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The influence of viscosity on the stability of a relative motion 
of two media 

R. BOGACZ (WARSZAWA) 

THE PAPER is devoted to an analysis of the influence of viscoelasticity of materials on the shape 
of the regions of unstability of motion. The considerations concern linear models of bodies 
described by polynomial differential operators. As examples, unstability regions were determined 
for the Voigt and Maxwell bodies. The critical velocities were determined on the basis of Mik­
haylov and Nyquist stability criteria. It was proved that the stability of motion is influenced 
by both the flux of the dissipated energy and the ratios of the coefficients describing the visco­
elastic properties of both media. 

Prac~ poswi~ono analizie wplywu lepkospr~i:ystego charakteru osrodk6w na uksztaltowanie 
zakres6w statecznosci ruchu. Rozwai:ania og6lne dotycz~ liniowych modeli ciala, opisanych 
wielomianowymi operatorami r6i:niczkowymi. W charakterze przyklad6w wyznaczono zakresy 
statecznosci dla osrodk6w o modelu Voigta i Maxwella. Pr~dkosci krytyczne wyznaczono 
w oparciu o kryteria statecznosci Michajlowa i Nyquista. Wykazano, i:e na statecznosc ukladu 
ma wplyw zar6wno strumieri dysypowanej energii jak i ilorazy wsp6lczynnik6w charaktery­
zuj(!cych lepkie wlasnosci obu osrodk6w. 

B pa6oTe AaH aHaJIH3 BJIIUIHHR BR3Koynpyroro xapaKTepa cpeAhi Ha npeAeJJbi ycroH:qHBOCTH 
ABHmeHHR. B o6~eH: tiaCTH o6cymAaroTcR .rnmeiiHhie MOAeJIH Ten, onHchiBaeMbie MHoro­
qneHHbiMH AH<P<PepeJmHa.JILHbiMH onepaTopaMH. B KatiecTBe npHMepoa HaHAeHbi npeAeJibi 
ycrowmBoCTH .wm: cpeA, OITHChiBaeMbiX MOAeJIRMH <l>oH:rTa H MaKcBeJIJia. KpH'tHqecKHe 
cKopoCTH orrpeAeneHhi Ha ocHoae KpHTepHR yCToHtiHBOCTH MHxaH:noaa H HHKBHCTa. iloKa-
3aHo, qTo Ha ycroiiqHBOCTb CHCTeMbl BJIHRIOT, KaK IIOTOK AHCCH:ImpyeMOH 3HeprHH, 
TaK H DpOH3BeAeHH:R 1<03<f><f>HqHeHTOB, xapaKTepH3YI01llHX BR3KHe CBOHCTBa o6eHX cpe~. 

1. Introduction 

The stability of a relative motion of two media constitutes an important engineering 
problem and has extensively been investigated. 

In one of the papers devoted to this problem [1] a relative motion of two elastic media 
was examined. It was proved that there exists a relative velocity above which the contact 
surface is deformed and takes the form of a travelling wave increasing in time. 

The problem of the stability of motion constituted also the subject of a number of 
papers by S. KALISKI who investigated both mechanical systems and systems of coupled 
fields; one of the papers [2] dealt with two perfectly conducting media in a magnetic field 
perpendicular to the plane of motion. 

In the above papers the influence of the viscosity of the media on the values of critical 
parameters was neglected. In view of the results of the papers [3-5] devoted mainly to 
the interaction between a moving system of oscillators and travelling waves in continuous 
media, exhibiting the important influence of the viscosity, it seems expedient to investigate 
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this influence on the relative motion of two media. In Sec. 2 of this paper we present the 
fundamental equations and the boundary conditions on the basis of viscoelasticity [6]. 
The third Sec. contains the solution of the equations while the fourth Sec. is devoted to 
an analysis of the influence of the viscosity on the generation and form of the regions of 
instability of the motion. 

2. Equations of motion and boundary conditions 

Consider two media: the first has density e and constants a~">, b~"> describing the visco­
elastic material, while the second characterized by the constants e*, a~">*, b~">*, is moving 
with respect to the first with a constant velocity V. If we associate with each body a coordi­
nate system such that the motion occurs along the x 1-axis and the solutions are independent 
of x2 (Fig. 1), then the coordinates are connected by the relations 

(2.1) 

x: 
Fio.l 

The equations of motion of the viscoelastic medium will be written in the form 

(2.2) Q1P 2V2 li+ 1/3(2Q.zP1 + Ql P.z) graddivu-2P1 P2 eii = 0, 

where Pa. and Qa. denote the differential operators 

(2.3) 

If we neglect the friction on the contact surface of the two media and assume for the 
time being that the pressure normal to the plane of motion p(x1 , t) is given, then the 
boundary conditions on the surface of the semi-space (x3 = 0) take the form 

(2.4) <t33l.,.o = -p(x, t), P1 u33 = (KP1 - ;• )(u1,1 + u3, 3) + Q1 u3,3 , 
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where K = Q2 j3P2 = const (assuming that our medium behaves in pure compression as 
an elastic medium). 

Completing (2.4) by the condition of compatibility of the pressures and displacements 
of the two media on the contact surface in one of the coordinate systems, e.g., 

u3(Xt, t) = uJ(xt, t), 
(2.5) 

p(xt,t) =p*(x1 ,t), 

we arrive at a system of equations and boundary conditions completely describing the 
problem. 

We now proceed, therefore, to the solution of the above formulated problem and to 
a discussion of the characteristic equation. 

3. Solution of the problem 

We seek stationary solutions of Eqs. (2.2) in the form of the following travelling waves: 

(3.1) 
Ut = At (x,)efl(x,-vt)' 

u3 = A3 (x3) e'k(x,-vt>. 

Since the required solutions are periodic, as well as the pressure acting on the surface, 
we can make use of Alfrey's elastic-viscoelastic analogy and write Eqs. (2.2) in the form 

(3.2) P, (ikv) V2 w + {p(ikv) +A (ikv)}grad divw- k 2 v 2 w = 0, 

whereas the boundary conditions are 

(3.3) u13 = p(ikv) (wt,3 + w3,t) = 0, 

(3.4) u33 = A (ikv) (wt,t + w3,3) + 2,U (ikv) w3,3 = - p (Xt' kv)' 

where 
O's1(xt, t) = Re[u81 (xt, kv)ell<x~-.,,JJ, 

UJ(Xt, t) = Re{w1(x1 , kv)e1k(x,-.,,>], 

p(x1 , t) = Re{p(x1 , kv)e11(x,-llt)}. 

Substituting into (3.2) the solutions in the form (3.1), we arrive at a system of two 
ordinary differential equations with constant coefficients, the solutions of which have 
the form 

4 

(3.5) At (x3) = .J; qse"'r3, 
s=l 

2 4 

(3.6) A 3 (x) = .l;rsqse"'rl+ 2,: q,.e"'"x3, 
s=l n=3 

where 

(3.7) V-evi 
,12 = ± 1--... -, 

' ,., V (!'02 ,34=± 1--... --. 
. A+2/J, 
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To satisfy the radiation condition, we neglect two terms in each of the solutions (3.5) 
and (3.6) which do not satisfy the inequality 

(3.8) Re(kr~) < 0, s = 1, 2, 3, 4. 

The roots rs satisfying the condition (3.8) will be denoted by r 1 and r3 • The boundary 
condition (3.3) is now employed to determine the relation between the constants cl and c3. 
Next, we make use of the condition (3.4) and the solutions (3.5) and (3.6) to derive rela­
tions between the pressure acting on the surface and the displacements of the medium, 
namely 

(3.9) 
- (1 +d) ekrlx3 + 2r1 r3 ek'JXJ 

(1 + r~) 2 - 4r1 r 3 

p(x1, kv) -(1 +r~)r1 ek" 1x3 +2r1 ek'3x 3 
(3.10) w 3 = . 

pk (1 + r~) 2 - 4r1 r3 

An analogous reasoning holds for the moving body described by e*, P,*, i*. The form 
of the derived relations in the coordinate system xt , xf is the same, while the indices of 
the roots undergo a change, since the condition (3.8) in the moving system is satisfied 
only for the roots rt and r:. 

Thus, in the moving system we have 

(3.11) 
* ip (xt, k*v*) 

w 1 - --'------
- P,*k* 

(3.12) * p *(xt, k*v*) w3 =~----
P,*k* 

- ( 1 + r:2) ek•r;x; + 2 rf r% ek*r!x; 

(1 + r: 2
)

2
- 4r~ r% 

- rf {1 + r% 2) ek•r;x; + 2r~ ek*r!x; 

(1 + r% 2
)

2 + 4rf r% 

The condition of compatibility of the pressures and displacements on the boundary 
of the two media and the relations between the stationary and moving coordinate systems 
(2.1) yield the relations 

(3.13) k* = k, v* = v- V. 

The displacements on the contact surface of the media (i.e. for x3 = 0) take the form 

~ k 2 

I 
p (xl, v) r1 (1- r3) 

W3 x 3 -o = ~ 2 2 - pk (1 +r3 ) -4rtr3 

(3.14) 

(3.15) w*j _ p * (xf, k*v*) rf (1- r% 2
) 

3 
x;=o - jJ,*k (1 + r% 2 ) 2 - 4rf r% 

The expression (3.14) can be written as follows: 

where 

p(xb kv) 
WJ = ' P,okf/J({3, y, Vo) 

(2- f3v~) 2 - 4 y 1- {Jv~ y I- {Jyv~ 
f/J ({3, y, Vo) = ----.:---::-'-t=====---­

{32 v~ y 1 - {3yv~ 
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and 

{3 - !!!!_ - " ' 
2 (!V2 

Vo=-. 
ft fto 

From a comparison of the relations (3.14) and (3.15) it follows [on the basis of (3.6)] 
that the forms of the functions differ only in sign. 

To derive the characteristic equation of our problem, we make use of the condition 
(2.6), i.e., we equate the real values of the expressions (3.16) for the stationary and moving 
media. The compatibility of the amplitude of the wave takes the form 

sgn[<P{{J, y, vo)l 
(3.18) 

fto V {Re [<P({J, y, vo)l} 2 + {lm [<P({J, y, v0)}}
2 

sgn [<P* ({3*, y*, v~)} 

= ft~ y {Re[<P* ({3*, y*, v*)1} 2 + {Im[<P* ({3*, y*, v~)]} 2 • 

Similarly to [4], this equation has to be completed by the condition of compatibility of the 
phase displacements. Since the considered system is linear, the conditions of compati­
bility of the amplitude and the phase can be replaced by equating the real and imaginary 
parts of both characteristic functions, namely 

(3.19) 4>({3, y, Vo) = 4>*({3*, y*, v~). 

In equating the amplitudes and the phases we make use of the following property of the 
system: the unstable motion is continuously generated from the stable motion (this can 
be proved on the basis of the Nyquist criterion [1]). Thus, in determining the critical states 
we may confine ourselves to the determination of the parameters characterising periodic 
solutions which neither decrease nor increase in time. 

In the second case, we may directly apply to Eq. (3.19) the Mikhaylov stability cri­
terion which makes it possible to verify whether for a selected value of V the system is stable. 

Since both Re <P({J, y, v0 ) and I m W({J, y, v0 ) are continuous functions of v0 , the critical 
parameters of the motion determine real v0 , vci constituting the solution of Eq. (3.19). Thus, 
this equation together with the second relation (3.13) constitute the complete system of 
characteristic equations of our problem. 

In the next Section we shall determine the critical velocities of motion for two partic­
ular cases of the operators (2.3) describing the viscoelastic Voigt and Maxwell materials. 

4. Critical parameters 

Setting in the fmmulae for the differential operators Pa and Qa, N1 = 0, M 1 = 0, 
N2 == 0, Mz = 0, and substituting the appropriate values of a~0 > and b~"> (n = 0, 1), we 
arrive at a Voigt model, for which the functions constituting the generalization of the Lame 
constants to the viscoelastic medium, take the form 

(4.1) jJ, = fto + idkv, "' ). = K- 2/3 (p,0 + i~kv). 
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610 R. BOOACZ 

The characteristic function (3.17) containing the characteristic polynomial of the 
Rayleigh waves for the Voigt body takes the form 

(4.2) 

where 

~k 

'fJ = Yf!Po ' 

A numerical analysis of the expression (4.2) implies that for a fixed pressure an increase 
of the coefficient 'fJ describing the viscosity is connected with an amplitude in the range 
of the velocities lvl smaller than the Rayleigh wave velocity vR. 

The region of the phase plane for the case p0 = p3, A.0 = 23, A0 = y3 = 0, 3 is pre­
sented in Fig. 2. The continuous part of the curve 1 is the same as in [I] for the elastic 

I 'I' ......-
' I ___ x, 

' ,, ,, ,, __ _ 
' ' 

' ' 

FIG. 2. 

' ' 
Vo 

case and the critical velocity vert determined in this paper is the same as the critical 
velocity for viscoelastic bodies when 'fJ --+ 0 and 'fJ I'YJ* = 1. 

In the case when the value of 'fJ is sufficiently small, the influence of the viscosity on the 
position of the curve 1 describing the real part ofEq. (3.19) is negligible. The configuration 
of the curves describing the imaginary part of Eq. (3.19) depends on the ratio '1}/'YJ* and 
for '1J ~ 'YJ* takes a position between the lines 1 and 1'. Thus, there exists a possibility of 
a significant change of the critical velocity of the relative motion of the media within the 
range vert ~ vcr ~ vcr2 , when the viscoelastic nature of the body is taken into account, 
even for small values of the coefficient 'f/· 

The case vcr > vcrl occurs when the viscosity coefficients of both bodies increase and 
'1}/'YJ* ,_ 1 (e.g., the case of vcr3). 
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It is evident that an exchange of the coefficients 1J and 11* does not influence the critical 
velocity of motion, since the image on the phase plane v, v* will be symmetric with respect 
to · the straight line v = - v*. 

The Maxwell model is obtained by setting in the formulae (2.3) N1 = 1, M 1 = 1, 
N 2 = 0, M 2 = 0 and introducing the appropriate values of the coefficients a« and br~ 

(6]. The quantities i and/-' are then the following: 

(4.3) " Mkv 
I' = l'o p.0 + i6kv ' 

i = K _ 2ip.0 6kv 
3 (1'0 + i6kv) ' 

while the characteristic function given by the formula (3.17), takes the form 

( 4.4) <IJM ( fJ, Yo, flo) = (- [ [ (2- v~)2 - ~~] (1- '1-2 <>0 2
)- 4 (2- v~) 7J-2 

·{[<2 2)2 V~] 2 2 Vo (2 2)(1 -2 -2>}] . [ 2 (1 -2 -2) +z · -Vo -11 ~+ rJ -Vo -1] V . Vo +1} Vo X 

x .. / 1_ v2 9(1 +1J2 v~)Yo -12y~ + i£9(1-1]v0 )y0 -121 ]) 
V o (I +4Yo)2 + 91]2v~ 

V 1- v~ + i1J 1 vo (1-1J- 2
Vo

2 + 2i7]-1 v01
) 

-4 2 • 
V~(l +1]-2Vo ) 

. The results of a numerical analysis of the charactristic equations for the Maxwell body 
are presented in Fig. 3. 

FIG. 3 

v* 0 

" I' 

1and 1'-For q-rl-oo 
1and 1"-For !J•10~ !J*/Q---

2 and 2'-for IJ•IJ*'=5 

Vo 

' 

The transition to elastic body is obtained by setting 1J = 11* ~ ex:>. For a finite value 
of the coefficient 1J, the curves constituting the image of the real part of Eq. (3.19) dege­
nerate in a different manner than for the Voigt body. The unstable motion of the Maxwell 
bodies for 1J = 11* and the assumed value of the coefficient y 0 occurs for velocities smaller 
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than those determined in [1] for the case of elastic medium. The critical velocities of motion 
of Maxwell bodies depend also on the ratio 'YJ I'YJ*. 

There is a new qualitatively different from others property in Fig. 3, namely the appear­
ance of additional singular solutions with the parameters v = 0, v* = vR and v* ·~ 0, 
v = v R occuring as 'YJ -+ oo, 'YJ I'YJ* -+ oo. The existence of these solutions suggests a possi­
bility of a divergent loss of stability of one of the media and oscillatory of the other one. 
Since the equations of motion (3.2) were derived under the assumption of a periodic 
nature of the solutions (in time), a doubt arises whether they hold for a divergent solution. 
However, the fact that the curves representing the real and imaginary parts of Eq. (3.19) 
can be at most tangent, which in accordance with Mikhaylov stability criterion · leads 
to a possibility of a non-increasing periodic solution; hence, V = v is not a critical 
velocity. 

It follows from calculations that the maximum critical velocity in the system for 

'YJ = 'YJ* -+ oo is 2 vR. 
Consider one more limiting case. Suppose that one of the bodies is almost elastic 

'YJ, -+ 0 or 'YJM -+ oo, while the other one perfectly elastic, e.g., 'YJu = 0. The critical veloc­
ity in this case will differ by a finite value from the critical velocity of a relative motion 
of two perfectly elastic bodies. This seemingly contradictory fact can readily be explained by 
an analysis of the decrements of the waves which in the range of velocities vert ~ V~ 'llcrl 

depend also on the dissipated by viscosity energy of the system. This phenomenon was 
also investigated in [3] where, among others, the authors considered a damped plate in 
a potential gas flow. It was proved in this paper by an analysis of the behaviour of non­
stationary solutions, that the fact that an infinitesimal damping of the plate leads to 
a finite difference in the critical velocities, is due to the infinitely large time of the process. 

5. Concluding remarks 

It follows from our considerations that the influence of viscosity on the critical velocity 
of motion (relative motion) of two media may, in certain cases be significant. 

The main conclusions are the following. 
1. The relatively large range of critical velocities of relative motion depends on the 

relation between the viscosity coefficients of the moving media. 
2. For sufficiently small viscosity coefficients for Voigt materials, there exists a possi­

bility of a loss of stability for velocities smaller than the critical velocity of the relative 
motion of elastic media ( 'YJ = 0). 

3. For 'YJI'YJ*"" 1, the values of the critical velocities of the relative motion increase as 
'YJ increases, both in the case of Voigt and Maxwell bodies (y0 = 0.3). 
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