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Random yield limit of stochastically non-homogeneous elements in 
tension 

J. MURZEWSKI (KRAKOW) 

THE coRRECTED strength of a rod in tension R~ is defined as the quantile (1.4) of the random 
yield limit of the rod, the parameters of probability distributions R', v.R differing from the para­
meters R, v R of probability distributions of the yield limit measured in standard specimens owing 
to the stochastic non-homogeneity of the material. The size factor ms, i.e., the ratio of R~ 
to the conventional value of R4 is formulated (2.6) by means of a modified Weibull theory. 
An improved formula for the size factor is then derived (3.9) taking, into account the auto­
correlation of the local yield limit (3.1) and assuming it to be a stationary log-normal stochastic 
function . 

Skorygowanl! wytrzymalosc obliczeniowl! pr~ta rozcil!ganego R~ okresla si~ jako kwantyl 
(1.4) losowej granicy plastycznosci pr~ta, przy czym parametry rozkladu prawdopodobienstw 
R', v.R r6ZI1il! si~ od parametr6w R., vR, rozkladu prawodpodobienstw granicy plastycznosci, 
mierzonej na znormalizowanych pr6bkach, na skutek stochastycznej niejednorodnosci ma-
terialu. Wsp6lczynnik skali ms czyli stosunek R~ do konwencjonalnej wartosci R4 dla pr4:(ta 
o dlugosci L i przekroju A sformulowano (2.6) na podstawie zrnodyfikowanej teorii Weibulla. 
Nast4:(pnie wyprowadzono dokladniejszy wz6r na wsp6lczynnik skali (3.9), uwzgl4:(dniajl!C auto­
korelacj4:( lokalnej granicy plastycznoSci (3.1) i zakladajl!C, i:e jest ona stacjonarnl! logarytmo­
normalnl! funkcjll stochastycznl!. 

11cnpaaneHHaJI pac1.1eTHaJI npo1.1HoCTb paCT.flrHaaeMoro crep>KH.fl R~ onpe,D;eJIHeTCH l<aK 

I<BaHTHJI (1.4) c.nyqaiffioro npe,D;ena IDiaCTH'liHOCTH crep>KHH, npH1IeM napaMeTphi pacnpe­

,D;eneHIDI aepO.fiTHOCTeii R', v.R oTJIH;1laK>TCH oT napaMeTpOB R, v R pacnpe,D;eneHIDI aepoHTHo­
cTeii npe,D;ena IDiaCTH'liHOCTH H3MepeHHoro Ha CTaH.D;apTHbiX o6pa3qax, acne,D;CTBUe croxaCTH-

qecKoii Heo,D;Hopo.D;HOCTH MaTepHana. MaCIIITa6HbiH $aKrop ms, T. e. ornoweHHe Rd 
1< o6biKHoBeHHOMY 3Ha1lemuo R4 .D;JU1 crep>KHH ,ll;JIHHhi L u ce1.1eHID1 A c$opMy.rm:poaaH (2.6) 
Ha OCHOBe MO.D;IitPiiQHPOBaHHOH TeopHH Beii6yJIJia. 3aTeM Bbme,D;eHa 6onee TO'lffiaJI $opMyJia 
.D;JI.fl MaCWTa6Horo $aKTopa (3. 9) y1lliThiBaJI aaToKoppeJI.flqHIO JioKa.m.Horo npe,D;eJia nnacTH1.1-
HOCTH (3 .1) H npe,D;llOJiara.fl, 1ITO .fiBJI.fleTC.fl OH CTaqHOHapHOH JIOrapU$MO-HOpMaJibHOH CTOXa­
CTH1.leCl<OH $ym<queii. 

1. Deterministic and stochastic non-homogeneity 

A REALISTIC estimation of elastic-plastic deformation or the load carrying capacity of 
structures often requires that the material non-homogeneity be taken into account in static 
calculations. W. OLSZAK with his eo-workers [10] indicated and classified the most import­
ant sources of non-homogeneity of structural materials and solved numerous boundary 
value problems of mechanics of non-homogeneous bodies which had been earlier limited 
to perfectly homogeneous media. In the new solutions, it was usually assumed that the 
elastic and plastic moduli were completely defined functions of position within the body, 
continuous or stepwise, whose parameters could be specified on the basis of experimental 
investigations of the structural material. The main trend of development of non-homogen-
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eous media mechanics on the basis of deterministic formalism was accompanied by 
a series of papers dealing with the statistical or microscopic non-homogeneity [5], where 
the mechanical properties of materials were characterized by random- i.e., stochastic 
functions of position in the body. Parameters of the stochastic functions may be specified 
on the basis of statistical testing of specimens made of the material to be used in the struc­
ture. 

Both the deterministic and statistical approaches to the problems of material non-homo­
geneity extend the class of solutions which may be used in practical design of structures. 
They also make possible to formulate a number of questions of theoretical interest. For 
instance, in solving the problems of functional nonhomogeneity of elastic-plastic plates 
in bending [8], the problem arises as to under what conditions the stresses remain contin­
uous at the interface between the elastic and plastic regions, and how the problem is 
influenced by compressibility, incompressibility or plastic orthotropy of the material. 

Another question consists in determining the types of non-homogeneity (continuous, 
layered, axi-symmetric etc.) of an elastic-plastic wedge loaded by a concentrated force [9] 
for which the stress distribution is qualitatively the same as in an elastic homogeneous 
medium (i.e. it remains radial). A very important and interesting problem of the theory 
of stochastically non-homogeneous media is the problem of what is called size effect, 
which may be explained shortly as the problem of dependence of unit strength upon the 
volume of the body. More generally, the problem consists in finding the deviations of the 
mean values of deformation or load carrying capacity from the values following from the 
well-grounded laws of model similarity. The present paper offers a certain theoretical 
contribution to the problem of size effect. Our considerations are confined, however, 
to the very simple case of a prismatic element acted upon by an axial force of extension. 

In this manner, we shall concentrate our attention on the most important problems; 
moreover, such a method proves to be suitable from the point of view of practical calcula­
tions. The current stage of discussion concerning the necessary modifications of standard 
methods of dimensioning the building structures is connected with the introduction of 
simplified, semiprobabilistic methods, in particular the limit state method [3]. According 
to this method, separate, partial safety factors are introduced, such as the non-homogeneity 
factor k which enables determination of the design strength R4 in terms of the characteristic 

strength Rk , 

(1.1) 

For structural steels, the characteristic strength Rk equals what is called "minimum 
yield limit" which is determined for any kind of steel by the corresponding metallurgical 
standards. 

The factor k is given by the formula: 

(1.2) 

where ii is the mean value of the yield limit and v R - the coefficient of variability of the 
yield limit. Parameters R, v R are determined in standard laboratory tests. 
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In the case of a normal - that is, Gaussian yield limit of the material - definition 
(1.2) allows for interpretation of the design strength as a distribution quantile on the 
probability level 

w = 1.35%0. 

The value of the design strength can be established more precisely by introducing 
the size factor ms: 

(1.3) 

According to this suggestion, the size factor would introduce certain corrections to the 
design strength of rods subject to tension and having dimensions different from those 
which served to measure the yield limit of the material. The corrected design strength 
is also defined as a quantile, and hence in the case of normal probability distribution and 
W = 1.35%0 • 

(1.4) R~ = R'(l-3v~), 

though here R', v~ are distribution parameters of the random carrying capacity of the 
entire structural element. 

The problem consists in deriving the formulae for calculating the parameters R', v~~ 
and consequently the size factor ms, on the basis of known values of the strength distri­
bution parameters of the specimens and of the dimensions of structural elements. Such 
formulae are obtained by means of the analysis of random non-homogeneities of the 
material. The well-known WEIBULL and other formulae concern the problem of strength 
of brittle materials [2]; they express the design strength in terms of the volume of the 
structural element. The size effect of ductile materials such as structural steels requires 
a separate theory. Paper [7] modifies the Weibull theory by taking into account the fact 
that in the critical, weakest cross-section of the rod in tension made of ductile, elastic­
plastic material, a full redistribution of stresses (to the limit random level) precedes the 
plastic flow. These assumptions imply that the expected strength of a steel rod decreases 
with its length and the strength variance is smaller for larger cross-sectional areas. In that 
paper, the formulae were derived for the scale factor of alloy treated steels, as also its 
values were established for the L-beams most frequently applied in support structures of 
electric transmission lines. The corresponding study was prepared for the "Energoprojekt" 
design office as a part of a larger project concerning the probabilistic justification of safety 
factors; it requires further continuation, since the size factor calculated from the modified 
Weibull hypothesis for ductile materials follow from a very simplified theoretical model 
and do not take into account the yield limit autocorrelation in the neighbouring points 
of the medium. Thus it is a singular case of discrete non-homogeneity in which the yield 
limit assumes stepwise, stochastically independent values at separate points of the medium. 
Attempts were made to introduce a more general model by assuming the yield limit to 
be stationary stochastic function with a non-degenerated autocorrelation function. The 
material non-homogeneity was assumed to be influenced by (in addition to random 
factors) systematic factors following from different plastic hardening occurring in rolled 
profiles of different dimensions. 
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2. Size factor according to the modified Weibull hypothesis 

The Weibull theory is now considered as a classical theory presented in numerous 
handbooks [1, 2, 6] and is concerned with the size effect in problems of strength; of brittle 
materials, in which "the weakest link effect" may be justified- i.e., the hypothesis 
according to which the strength of the weakest point determines the strength of the entire 
body. 

Modification of the theory for rods made of ductile materials [7] leads to the conclusion 
that the scale faCtor is not a function of volume V of the body, like in Weibull's original 
theory, but depends on two variables: cross-sectional area A and length L of the rod. 

Without going into detailed derivations let us quote the final formula for the distri­
bution function of strength R of a steel rod. This is a Weibull type distribution- i.e., 
extremum distribution 

F(R) = 0 for R < 0, 

F(R) = 1-exp(- j/ R/R) for R ~ 0, 
(2.1) 

where the distribution parameters are: u- Weibull variability index, R- the character­
istic minimum of strength. 

The parameters are expressed in terms of the normal variability coefficient v and the 
expected strength of the rod R in the following manner: 
F(l +2u) . 
F(l +u) = 1 +v, or approximately u ~ 0.8v, 

Rr(l +u) = R, or approximately R ~ R(l-0.5u). 
F(x) is the Euler gamma function tabulated in [12]. The approximate formulae can be 
applied for small values of v < 15% which is true e.g., in steel. 

Parameters v, R depend on the rod dimensions A, L, as follows from the Weibull theory 
[7], in the following manner: 

(2.3) V = V 0 y A 0 /A, R = R0 (L0 /L)", 

where A0 and L0 are the dimensions of a hypothetical, elementary grain of the material, 
and R0 - the mean yield limit of the grains. 

The elementary grains in Weibull's theory do not coincide with the grains of the metallo­
graphic steel structure and should be understood as regions whose mechanical properties 
are stochastically independent of the properties of other regions. The values of L0 , A0 , 

R0 , v 0 is determined indirectly on the basis of two series of tension tests performed on 
steel specimens of dimensions A1 , L 1 and A 2 , L2 , respectively. After estimating the mean 

v<dues R1 , R2 and the Weibull variability indices u1 , u2 in these tests, parameters L 0 , R0 

are found from the formulae: 

(2.4) 

Parameters A 0 , v0 do not have to be determined separately; it suffices to evaluate the 
expression : 

(2.5) 
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The equality v 1 V A1 = v 2 y A 2 = const serves as a control test of the theory. Obviously, 
small discrepancies may occur following from the fact that v1 , v 2 are estimated on the 
basis of a limited number of statistical tests; then v 0 y A0 should be averaged. 

The form of Eq. (2.4) is simpler than that given in [7], the formulae being equivalent 
and obtained by algebraic transformations. The formulae will be used to specify the Weibull 
distribution parameters, starting from two tension tests series performed on steel 18G2A 
specimens described in [4]. 

Fivefold flat specimens (according to Polish Standards PN-62/H-04310): 

A 1 = 20 x 30 = 600mm2
, L 1 = 140mm, 

A 2 = 27,5 x 30 = 825mm2
, L 2 = 160mm. 

Results (empirical mean, standard deviation, normal variability coefficient): 

R1 = 38,31 kG/mm2
, s1 = 3,72kG/mm2

, v 1 = 0,0710~ 

R2 = 38,87kG/mm2
, s2 = 2,49kG/mm2

, v 2 = 0,0641. 

Checking the control condition v1 ~ = V 2 }/A 2 : 

o.o11o v 6oo = t.74, 

0.0641 y825 = 1.84, 

Averaged normal variability coefficients 

mean value l. 79 mm. 

0 0 1,79 3 v 1 ~ 0. 71 · 
1
,
74 

= 0,07 1, 

v 2 ~ 0,0641 · !'~: = 0.0623 
' 

and Weibull's variability coefficients 

u1 ~ 0.8 x 0,0731 = 0.0585, 

U2 ~ 0,8 X 0,0623 = 0.0498. 

Parameters of "elementary grains" 

[ 
38 31 ( 140 )0·0498]0 0598-0 0498 

L 0 = 140 
38

:
87 160 

= 140I(0.984(0.876)0.0498Jll5 = 

= 140 x 0,984115 x 0.8765.73 = 10.2 mm. 

- ( 140 )0.0585 
R 0 = 38.31 

10
.
2 

= 38.31 x 13.7°·0585 = 44.6 kGfmm2 • 

This example enables us to construct the approximate Table of scale factors for the alloy 
treated steel 18G2A. Unfortunately, the corresponding experimental data concerning 
low carbon structural steels StOS, St3S are not yet available. 

In the Table are given some values of the scale factor ms for L-beams most frequently 
applied in support structures of electric transmission lines, of various lengths L, and for 
the quantile value w = 1.35 x I0- 3

, which correspond to the strength calculated according 
to the limit state method. 
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The size factor is formulated in the following manner: 

(2.6) 
( 

1 )U' 
R0 ( L 0 )"' ln-1---w R0 ( Lo )"' w"' 

ms = Rd L F(1+u') ~ Rd L l-0.5u'' 

where 

is the global Weibull variability index of the random yield limit and random cross-sectional 
area (varying due to the dimension tolerance). 

Rd = R1 exp (- lw v~) ~ R1 (1- lw v~) is the conventional design strength determined 
for log-normal distributions of the yield limit for the steel specimens with parameters 
LN(R1 , v1), with the random deviations of the cross-sectional area of the rod 

v~ =vvi+v!, and for the safety level 1-w; here (1/2)+(1/2)erf{tw/2)= 1-w, erfx 
denotes the error function, 100 is the normal tolerance coefficient. 

Equation (2.6) is derived from the assumption that the effective strength R~ corrected 
by the Weibull theory is the quantile of the minimum strength distribution of the rod 
cross-sections, at a fixed length of the rod L and random cross-sections A, 

(2.7) 

Table 1. Size factors according to the modified Weibull hypothesis for single angle beams made of 
18G2A steel; quantile level = 0.00135 

Profile di- Length 
mension'l L (cm) 

(mm) 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 
and area 

(cml) 

L 35x 35 x4 
2.67 

L40x40x4 
3.08 

L 45 x45x4 
3.48 

L 50x 50x 4 
3.89 

L 45x45x 5 
4.29 

L60x60x6 
6.91 

L 75x 75 x 5 
7.38 

L 100x 100x 10 
19.2 

L 120x 120x 10 
23.3 

0.519 0.509 0.500 0.490 0.484 0.480 0.475 0.471 0.466 0.462 0.458 0.455 0.453 0.451 0.449 0.447 0.454 

0.552 0.541 0.531 0.524 0.518 0.516 0.512 0.506 0.501 0.498 0.495 0.493 0.490 0.486 0.485 0.481 0.480 

0.611 0.600 0.590 0.585 0.581 0.573 0.569 0.563 0.560 0.559 0.553 0.551 0.549 0.545 0.543 0.540 0.540 

0.602 0.593 0.581 0.576 0.570 0.567 0.560 0.558 0.552 0.550 0.548 0.543 0.541 0.539 0.537 0.535 0.531 

0.631 0.623 0.616 0.609 0.601 0.599 0.592 0.591 0.584 0.581 0.578 0.575 0.572 0.570 0.568 0.565 0.563 

0.744 0.731 0.725 0.719 0.711 0.709 0.701 0.699 0.696 0.692 0.690 0.684 0.682 0.681 0.680 0.677 0.673 

0.749 0.740 0.730 0.724 0.720 0.712 0.710 0.705 0.702 0.700 0.697 0.693 0.686 0.682 0.680 0.678 0.678 

0.916 0.908 0.898 0.891 0.889 0.884 0.880 0.875 0.871 0.869 0.865 0.863 0.861 0.858 0.856 0.855 0.854 

0.965 0.955 0.950 0.944 0.939 0.935 0.931 0.927 0.925 0.920 0.918 0.915 0.914 0.911 0.910 0.907 0.905 
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It should be mentioned that the simple method of taking into account the random 
deviations of the cross-sectional area is accurate provided: 

(a) the random cross-section A is stochastically independent of the yield limit R of 
the cross-section; 

(b) the least distance between the cross-sections whose areas are stochastically indepen­
dent equals the size L 0 of the elementary grain determined from the analysis of the variabi­
lity of random yield limits; 

(c) the variability indices v (normal) and v (log-normal) are small; then v ~ v. 

3. Size factor according to the hypothesis of log-normal stochastic functions 

The applications of stationary stochastic functions to the problems of dynamic loads 
are well-known; more precisely, the applications concern the calculation of the probability 
of exceeding a definite level by the random loading process [11]. The solution will now 
be transferred to the calculation of exceeding a definite stress level by the stochastic function 
of yield limits; the deterministic argument is not the time (thus we are not faced with a sta­
tionary random process) but the coordinates of a material point of the medium whose 
strength is being calculated; we are dealing with a homogeneous random field. 

Let us introduce the following assumptions specified for the case of calculation of 
strength of thin-walled steel elements subject to tensile forces. 

(a) The single phase (i.e., at one point of the medium) probability distribution of 
yield limits R is log-normal with parameters LN(R9 , v). This assumption is equivalent 
to the assumption that the logarithms of yield limits have a Gaussian distribution with 
parameters N(ln R = In R9 , v ), R0 denoting the median of the local yield limit. 

(b) The autocorrelation function of the yield limit is isotropic in the middle pl~nes 
of walls of the steel element- i.e., it depends on the distance y of points in the plane 
(measured after developing the walls). The hypothetical form of the correlation function 
is assumed in the form 

- 2 ( 2y
2 

) (3.1) K(y)- v9 exp - n 2 c5i , 

where c}9 is the so-called effective period of return of the expected value given by the formula 

(3.2) c} = -n[K(y) / d2K(y)J 
g I dy2 y-o' 

which is easily found to coincide with Eq. (3.1). 
Making no assumptions concerning the autocorrelation in the third dimension (across 

the wall thickness), we presume that the statistical investigation will proceed separately 
for each thickness g, and the parameters R

9
, v

9
, <5

9 
will be determined according to the 

thickness. It is known that the size effect for steel sheets of various thickness is strongly 
influenced by technological factors (different rates of cooling after rolling, influence of 
plastic deformation etc.) and may be estimated empirically; 

(c) The mechanism of fracture of the rod has a plastic flow character- i.e., all points 
of the cross-section must reach the yield limit, but yielding of a single cross-section is equi-
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valent to fracture of the entire rod. We confine ourselves to plane cross-sections perpendi­
cular to the axis of the rod. 

The expected value of the yield limit logarithm in a cross-section with global length 
of walls 2a equals the expected value of the logarithm of the local yield limit, lnR = In R,, 
and the variance of the yield limit in the cross-section is calculated from the formula [11], 

[( 
n )

312 

<5 2 y2a nz<5z ( ( g0 z ))] 
= v; T ; erf~ + 80/ 1-exp - n2 <5i , 

whence (Fig. 1) follows the formula: 

(3.4) p ,., v, V 1,98 !· + 1,24 ( ~ r "' 1,4v, V ~ 
for <5,/a < 1. 

FIG. 1. Dependence of the variability coefficient v on the width a of legs of an steel angle beam. 

The risk of exceeding an arbitrarily settled value R' by a usually higher stationary 
log-normal stochastic function of the yield limit R(x) is, according to the Rice formula 
[11] 

(3.5) _ 1 [ (lnR,-lnR')2 J _ 1 [ ln2 (R,/R')] 
r - T, exp - 2vz - T, exp - 2vz ' 

and the probability of not exceeding R' on the length L, according to the "reliability at 
a constant risk" formula [6] 

(3.6) F(R) = P[1nR(x) < 1nR'IO.;; x.;; L} = 1-exp{- ~ exp[-
1
n

2 ~~/R')]} 

=1-exp{-exp[1n ~ _ln\~1R')]}. 
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This is the formula for the yield limit distribution function R of a rod of length L. 
It contains three parameters R9 , v9 , ~9 for each. thickness g of the £-profile. The parame­
ters may be determined from two series of tests performed on specimens having different 
cross-sectional areas and lengths. 

The calculation strength containing the scale coefficient follows from equating the 
distribution function to the probability assumed: 

F(R;,) = w. 

Solution of this equation for R;, (Fig. 2) yields 

(3.7) 

az 

(} 2IXl 400 600 L/wcSg 

FIG. 2. Dependence of the design strength R~ on the length L of a steel rod in tension. 

where 

A= J!2Vln ~-loin A~w "'V21n d~w = 2.!4y'Ig(L/d,w). 

The size factor, defined as the ratio of the corrected and conventional design strengths 

(3.8) ms = R;,/ Rd 
for log-normal distributions of yield limits R 1 measured on standard specimens, is expressed 
by 

(3.9) 

tw denoting the normal tolerance factor. 
Taking into account the fact that the cross-sectional area A(x) is a stationary sto­

chastic function of x, independent of the yield limit R(x), the log-normal variability indices 
are corrected 

(3.10) 

Here v ..t is the log-normal variability index of the cross-sectional area. 
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The size effect analysis presented here is based on more general assumptions than 
in the Weibull theory, and hence the results should enable a better fitting of the theoretical 
formulae to experimental data. 

Some examples of the scale factors calculated from the modified Weibull hypothesis 
(Table 1), as also the parameters derived from the theory of stationary stochastic functions 
(Figs. 1, 2), indicate that the scale effect is rather considerable and should not be disre­
garded in practical calculations: it might be responsible for decreasing the safety factor 
below the conventionally predicted values, as was actually observed in full-scale tests 
performed on certain steel support structures. 

Analysis of stochastic nonhomogeneities of materials is closely connected with the 
probabilistic theory of safety and methods of structural design which take into account 
differentiated safety requirements, depending on the destination of the particular structure, 
it may be used for converting the effective strength to other safety classes. 
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