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Thermoelastic equations for ferromagnetic bodies
H. PARKUS (VIENNA)

THE BASIC equations of an elastic, ferromagnetic, heat and current conducting body are derived
directly from the first and second law of thermodynamics.

Podstawowe réwnania oSrodkéw sprezystych, ferromagnetycznych, przewodzacych cieplo i prad
elektryczny, wyprowadzono bezposrednio z pierwszej i drugiej zasady termodynamiki.

W3 mepBoro ¥ BTOPOro NPHHIMIIOB TEPMOJUHAMHMKY BLIBOAATCA OCHOBHbIE YDaBHEHHA yIpY-
rux ¢eppOMATHUTHLIX MATEPHAIOB, 0OIAfAIONINX CBOHCTBAMH TEILIO H 3JICKTPOIPOBOJHOCTH.

1. Introduction

THE GENERAL equations for electrically nonconducting ferromagnetic bodies have been
given by TIERSTEN [1] and, for the isothermal case, by BROWN [2]. Tiersten’s equations
are presented in an extremely complicated form, mainly for the reason that the principle
of frame indifference is incorporated right from the start. It is the purpose of the present
paper to give a different derivation of the equations which at the same time, generalizes
them to include electric conduction. The results appear in a form similar to that given by
BrowN which is considered more appropriate for engineering applications.
Throughout the paper the international MSK system of units will be used.

2. The first and second law

The first law of thermodynamics, i.e., the energy balance for a ferromagnetic body
of instantaneous volume ¥ may be written as

@.1) ?‘;—_ [9(3;+U)+U,] dV=f(gr+ﬁv,)dV
v V

+: _{[Tu”ﬂ“’u@ e (EXH)E+Ueﬂi:|"idA-

o
The left-hand side represents the time rate of the total energy (kinetic, internal and electro-
magnetic) enclosed in V. The terms on the right-hand side are: heat production by the
heat source distribution, rate of work of volume forces f;, of surface forces 7}n; and of
“exchange forces” a;nm;, transport of heat — Q;n; and of electromagnetic energy —
(E x H);n; through the surface into the body (n; positive outwards) and, finally, the influx
of electromagnetic energy U, v, due to the motion of the body through the external electro-
magnetic field.
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The magnetization vector density .#; is introduced here with reference to the unit
of mass

(2'2) Qvl[ = MI‘

The, as yet unknown, stress tensor 77} contains the mechanical stress tensor 7;; plus addi-
tional magnetic effects. The exchange tensor a;; covers the exchange forces between the
mechanical continuum and the electronic spin continuum. It, too, is unknown.

The motion of a particle in an inertial frame will be described by its spatial coordinates
(Eulerian coordinates)

(2‘3) Xy = xi(xzht)s i=1,2, 3:

where X,, A4 = 1,2,3 represents the material coordinates (Lagrangian coordinates)
which initially coincide with x;,

24 x(X4, 0) = X,.

The deformation gradient

2.5) Jiat = Xi,4

serves as a strain measure. The particle velocity o; is given by
(2.6) o = dx;fdt.

The second law of thermodynamics is assumed in the form of the Clausius-Duhem
inequality as

d r o
2.7 -a?!Sdm?J?dm— a4,

v

where S denotes entropy per unit mass and T is absolute temperature.
Applying now GauB’theorem to Eq. (2.1) and remembering that

(2.8) = ) UedV— $ Umpdd = | —2av,
v av ¥

one obtains the differential equation form of the first law as

d (v o, ol .. A,
2.9 Qd_t(T+U)+ 3 —9"+f:vi+E[szﬂﬁﬂﬁe-—&——Qj—(Exmj]-

Similarly, for the second law from Eq. (2.7),

ds
2.10) T2 > o0, + 21,
The free energy F per unit of mass, defined by
2.11) F=U-TS

of the elastic, ferromagnetic body, is assumed as a function of strain, magnetization vector
and its gradient, and of temperature:

2.12) F = F(xj,a, M, Mi,5, T).
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We have then

15 dF _ (OF dx,  OF d#; OF dM,, OF dT

: €U TNx . A oM, & oM, & ToT @

and

OF dx,4_ OF

(2-14) ani.d df 5x, Av’d_ga—xj:vidled
__a_( OF ) o (, oF 1\,
= ox; \Caxy AV T ey \ o ) P

@.15) OF d#y; 0 OF d,ﬁf)__a_( OF \d#,

: Cod,;, @& ox;\°ok,, dt | ox; \Cok:,) a

For the electromagnetic energy, we introduce the expression
2.16) Ue = (o E*+po H?),
where E and H are electric and magnetic field intensity, respectively, and &, and u, are

dielectric constant and permeability in vacuum, respectively. Then, making use of Maxwell’s
equations,

(2.17) VxH=j+%, VxE=——aa%
and of the constitutive relations for a moving, non-polarized body,
(2.18) D =¢gE, B=pu,(H+M),
we find
au, OE, 0H; M;

- . 2
(2.19) N =&k o +F'OH.|"_3?_“' =V (ExH)—jiE—poHi—; ot

: a#
= =V €xH)—jiEi—po Hio =" + pto(@HiM 103),x— pto 0 M H, x0s.

The Nabla operator is defined as V;(-) = (),;, and j represents the electric current density.
In writing Eq. (2.19), the continuity equation

) d
(2.20) —a—fi + 5 (@) =0
as well as the relation
d#;, oM,
(2.21) et ! TR ¥

have been utilized.

Another constitutive equation, Ohms law, will also be needed. For an electrically iso-
tropic body this law reads

(2.22) j = c(E+vxB—xVT),

11+
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where o represents the conductivity. For an anisotropic medium, o generalizes to a sym-
metric tensor.
Multiplication of both sides of Eq. (2.22) by j/o yields

;2
(2.23) '%=j-E—(j><B)-v—xj-VT.

Substitution of Egs. (2.19) and (2.23), together with Eqgs. (2.11), (2.13), (2.14) and
(2.15) into Eq. (2.9) and inequality (2.10) renders

do; o oF .
(2.24) e —ﬁ——a;;(emxid) = (i xB);—poo My Hk.i}ﬂ:

oF 1 8 oF d#, [oF )dr
+9{Mf?a—xj(93&,)_"°}f‘} at +9{6T+S} ar

i, oF & oF dM;
+—{(mej,a—T_ﬁ+#09~£.1H35u)91+9(aﬁu—ﬂ;.-) i +QJ}

ox;
+gT—§§—-§—zj-VT—gr=0
and
225 |{...}viteol.. +{ ]dT+%(...}—‘§—xi-VT+%T,;€O.
3. The basic equations

A number of conclusions may now be drawn from the first and second law in the form
of relations (2.24) and (2.25). First, we note that the coefficient of the temperature rate
dT[dt must vanish. This yields the well-known thermodynamic relation

3.1 S= =

We now apply the “principle of frame indifference™ [4] by first replacing v; by v;+¢;
(rigid translation) and then v, ; by v; ;+w;; (rigid rotation). It follows that those terms
which have v; as a factor must vanish. This renders the two equations

dv; .
3.2) e = fi+ T, j+ (1% B+ po My Hy;
and
(33) 7?_} = 7ij+ﬂ0MsHsaij;
where 1y, defined by
oF
3.4 Tik = Qxi.xm

represents the Cauchy stress tensor. Equation (3.2) represents the equation of motion,
while Eq. (3.3) determines 7} in the energy Eq. (2.1).
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Next we consider the terms containing d.;/dt as a factor. They must vanish. Now,
the magnetic equation of angular momentum(!) for the magnetic moment . per unit
mass reads

d#

(3.5) @ YoM X Heyy,

where y is a constant and H,,, represents the “effective” magnetic field(?). From a com-
parison of this equation with the second term of (2.24) anb (2.25) we conclude that(3)

1 oF 1 @ oF
(3.6) (Hey)i = Hi— ;{}_[—-—M:‘ = ?a—xj(é’——aﬂu)]-
Finally, if we put
oF
3.7 a;; = _"”_a.,d,_,- s

the second term with d.#;/dt as a factor will vanish. This determines the exchange
tensor a;j.

After collecting the remaining terms in Eq. (2.24), we arrive at the equation of heat con-
duction

das
?r_ 3
where expression (3.1) for the entropy has to be substituted.
To Eq. (3.8) the law of heat conduction has to be adjoined. If, for instance, Fourier’s
law is adopted in the form valid for a thermally isotropic body(*),

(3.9) Qi = —kT,i+=T},

one obtains, after substitution into Eq. (3.8), assuming k = const and using V'j =0
from Maxwell’s equations,

12
(3.8) Qi1 = or+L 44 VT—oT

ds j?
3.10 VP = o T — pps L e T
(3.10) kV2T = oT. R ik &

The term j?/o represents the Joule heat production, while the last term exhibits the Thom-
son effect. The coefficient x will, in general, be temperature-dependent, Vx = (dx[dT)VT.

Differential Eq. (3.2) has to be supplemented by boundary conditions. To this effect,
the Maxwell stress tensor my; is introduced as(®)

(3.11) My = HiBj~ o H*3,

(') See [2], p. 85.

(*) After multiplication of both sides of Eq. (3.5) by .# we get d.#?/dt = 0, and hence 42 = const.
Eq. (3.5), therefore, implies magnetic saturation.

(®) See [2], p. 84.

(*) See [5], § 25. An additional term appears in [5] which, however, is already included here in Eq. (3.8).

(*) The Maxwell stress tensor is used here solely as an auxiliary quantity and no deeper meaning is
ascribed to it.
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and Eq. (3.2) is rewritten in the form

D do
(3.12) (gt my), — (“.aT x B)I =g
As usual, the displacement current dD/dt will be neglected. Now, if v denotes the absolute
velocity in the direction of its normal of a surface of discontinuity moving through the
body, and if v, is the velocity in the same direction of the corresponding body particle,
the following jump condition(5) follows from Eq. (3.12),

(3.13) [zji+mjln; = [e(va—v)vi],
where [¢]: = ¢t —@~. To Eq. (3.13) the condition of continuity has to be added,
(3.14) ol(e,—0)] = 0.

If the surface of discontinuity coincides with the surface of the body, we have v = v,
and tjn; = p;, where p; is the external surface load. Remembering, furthermore, that
the magnetic field intensity experiences a jump acrosse the body surface(?) of magnitude

(3.15) Hf—Hf = Myn,,

while the normal component B, of B remains continuous, one obtains, utilizing Eq. (3.11),

Imidn; = By(H} —Hy) = 52 (Hf = H?) (H + Ho)

= B,M,n;— ‘;’;_D'Mu"s(zH: ~ Myn)n; = Mn(Bn—PoH;+ %‘ n)n(

(no summation over index n!),
but B, = B} = uoH;. Hence, Eq. (3.13) finally renders the boundary condition

(3.16) Tjiny = p‘+.‘.;°_M,,=,n,..
In addition to body forces u, M;H,,; and surface forces uo M7 ny/2, the magnetized
body is also exposed to a distribution of couples as a consequence of the nonsymmetry

of the stress tensor:

oF oF oF oF
¥ Tl Slr v el il v o e v

A thorough discussion of these effects is given in [2].

(3.1?) Tu— T = 9( -/#gu‘).

4. Objectivity

The constitutive equations as obtained in the preceding section are not objective, i.e.,
they are not invariant under an orthogonal transformation of coordinates x;. In order
to make them objective the deformation gradient x; , would have to be replaced by a differ-

(%) See, for instance [3], p. 503 ff.
(") See [2], p. 57.
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ent strain measure in the expression (2.12) for the free energy. The same holds true for
the magnetization vector .#;. Details of the procedure may, for instance, be found in
[2], p. 69, and [6], p. 44.
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