
Archives of Mechanics • Arcbiwum Mechaniki Stosowanej • 15, t, pp. 13-25, Warszawa 1973 

The surface waveguide. Accurate solution 

S. KALISKI and L. SOLARZ (WARSZAWA) 

THE PAPER presents the exact formulation and solution of the problem of the surface elastic 
waveguides. The solutions known so far either concerned certain particular forms of boundary 
conditions or were approximate in the asymptotic sense. The method proposed in the paper is 
general enough to be applied to a wide class of surface waveguides - particularly in semi-con­
ductors - what is of a great practical importance in microwave acoustics. 

W pracy podano 8cisle sformulowanie i rozwi'lUllie problemu powierzchniowego falowodu 
sprctzystego. Dobld istniej(lce rozwi~a dotyczyly szczeg61nych przypad,k6w warunk6w 
brzegowych lub byly przybliZone w sensie asymptotycznym. Metoda rozwi~a zapropono­
wana w pracy jest dostatecznie og61na i mote bye zastosowana do szerokiej klasy proble­
m6w falowodowych fal powierzchniowych, w szczeg6InoSci w piezop61przewodnikach, co po­
siada zasadnicze znaczenie praktyczne w akustyce mikrofalowej. 

B pa6ore ~aHa TOtmaH <l>opMy.!IHpOBI<a ~a'IH 0 UOBepXHOCTHOM ynpyroM BOJIHOBO~e H HaH­
~eHO peweHHe 3TOH ~a'IH. PemeHWI, H3BeCTHbxe pmee B mrrepaTfPe, 6LIJIH DO.JIY'IeHLI JIH6o 
.z:tJIH t~aCTHbiX C.JIY'IaeB I<paeBLIX ycnoBHii, JJH6o .z:tJIH npH6JIIOI<eHHii acHMIITOTII'IeCI<oro xa­
pai<Tepa. Ilpe~o>KeHHLIH B ~OH pa6ore MeTO~ pemeHHH HBJIHeTCH ~OCTaTOtmO 06IIUIMH 
H MO>KeT 6LITL npHMeHeH I< IIIHpoi<OMY I<JiaCCy aa~aq 0 UOBepXHOCTHbiX BOJIHOBO~ax, B llaCT­
HOCTH I< IJDe30UOJiynpOBO~aM, HMeiOIIUIM OCHO~HOe npai<THlleCI<oe 3HalleHHe B MHI<pOBOJI­
HOBOH ai<yCTHI<e. 

1. Introduction 

THE PRACTICAL importance of problems of surface waveguides, in the domain of microwave 
acoustics in particular, has led to considerable interest in those problems despite their 
mathematical difficulties involved. One of the fundamental methods for practical realiza­
tion of surface waveguides is by applying to the surface of the medium in which the wave 
is transferred a thin layer of a lower velocity of transverse waves, than in the medium. 

A survey of the literature of the problem was given in [1] and a number of application 
problems in microwave engineering were discussed in [4]. 

The existing solutions of the propagation and damping problem of guided elastic sur­
face waves are either accurate qualitative solutions with particular boundary conditions [2) 
or approximate asymptotic solutions. A fundamental solution of such a type was obtained 
by TIERSTEN (3], and modified by ADKII'\S and HUGHES [4]. 

The aim of the present paper is to find an accurate solution to the problem under con­
sideration. By accurate solution we mean a solution of the accurate boundary-value prob­
lem with no asymptotic simplification, the general solution of the problem being found 
numerically, by means of a computer, with any desired accuracy. The present results may 
be confronted with those of [3 and 4]. Thus, for instance, in the present paper, the attenu­
ation curves of the guided surface wave follow from general considerations, while in [3 
and 4] these curves were assumed beforehand. 
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14 s. KAusKI AND L. SOI.ARZ 

The present method has been tested by applying it to the simpler problem of a surface 
waveguide in the case of the wave equation [5, 6]. 

In Ref. [I] was studied a practical problem of microwave acoustics- that of a semi­
conductor waveguide on the surface of a piezo-electric body. This enables us to amplify or 
reduce the damping of the surface wave by means of a drifting electron stream. To the best 
of the author's knowledge this is the first accurate solution of such a problem to be pub­
lished. 

In the above references, the mass of the guiding layer was taken into account, its rigid­
ity being disregarded. In further papers, this effect will also be taken into consideration. 

In the present paper we shall confine ourselves to the study of a wave symmetric about 
the wave guide axis. On the basis of the intermediate calculations [1, 6] and those of the pres­
ent paper, we express our conviction that the fact that a wave skew symmetric about the 
waveguide axis has not yet been produced experimentally is a result of the wave guiding 
layer being unable to guide such a wave. 

In Sec. 2, we shall formulate the problem. Section 3 will be devoted to the solution 
method and Sec. 4 - to the computation results for a layer of gold on fused silica and 
conclusions. 

2. The statement of the problem 

We seek for a plane harmonic wave propagating in the direction of the axis of the layer 
and dying out with increasing distance from the free surface and the wave guiding layer. 
The set of axes is assumed as represented in Fig. 1. 
The components of the displacement vector are expressed by a scalar and vector potential: 

(2.1) U, = tP ·' + e11t 'I' t,r , 

where e11a: is an absolutely asymmetric quantity of the third valence. From the equations 

z 

y 

FIG. 1. 

of the theory of elasticity it follows that 

(2.2) 

The compatibility condition is: 

(2.3) '1',,, = 0. 
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The following conditions must be satisfied on the free surface x2 = 0: 

(2.4) j = 1, 2, 3, 

where e is the density of the material of the layer. The inertia forces of the thin layer have 
been taken into consideration, its rigidity being disregarded. The stresses are connected 
with the components of the displacement vector by the relations: 

(2.5) IJ,. = ~[ 2e,. + IJ,.( :i -2)•JJJ. 
1 

eu = u(l,k> = 2 Cut,k + uk,t). 

We seek for solutions bounded for x 2 = 0, x3 -+ ±d and dying out for y-+ oo and 
lzl -+ oo. The set of equations (2.2), (2.3) with the boundary conditions constitute the 
general formulation of the problem. 

3. The general solution 

A solution satisfying the conditions formulated in Sec. 2 is sought for in the form: 

4>(x, y, z, t) = Re { 4>{p, z)e11<ot-.x)}, 
(3.1) 

'l',(x, y, z, t) = Re {'1'1 (y, z)efJ:(ot-.x)}. 

Use will be made of the Fourier complex transformation as defined by the equations: 

00 

(3.2) 

iii(y, IX}= V~ 1 !l>(y, z)e ... dz, 

00 

- 1 f 'l',(y, ex) =---=- lJf1(y, z)e~~udz. 
y2n _

00 

. Since the equations are satisfied and the solution dies out with increasing distance 
from the free surface, it follows that 

(3.3) 
~(y, ex) = C(ex)e-P•<"'·l· .,>,, 

where 

(3.4) P1(<X, k, v) = 1/112 +k2
( 1-~ ). 

From the condition (2.3) it follows that 

(3.5) 
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16 s. KAusiCI AND L. SOLARZ 

On introducing the abbreviated notations 

(3.6) 

we have: 

(3.7) 

where 

3 

-u - ~M A eil(l7t-.x) 
J - .L.J )I I ' 

J=l 

ka. 
Mu = {J;e-PzY, 

M22 = - ia.e-fJzY, 

M32 = (<X2 -k2 ~)p:;•e-~'7, 

Mu= -k2
( 1- ~ )P>'e-~''• 

M 23 = ike-P:zY, 

From the boundary conditions (2.4) we have, after transformation, 

(3.8) 

where 

(3.9) UJ(y, z) = U1(x, y, z, t)e-<t<m-x>, 82 = ( ::r 8 1 = 82 -2, 

Nu= 2ikp,, Nu= -2<Xk, Nu= k 2 (2- :; ). 

2 

N21 = 2{J~+k2 .;., N22 = 2ia.{J2, N23 = -2ik{J2, 
a2 

N33 = 2ka.. 

On solving (3.8), we obtain 
3 d 

(3.10) A,= 2~e~~ 2 Wli f U1(0, C)eirtf:dC 
ea2y2n J=t -d 

and {Wil} is the inverse matrix of {Nu}. From the definition of the inverse transforma­
tion, (3.7) and (3.8), we find 

00 3 

(3.11) 1 f ~.., . 
UJ(O, z) = y

2
n -oo f:t M11 A1e-•«zda., j = 1, 2, 3. 

Taking into consideration (3.10), and reverting the order of operations, we obtain a set 
of three homogeneous integral equations 

3 d 

(3.12) Ui(O, z)+G 2 fu1(0, C)Ju(z-C)dC = 0, 
J=l -d 
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where 
00 3 

(3.13) JiJ (z) = ~ f ( .2 Mu WIJ) e-'=da.. 
-00 1=1 

By writing out (3.13), we find: 

(3.14) 

where 

J11 (z) = j ~·(:; ;,[2k2{J~ +4ot2{J.{I2- (2/3~ +k2 
:; )(ot2 +fJ~)Jda, 

0 

J21 (z) = -J12 (z), 

J31 (z) = 113 (z), 

J32 (z) = - J23 (z), 

M(ot) = (2P~+k2 :;r -4f3tf32(k2+ot2). 

17 

The integrals representing the kernels Jik are weakly singular fori= k and absolutely 
convergent for i #= k. The set of integral equations obtained will be solved by the method 
described in [1, 6]. To this end, we shall construct the solution over the interval ( -d/2 < 
< z < d/2) and generalize by means of Eqs. (3.10) and (3.7) over the entire interval of the 
variables y and z. 

Bearing in mind the symmetry about the axis of the waveguide, the solution is sought 
for in the form of the series: 

N 

U1 (0, z) = ..2; a,. cosmt;, 
11=0 

2 Arch. Mech. Stos. nr 1/73 
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18 s. KAusia AND L. SoLARZ 

N 

U2 (0, z) = i _2;h,.cosnn ~, 
,. ... o 

(3.15) 
N 

U3 (0, z) = i 2 c,.sinnn ~. 
11=0 

The solution (3.15) should satisfy the set of Eqs. (3.12) in the mean with the respective 
weights: 

z 
cosmn(j, 

. z 
-Jcosmn d' -isinmn;, m= 0, 1, ... , N. 

We obtain the following homogeneous set of equations: 

(3.16) 

where 

N 

~( (~)+b. R(~J+ (cJ))-0 LJ a,.a,.,. ,.p,.,. c,.y,.,. - , ~ = 0, 1, 2 m = 0, 1, 2, ... , N, 
,._o 

d d 

~> = ~,. ... + (1 ~ )d J J cosnn ~cosmn~J11 (z-C)dzdC, 
+ mO -d-d 

d d 

fJ~~> = - d(1 G ~ ) J J cosrm ~ cosmn ~ lm [112 (z- C)]t/Cdz, 
+ mO -d-d 

d d 

'Y~~> = d(l ~~"'o) J J sinnn ~ cosmn ~ Im[J13 (z- C)]dCdz, 
-d-d 

a~~> = [J~> (1 + ~ ... o) , 

~!> = 'Y~~> (1 + ~ ... o)' 

fJ~!> = y~lJ ( 1 + ~ ... o) , 

From the existence of non-trivial solutions of (3.16), 

(3.18) det { (3.16)} = 0, 
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we find the dispersion curve or curves 

(3.19) 
V 

- =f(k), 
a2 

expressing at the same time all the quantities a,., b,. and c,. by a0 , for instance, 

(3.20) 
a,. b,. c,. 

IX,. = -, {J,. = ~, y,. = -. 
a0 ao ao 

Taking into consideration (3.19) and (3.20), we obtain from (3.10) 

N 

A, ~fie . ~ ( -1)" N,,\ 
(3.21) a;;= -gy 2n:sm(ad) L.,; (ad)2-(mt)2 [(IAU,a,.Wu 

,. ... o 

+ {3. iW,1 (ad) + y,. (- W,3) mr], 

where 

g = (2h/d) (e/e) " 2 V2n-1
, " = kd, V = v!a2. 

Then, from (3.7) and (3.2), we find: 

(3.22) 

00 3 

UJ(x, y, z, t) = Re{ 1 e"'<ot-x) J ~M A e-ltlsdz} 
ao ~12n L.,; Jl ' ' 

Jl -oo 1~1 

and the computation formulae: 

Ut(x,y,z,t) = -2 Joo cos(u7)sinu u {, (-!)" x 

a0 cos k ( vt- x) g m (u) L.,; u2 - (nn) 2 

0 n=O 

(3.23) 

-fJz{u)!....[ 1 
+e d a, {3

2
(u) [4u2f3t(u){J2(u)-(2fJ~(u)+"2 V2)(u2 +fJ~(u))] 

+ p,[ -2,.P, (u)P2 (u)] +y.( -l)mr p2~u) [(2PHu) +"2V2)-4p, (u)p2(u)] ]}du, 

( t) f
oo sinugos(u dz)u 

2
N (- 1)~ U2 X, y, z, 

2 
. 

--- = g X 
aosink(vt-x) m(u) u2 -(nn)2 

0 n=O 

2* 
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20 

where 

(3.24) 

s. KALisici AND L. SOLARZ 

) f
oo sinusin(u dz) 

2
N (- 1)" u3 (x,y, z, t 

2 -~~~---'---- - - g X 
a0 sink(vt-x) - m(u) u2 -(nn)2 

0 n=O 

-fJ2(u)!... { ""
2 

+ e d a. .. {32 (u) [(2{3~ (u) + U
2 V2

) -4{31 (u) f3z (u)] + {3 .. r- 2u2f3t (u) {32 (u)] 

+ r. p'::._uJ [- 4><2fJ, (u) p. (u) + (2fJHu> + ,.• v•) (fJHu> + ,.•)]}]du, 

f3t (u) = y' u2 + U2 (1- V2 Js2) , 

f12(u) = yu2+u2(1-V2), 

m(u) = [2f3i(u)+u2 V2
]

2 -4Pt(u){32 (u)£u2 +u2
}. 

The equations discussed in the present section represent the general method for solving 
the problem by means of a computer. An example will be considered in the next section. 
Although the procedure concerns particular boundary conditions, it is general and may 
be applied with success to other boundary-value problems. 

Let us proceed now to solve an example and to a discussion of the application of 
a computer. 

4. Computation results and applications 

The numerical computations were performed by means of the EMC ZAM-41 computer 
using the SAKO code. Integration over infinite intervals was replaced by integration 
over very large finite intervals, the influence of the upper limit on the accuracy of the 
procedure being tested. The integrals over finite intervals were calculated by dividing them 
into from 4 to 8 parts depending on the type of the integrand. Integration in each subin­
terval was performed by 16-point approximation, using the Gauss-Legendre method. 
The influence of the number N of terms of the series (3.15) on the accuracy of the results 
constitutes a very interesting subject to study.lt is illustrated by Table 1, from which it is 
seen that the rate of convergence is determined by the ratio of the thickness of the plate to the 

wavelength. This ratio can be expressed by, for instance, the parameter lJI = 2n ~ = 2hk 

used by 'fmERsTEN. As a result of the known features of the approximate computation 
of eigenvalues [8], the computation of the phase velocity entails an error by more than 
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one order of magnitude smaller than that of computation of the form of the propagatin 
wave. 

Table 1 

'jJ=2hk I N 

0 
0.02 1 

2 

0 
0.2 1 

2 
3 

vfaz u1/aocosk(vt- x) 

0.90400027 1.00629 
0.90400027 1.00697 
0.90400027 1.00696 

0.21816 1.11204 
0.23823 1.74734 
0.24755 3.29550 
0.24971 3.90330 

y=O 
y = 0, z = 0, z = lOA 

Uz/aosink(vt-x) u3faosink(vt-x) 

-1.37889 1.01755 ·10-Z 
-1.37989 1.00242. 10-2 

-1.37988 1.00336 · 10-2 

-1.11960 -8.6764 · to-3 

-2.62282 - 3.2394 . 10-2 

-6.12884 -7.7029. 10-2 

-8.03962 -1.1138. 10-1 

For very thin plates 'IJI = 0.02, the difference of phase velocities for N = 0, I, 2, 3 
is undetectable. 

For thick plates- 'IJI = 2 for instance, which is a value beyond the range of physical 
sense, the results imply that for N = 3, the error is of order one or two per cent. Similarly, 
although the computed value of the difference of displacements between N = 0 and N = 1 
reaches, for 'IJI = 0.02, the fourth decimal figure, and between N = 1 and N = 2 no more 
than the sixth decimal figure, the error for 'IJI = 2, between N = 2 and N = 3, is of order 
40%. These results explain also the success of asymptotic methods based on prior assump­
tion of the variability of the wave with increasing distance from the surface of the body 
or the waveguide layer [3, 4]. 

The analysis was performed for a layer of gold on fused silica the properties of which 
are described in [7]. The dispersion curve is represented in Fig. 2. 

V11/a2•Q9057 

1\ 

\ 
Q5 .. \ 

' ........... 
~ --.!!!!!...-63. 5 -

I 

FIG. 2. 
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22 S. K.Ausxl AND L. SoLARZ 

The propagating wave obtained by computation for a particular instant of time is repre­
sented in Fig. 3, which is a spatial representation. It shows the phase shift between the 
displacements and the symmetry about the waveguide axis. It is very interesting to study 

ulx,O,z, t0 ) 

0 

Uz(x,O,z,to) 

0 

Us(x,O,z,t0)-10 

0 

FIG. 3. 

the process of dying out of the wave with increasing distance from the surface. This is repre­
sented in Fig. 4 up to a depth of 1,5 wavelengths. Further attenuation is monotonic, which 
is illustrated by Table 2. 

The analysis shows that there are in the surface layer very sharp gradients of the 
perturbed field. The attenuation is non-oscillatory but there is a single change of sign of 
u1 and u3 • 

By way of example, the variability type of the wave at the surface and at a depth of one 
wavelength is shown in Figs. 5 and 6, respectively, where A. = 6.28319 · Io-s m, djh = 
= 63.5, v = 0.509 a2 i denote depth in wavelengths, and k displacement component 
divided by cosk(vt-x) or the function a0 sink(vt-x), respectively. 

http://rcin.org.pl



THE SURFACE WAVEOUIDB. ACCURATE SOLUTION 23 

From the analysis it follows that the displacement dies out in an oscillatory manner 
with increasing distance from the middle of the waveguide similarly to the sine integral 
function for a value of the argument much above zero. 

10--- u1/ao cosk(vt-x) z-0 
14 --,,-- z·4d 
20---- u2/aosink(vt-x) z-0 
24 __ , __ z-4d 

30-- u3/a0 sink(vt-x) z-0 
54 --n-- Z•4d 

A•6.28319·10-s [m] d/h-63.5 
v=059Da2 h=2·10-6 [m] 

1.5 

~ 

Fio.4. 

Table 2 

yf). u.fuocosk(vt-x) u2/aosink(vt-x) u3/a0 sink(vt-x) 

0 0.74500 -0.89205 -3.9456 · 10-3 

-0.94367 · 10-2 -1.53436 . I0-2 - 3.9530 · 10-s 
1.5 -8.40146. 10-4 -1.2164 · 10-3 -1.5623 · 10-5 

2 -6.6043 · 10-5 -9.0546. I0-5 -2.0224. 10-6 
2.5 -4.9089. 10-6 - 6.5296 · 1 o-6 -2.0776 · 10-7 

3.5 -1.0803 . I0-8 -1 3907 · 10-s -7.9041· 1o-•o 

z ~ 4). 

It follows also that the displacement in the direction of the z-axis is by ·five to ten times 
as small as the displacements in the directions of the remaining axes. It appears that the 
approximation consisting in the rejection of this displacement in . the equations and the 
rejection of the relevant equation of dynamic equilibrium gives a sufficiently accurate 
dispersion curve and a correct image of the process of dying out of the signal. 

The present results are not directly comparable to those of Thiersten which were obtain­
ed by taking into consideration the rigidity of the waveguide layer, approximate methods 

http://rcin.org.pl



24 S. KALISKI AND L. SOLAR Z 

being used. The results are in general, however, identical for very thin layers, asymptotic 
methods being used, the Tiersten results are correct only in a limited variability range 
of the parameters- on the other hand, Tiersten was obliged to asssume beforehand the 
manner in which guided surface waves die out. 

There are no such expressions in the present paper and the manner in which waves 
die out results from the solution. It is worth while to observe that, by contrast with Tiersten's 
conclusions, the dying out process is non-monotonic although there were no significant 

15.----------.. Q01 .------------,---------.,--------~ 

12 

-10~---+--~------L--

-a04 ~...-.. ___ __, 
FIG. 5. F'Io. 6. 

quantitative differences. In addition, the present solution is universal, because the method 
used can be applied to any set of boundary conditions and a body of any type (cf. [1]). 

This method will be used to analyse the influence of the rigidity of the waveguide 
layer and other problems of surface waveguides in piezo-semiconducting bodies (a semi­
conducting layer on a piezo-electric body etc.), as well as curvature effects of the waveguide. 
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