁfo‘/i = 03}.
Amerphous orientation factor decreases nonotonically to zere
with increasing degree of transformazion, I, and, consequently

3 staliine orientation facicr drops down consider-
2biv witn increasing X tc the asymitotic values eguzl to the
value of initizl amorphous orientation factor.

ludes that retationzl diffus=ion of single ele- -
ment: when not suppresse kXinetic effects of nucleatior
e

{low supercoclings}, i talline orientat-

ion ip svetem crvstallig 1 forces.
Suppressior of the rotational diffusion effect by decreasing
e

ncreasing the transformation rate resulis

[y

temperature and/or
in lower crystalline as well as amerphous arientations compar-
ing to tne initizl) orientations produced by the orienting.

forces.
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SUFIMARY

The ‘role Of'rotational diffusion of single amorphous ele-
ments in kinetics of oriented nucleation 6f néw phase is dis-
cussed. A new theory of nﬁd]eution nroposed recently for
sttgms composed ‘of asymmetric amourphous elemcnis znd exhibit—
ing any degree of orientation is anplied. The resultant nu-
tleation rate is dependent on the orientation zngle.

The angle-dependent kinetics of nucleation and the
crientdtion distribution of single amorphous elements hre
coupled in>the theory, and eouation of continuity formulated
in this pgper for single elements tukes into considerution ro-
tational diffubion as well as kinetics of transformation.
Fdrces'inducing orientation of ihe elements are auscumsan tO be
potenttal, and rotational diffusion of clusters is neglected.

Effects of coupled rotaticnal diffusion of amorphous ele-
ments and angle—dependénm nucleation rate are discutsed more
detaily for two asymptotic cases. At tne case of rotational
diffusion predomirnating kinetic effectis the svSiem achieves
stationary amorvhsus ana crystalline orientations. lMuch higsher
degree or crystalline orientation in this case anpears as an
‘effect of dominating role of rotationai djff&sion in the pro-
cess. Suppression of the rcle of rotational diffusiorn accowm-
banying an increase in the transformation rate leads to the
other asymptotic case, and the amorphous and crystalline
orientation distributiuns aopear to be non-stationary. Corre-
sponding amorpvhous and crvstalline orientation factors drop
down monotonically witn increasing degree of transformation.
At tne asymptotic case of totally reduced rotational diffu-
sion effects crystalline orientation factor predicted in this
naper for total transformation drops down to the value of
initiel amorphous orientation factor (at zero degree oI trans-
formation). ‘ i

Mumerical computations are performed for polyethnylene.
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