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The influence of viscosity on the stability of a relative motion
of two media

R. BOGACZ (WARSZAWA)

THE PAPER is devoted to an analysis of the influence of viscoelasticity of materials on the shape
of the regions of unstability of motion. The considerations concern linear models of bodies
described by polynomial differential operators. As examples, unstability regions were determined
for the Voigt and Maxwell bodies. The critical velocities were determined on the basis of Mik-
haylov and Nyquist stability criteria. It was proved that the stability of motion is influenced
by both the flux of the dissipated energy and the ratios of the coefficients describing the visco-
elastic properties of both media.

Prace poswigcono analizie wplywu lepkosprezystego charakteru osrodkéw na uksztaltowanie
zakresow statecznosci ruchu. Rozwazania ogo6lne dotycza liniowych modeli ciata, opisanych
wielomianowymi operatorami rézniczkowymi, W charakterze przyktadéw wyznaczono zakresy
statecznosci dla o$rodkow o modelu Voigta i Maxwella, Predkosci krytyczne wyznaczono
w oparciu o kryteria stateczno$ci Michajtowa i Nyquista. Wykazano, Ze na stateczno$é¢ ukladu
ma wplyw zaréwno strumieri dysypowanej energii jak i ilorazy wspolczynnikéw charaktery-
zujacych lepkie wlasnosci obu o$rodkéw.

B pabore nman aHamu3 BIMAHKA BAKOYNPYTOrO XapakTepa cpeAbl Ha Npeaenkl YCTOMYHBOCTH
nemwxenusa. B obuieit wacti obcy)kaaroTcA JMHelHbIE MOZENM Tell, ONUChIBAEMBIE MHOTO-
yneHHBIMHA RdbepeHIHaTbHBIMK OllepaTopaMi. B KauecTBe mpumMepoB Hal[eHBI NpeAembl
VCTOHUMBOCTH [JiA cpell, omuckiBaemMbix mojensamu Poiirra u Maxceenna. Kpurnueckne
CKOPOCTH OIIpefiesieHbl Ha OCHOBe KpuTepHA ycrodtumBoctH MuxaiiioBa n Hursucra. IToka-
33aHO, YTO Ha YCTOHYHBOCTE CHCTEMBI BIMAIOT, KaK MOTOK [HMCCHIIMPYEMON JHEpPIHH,
TaK M MpoH3BedeHust KoadduiumeHToB, XapaKTepHIYIOIMX Bs3KHe cBolicTBa ofeMx cpen.

1. Introduction

The stability of a relative motion of two media constitutes an important engineering
problem and has extensively been investigated.

In one of the papers devoted to this problem [1] a relative motion of two elastic media
was examined. It was proved that there exists a relative velocity above which the contact
surface is deformed and takes the form of a travelling wave increasing in time.

The problem of the stability of motion constituted also the subject of a number of
papers by 8. KAvLiski who investigated both mechanical systems and systems of coupled
fields; one of the papers [2] dealt with two perfectly conducting media in a magnetic field
perpendicular to the plane of motion.

In the above papers the influence of the viscosity of the media on the values of critical
parameters was neglected. In view of the results of the papers [3-5] devoted mainly to
the interaction between a moving system of oscillators and travelling waves in continuous
media, exhibiting the important influence of the viscosity, it seems expedient to investigate
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this influence on the relative motion of two media. In Sec. 2 of this paper we present the
fundamental equations and the boundary conditions on the basis of viscoelasticity [6].
The third Sec. contains the solution of the equations while the fourth Sec. is devoted to
an analysis of the influence of the viscosity on the generation and form of the regions of
instability of the motion.

2. Equations of motion and boundary conditions

Consider two media: the first has density ¢ and constants @, b{" describing the visco-
elastic material, while the second characterized by the constants g*, a{™*, b{"*, is moving
with respect to the first with a constant velocity V. If we associate with each body a coordi-
nate system such that the motion occurs along the x,-axis and the solutions are independent
of x, (Fig. 1), then the coordinates are connected by the relations

(21) x,-—x{ == Vt, xa—-xg‘ =0.

tay” b

Fic, 1

The equations of motion of the viscoelastic medium will be written in the form

2.2) Q0 P,V*u+1/3(20Q, Py + Q, P;) graddiva—2P, P,0ii = 0,
where P, and Q, denote the differential operators
Na "
= ") Na)
P, —;ﬂaé o a0 #0,
23)
)
- (n)_n (Ma)
= _,,.Zob" AN

If we neglect the friction on the contact surface of the two media and assume for the
time being that the pressure normal to the plane of motion p(x;,?) is given, then the
boundary conditions on the surface of the semi-space (x; = 0) take the form

2.4) 0330 = —P(¥1,0),  Pyo33 = (K—Pl "%i) (uy,1+ts,3) + Qrtis 3,

013),m0 = 05 Pioy3 = Tl(ﬂx,a'f'“a,:) 5
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where K = Q,/3P, = const (assuming that our medium behaves in pure compression as
an elastic medium).

Completing (2.4) by the condition of compatibility of the pressures and displacements
of the two media on the contact surface in one of the coordinate systems, e.g.,

us(x1, 1) = u¥(xy, 0),

p(xil f) =P*(x1! t)’
we arrive at a system of equations and boundary conditions completely describing the
problem.

We now proceed, therefore, to the solution of the above formulated problem and to
a discussion of the characteristic equation.

(2.5)

3. Solution of the problem

We seek stationary solutions of Egs. (2.2) in the form of the following travelling waves:
Uy = A, (x3)e*x1=",
uy = As(x3) e ==,

Since the required solutions are periodic, as well as the pressure acting on the surface,
we can make use of Alfrey’s elastic-viscoelastic analogy and write Egs. (2.2) in the form

@3.1)

(3.2) s (ikv) V2w + [t (ikv) + A (ikv)] grad divw — k?0? w = 0,
whereas the boundary conditions are

(33) 013 = p(ikv) (Wy,3+ws,y) =0,

(34) G33 = A (k) Wy,1 +ws,3) +24(ko)ws s = —p(x1, kv),
where

0sj(x1, 1) = Re[0,;(xy, kv)e*F1-o],
uj(x1, 1) = Re[w;(xy, kv) e"‘(*r—ur)]’
p(x1,1) = Re[p(xy, kv)e*=1-"],

Substituting into (3.2) the solutions in the form (3.1), we arrive at a system of two
ordinary differential equations with constant coefficients, the solutions of which have
the form

4
35) Ay (xs) = D) guede™,
sm=]
2 * 4
(36) 4300 = D rgeng Y g,
s=1 peg
where

2 R
3.7 - ]/1-32’_, Fie = ]/1-;93’—.
3.7 1,2= =% A 3,4 = 1 it
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To satisfy the radiation condition, we neglect two terms in each of the solutions (3.5)
and (3.6) which do not satisfy the inequality

3.8) Re(kr,) <0, s=123,4.

The roots r, satisfying the condition (3.8) will be denoted by r; and r;. The boundary
condition (3.3) is now employed to determine the relation between the constants C; and C;.
Next, we make use of the condition (3.4) and the solutions (3.5) and (3.6) to derive rela-
tions between the pressure acting on the surface and the displacements of the medium,
namely

(3.9) o _ PG ko) —(L+rd) et 2r et
: = B0 |
Fk (I+r§)2-4r1r3
(3.10) wy = PO KO —(L+r)r s 427, &0
ik (1+r2)2—4rrs

An analogous reasoning holds for the moving body described by o*, z*, 7*. The form
of the derived relations in the coordinate system x¥, x* is the same, while the indices of
the roots undergo a change, since the condition (3.8) in the moving system is satisfied
only for the roots r¥ and r¥.

Thus, in the moving system we have

ip(xF, k*v*)  — (L +r¥?) ek raxs 4 2r3rk ek*riss

(3.11) wt = PV ,
e (1+r2%)*—4rsrt

(3.12) P . 8200 Wil { L 0 Vol L
wek* (147832 +4rkrt

The condition of compatibility of the pressures and displacements on the boundary
of the two media and the relations between the stationary and moving coordinate systems
(2.1) yield the relations

(3.13) k*=k, o=0-V.
The displacements on the contact surface of the media (i.e. for x; = 0) take the form
<) 2
(3.14) walx“:o = p(xl.’ kﬂ) ry (l _rS)

ik (1+r3)2—4rry
POt kYY) r(1-r)

3.15 wi , .= - ;
S B0 T T G ety —antet
The expression (3.14) can be written as follows:

Wa = ﬁ(xl ’ kﬂ)
. a“okgs (ﬁ’ Vs f»‘o) ’
where

(2—Bo)* -4y T—Body/1- Pyl
¢ s/ 0) = _—
Yt B3y 1— pyvl
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and
A 2
y=nt_, p=£, @=&,
A+2p p Ho

From a comparison of the relations (3.14) and (3.15) it follows [on the basis of (3.6)]
that the forms of the functions differ only in sign.

To derive the characteristic equation of our problem, we make use of the condition
(2.6), i.e., we equate the real values of the expressions (3.16) for the stationary and moving
media. The compatibility of the amplitude of the wave takes the form

(3 18) sgn [¢ (ﬁ’ Vs '5‘0)] 2
HoV {Re[@(B, ¥, vo)}* +{Im[P (B, ¥, vo)]}*

_ sgn[P* (8%, y*, vd)] ‘
18V {Re[@* (B%, 7*, v®)I}* + {Im[P* (B*, »*, v3)]}

Similarly to [4], this equation has to be completed by the condition of compatibility of the
phase displacements. Since the considered system is linear, the conditions of compati-
bility of the amplitude and the phase can be replaced by equating the real and imaginary
parts of both characteristic functions, namely

(3.19) DB, 7, vo) = P*(B*, ¥*, v3).

In equating the amplitudes and the phases we make use of the following property of the
system: the unstable motion is continuously generated from the stable motion (this can
be proved on the basis of the Nyquist criterion [1]). Thus, in determining the critical states
we may confine ourselves to the determination of the parameters characterising periodic
solutions which neither decrease nor increase in time.

In the second case, we may directly apply to Eq. (3.19) the Mikhaylov stability cri-
terion which makes it possible to verify whether for a selected value of ¥ the system is stable.

Since both Re &(8, y, v,) and Im ®(B, y, v,) are continuous functions of vy, the critical
parameters of the motion determine real v,, v4 constituting the solution of Eq. (3.19). Thus,
this equation together with the second relation (3.13) constitute the complete system of
characteristic equations of our problem.

In the next Section we shall determine the critical velocities of motion for two partic-
ular cases of the operators (2.3) describing the viscoelastic Voigt and Maxwell materials.

4. Critical parameters

Setting in the formulae for the differential operators P, and Q,, N, =0, M; =0,
N, =0, M, =0, and substituting the appropriate values of a{®’ and b (n = 0, 1), we
arrive at a Voigt model, for which the functions constituting the generalization of the Lamé
constants to the viscoelastic medium, take the form

(4.1) o= po+idko, A = K—2/3(uo+idkv).

6 Arch. Mech. Stos. nr 4/T2
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The characteristic function (3.17) containing the characteristic polynomial of the
Rayleigh waves for the Voigt body takes the form

(2—v3)* —4n* v+ 4invo (2—vd)
w3V 1=v3Oy0—1293) (1 - 167203) "
_ 41 —n*v5 +2inve) 1— v3 (1—inve)

42) Dy(n, yo,v0) = —

o3 1+9?0f
where
Sk
n= ’ Yo = ‘i_-
Qlko Ao+2p,

A numerical analysis of the expression (4.2) implies that for a fixed pressure an increase
of the coefficient 5 describing the viscosity is connected with an amplitude in the range
of the velocities |v| smaller than the Rayleigh wave velocity vg.

The region of the phase plane for the case po = u8, 4o = 4§, 4o = y§ = 0,3 is pre-
sented in Fig. 2. The continuous part of the curve I is the same as in [1] for the elastic

1and 1'- for p=p"—~0
1and 1*-Ror p=0,0/p*=o=
2and 2™-for p=n"=02

FiG. 2.

case and the critical velocity v, determined in this paper is the same as the critical
velocity for viscoelastic bodies when # — 0 and #/9* = 1.

In the case when the value of 7 is sufficiently small, the influence of the viscosity on the
position of the curve I describing the real part of Eq. (3.19) is negligible. The configuration
of the curves describing the imaginary part of Eq. (3.19) depends on the ratio #/#* and
for n > n* takes a position between the lines I and I'. Thus, there exists a possibility of
a significant change of the critical velocity of the relative motion of the media within the
range v,y = v, = 9,2, When the viscoelastic nature of the body is taken into account,
even for small values of the coefficient #.

The case v, > v,,; occurs when the viscosity coefficients of both bodies increase and
n/n* ~ 1 (e.g., the case of v,3).
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It is evident that an exchange of the coefficients  and 5* does not influence the critical
velocity of motion, since the image on the phase plane v, o* will be symmetric with respect
to the straight line v = —o*,

The Maxwell model is obtained by setting in the formulae 2.3) N, =1, M, =1,
N, =0, M, =0 and introducing the appropriate values of the coefficients a, and b,
[6]. The quantities 4 and p are then the following:

A idkv ] Ziﬂoakﬂ
4. = ltg — = s ROTE
@3 E=to ke A=K, 1om
while the characteristic function given by the formula (3.17), takes the form

(44) Dy (n, o, Vo) = (- [[(2—93)2—%%](1 -1~ 205 —42—-v3)n?
i Zfi__z__ Yo n 2y 2. -] .| .2 “2g=2y.
+=:[(2—v%) —qz]mﬂ - 2-vd)(1-7%v )”-[ﬂo(l‘f"? 295%)

/1 2 207?08 yo— 1295 +il9(1—71w6) yo—12] |
¢ (1+470)* +9n*v5

_ g VI=0d 40 vo (1 —n~2v5” + 2i~ v5")
B(1+77057) '
The results of a numerical analysis of the charactristic equations for the Maxwell body
are presented in Fig. 3.

a
N¢

1and 1'- For p=p*=oo
1and 1"-for p=107 /p—=oe
2and 2'-for p=p*=5

Fi1c. 3

The transition to elastic body is obtained by setting = n* — co. For a finite value
of the coefficient 7, the curves constituting the image of the real part of Eq. (3.19) dege-
nerate in a different manner than for the Voigt body. The unstable motion of the Maxwell
bodies for = #* and the assumed value of the coefficient y, occurs for velocities smaller

6
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than those determined in [1] for the case of elastic medium. The critical velocities of motion
of Maxwell bodies depend also on the ratio /n*.

There is a new qualitatively different from others property in Fig. 3, namely the appear-
ance of additional singular solutions with the parameters v = 0, v* = vg and v* = 0,
v = vy occuring as  — oo, 9/n* — co. The existence of these solutions suggests a possi-
bility of a divergent loss of stability of one of the media and oscillatory of the other one.
Since the equations of motion (3.2) were derived under the assumption of a periodic
nature of the solutions (in time), a doubt arises whether they hold for a divergent solution.
However, the fact that the curves representing the real and imaginary parts of Eq. (3.19)
can be at most tangent, which in accordance with Mikhaylov stability criterion leads
to a possibility of a non-increasing periodic solution; hence, ¥ = v is not a critical
velocity.

It follows from calculations that the maximum critical velocity in the system for
7 = n* = cois 2 vg.

Consider one more limiting case. Suppose that one of the bodies is almost elastic
7, = 0 or 7y — oo, while the other one perfectly elastic, e.g., 5, = 0. The critical veloc-
ity in this case will differ by a finite value from the critical velocity of a relative motion
of two perfectly elastic bodies. This seemingly contradictory fact can readily be explained by
an analysis of the decrements of the waves which in the range of velocities v, = V > v,
depend also on the dissipated by viscosity energy of the system. This phenomenon was
also investigated in [3] where, among others, the authors considered a damped plate in
a potential gas flow. It was proved in this paper by an analysis of the behaviour of non-
stationary solutions, that the fact that an infinitesimal damping of the plate leads to
a finite difference in the critical velocities, is due to the infinitely large time of the process.

5. Concluding remarks

It follows from our considerations that the influence of viscosity on the critical velocity
of motion (relative motion) of two media may, in certain cases be significant.

The main conclusions are the following.

1. The relatively large range of critical velocities of relative motion depends on the
relation between the viscosity coefficients of the moving media.

2. For sufficiently small viscosity coefficients for Voigt materials, there exists a possi-
bility of a loss of stability for velocities smaller than the critical velocity of the relative
motion of elastic media ( = 0).

3. For 5/n* ~ 1, the values of the critical velocities of the relative motion increase as
7) increases, both in the case of Voigt and Maxwell bodies (y, = 0.3).
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