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The aim of t hese notes is to synthesize the available results on experimental data 
and m<1thema t ical modelling of residual stresses and strains in bone and soft 
t issues. T heir role in bone and soft tissue remodell ing is ca refully d iscussed. 

1. Introduction 

During lifetime both bone and soft t issue undergo permanent changes 

dependent on many mechanical and biological factors like aging, nut rit ion , 

drugs. As a rule t issues arc a nisotropic and inhomogeneous . After a thought 

ouc int ui tively feels that residual stresses should be present in bones and soft 

t issues. Surprisingly, their existeuce was shown rela tively late, if one th inks of 

already long history of biomechanics of bone and soft t issues . We recall that 

residua l stresses are the stresses which remain in material after unload ing 

(no-load condition ). We will use equivalently the notion "residual stress" or 

'·initial stress". 

It seems that the first who shO\ved existence of resid ual stress in bone were 

Ascenzi and Benvenuti [2]. These authors provided evidence that isolated 

ostconic lamellae a re in a state of ini tial stress, cf. Section 2 of our paper. 

However, no estimation of magnit ude of the stress was given. Such an attempt 

was undertaken in 1999 by Asccnzi [4]. 

From the h istorical perspective one should also mention the papers by 

Gcbha rd t [22] and Caglioti [7]. Accord ing to the first author the para llel but 
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opposite orientation of posit ive monoaxial bircfringcncc of the collagenous 

fibres ancl the negative monoaxial birefriugcnce of the calcified interfibrillar 

cementing substance shou ld be att ri buted to a state of tension beh\·een these 

two components of the calcified bone, cf. Ascenzi and BcnYcnuti 12]. 

In his investigation on X-ray difl'raction of bone, Caglioti [71 claimed that , 

in bone collagen, amino acids arc kept under tension and held up by the apa­

tite crystallites which arc elongated and a rranged parallel to the collagenous 

fibres. 

lrt 199-1, Tanka and Adachi [69] proposed a simple one-dimensional model 

for mechanical bone remodelling incorporating residual stress. T hese authors 

speculate about the existence of residual stress in bone by analogy with earl ier 

disco\·ercd residual stress in soft tissue. \Text. residnal stress was examined for 

the leporinc tibiofibula bone 170] and the bovine coccygeal vertebra 11. 70J. 

Residual s tress in soft t iss1res was discovered several years later. According 

to Fung [1 8J residual stress in soft tissues were discm-erecl independently by 

Vaishnav and Vossoughi in 1983 [76], and his former student P. Pattituci [52], 

who discovered such stress in left ventricle of a rabbit in 1982. The former 

authors investigated an aortic segment . 

Currently attempts arc made to incorporate residual stress into soft tissue 

remodelling. 

The aim of th is lecture is to synthesize allCl present current views on the 

role of residual stress in bone and soft tissues. Available models of remod­

elling taking into account residual st ress arc also presented. Particularly, the 

hypothesis of uniform strain distribntiun, clue to Takamizawa and Hayashi 

165, 66, 67J, is cri tically assessed . 

Part I. Hard t issues 

2. Residual Str ess in Osteon ic Lamellae 

Ascenzi aud Bcnevenuti [2] obtained osteons from femoral shafts of human 

subjects aged betweeu 19 and 31, showing no apparent skeletal defects. In 

turn, Ascenzi I4J obtained ostcons also from the femoral shaft (human corpse, 

aged 35yrs.; transverse cut: JOOttm apart). Two series of cross-sections, the 

first 30 and the second J 00 {tm thick, were prepared by grinding. The method­

ology of selection and dissection of osteon samples and their mechanical test-
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ing was elaborated earlier by Ascenzi and his coworkers. d. the relevant 

references in [2, 3, 12]. 

Let us now briefly describe the dissection and isolation of osteonic lamel­

lae . cf. J2J . Each osteon sample was subjected to direct compression perpen­

dicular to its axis and the points on its circumference. where pressure was 

applied were continually changed by rotation. This was clone by using a glass 

slide on which 18 x 18mm coverslip was firmly fixed with Canadian balsam. 

On one edge the co\·crslip , which was 1601011 thick. functioned as stopper 

during the loading. Each cylindrical osteon sample was put on the slide with 

its surface touching the edge of t he coverslip tangentially. The osteon sam­

ples were placed in position and turned by hand , and pressure was applied by 

pressing a very small spatu le against the side of the osteon opposite the cov­

erslip. cf. Fig. 1. The whole process was observed under a light microscope, 

cf. Fig. 2. 

\\'hen an osteon sample with fibre bundles in one lamella making an angle 

of nearly 90° with the fibre bundles in the next, is loaded perpendicular to 

its axis, and the direct ion of loading is then changed continually by rotation, 

arc-shaped, concentrically distribu ted cracb appear. They grow longer , join 

up and event ually become circular. The polarizing microscope reveals that 

the cracks in\'olve dark lamellae, i.e. lamellae whose fibre. have a marked 

longitudinal spiral course, while bright lamellae, i. e. lamellae whose fibres 

have an a lmost transverse spiral course, remain unaffected. Obviously, special 

care is to be taken to apply low or fairly low pressure-load .. Wi th higher loads 

lamellae, whose fibres hm·e almost trans\·crsc course arc severely damaged 

too, and radical and transverse cracks appear in them. 

SPATULE 
SLIDE 

11,----l.-

~' -------~> 
FIGl: RE 1. 1\,·o projection diagram showing technique to compress an alternate 
osteon sample perpendicular to its axis. Slide, coverslip, osteon , and spatule are 

clearly s0cn, after 141. 
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FIGURE :2. 1\lternate osteon containing lamell;lr sample: (top) \·ie\\' from external 

lateral surface (x280) shO\\·ing outer height lh of the lamella checking equal 

to osteon height; (bot t<lln) SPct ion a I vie\\' ( x :21'\0) sho\\'ing mean diameter and 

thickness Th of the lamella. Dimensions are measured by Delta Sistemi l :\S 2000 

image analysis system, after I·IJ. 

In alt crnatcly structured osteon smn pies, the circular cracks produced in 

lamellae \\'it h fibres haYi ng a marked longitudinal spiral course are actually 

deep fractures \\'hich extend to the full depth of each lamella. This allows 

One tO isolate incJiYidual Unaffected lamellae, WhOSC riJm•s and cryst nJJites 

have an almost trans\'erse spiral course, using a steel needle for microscopic 

dissection. Dissected osteonic lamellae wt·rc next examined after immersioiJ 

in a saline solution . thus resembling physiologic state. To a\'oid extract ion 

artifacts. the examination of the lamellae in saline solution \\'as reduced to 

a minimum. Figure 3 shows the shape of osteon lamellae, prrpared by the 

dissection met hod out lined above, and possessing trans\'('rsally oriented fibre 

bundles and crystallitcs. 

The experimental data due to Asccnzi and Bem'l'lltlt i 121 clearly show 

that the behm·iour of isolated osteon lamellae, when they arc set free in 

saline ·olution, strongly depends on their hrights and diameters. For instance, 

lalllcllar samples whosr height is only ea. 30 JLlll. especially t hosr with large 

diameters, sho,,· a strong tendency to twist nnd become strangely deformed 

when set free in saline solution, sec Fig. :3. 
Unfortunately, neither Asccnzi and Brm·cnuti 121 nor Ascenzi l<iJ inves­

tigated the influencr of saline concentration Oil the bcluwiour of osteonic: 

lamellae. 
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F IGURE 3. (a) Side-view of an isolated osteonic lamellar sample, ea. 100J.Lm 
high. (b) The same sample as in (a) seen under polari zing n1icroscope. (c) Isolated 

ostconic lamellar sample ea. 30 JJill high. (d) a nd (c) two ostconic lamellar samples 
ea. 30 JLill high showing clear deformations as if induced by internal stress. All 
the samples a rc fully calcified. ,\lagnifications (a)- ( c) x 320, (cl) x 750, after [2]. 

Figure 4 presents a broad spectrum of ostconic lamellar samples set free 

in saline solution and then sectioned along a line perpendicular to its circular 

ends. Asccnzi and Benvcnuti investigated also lamellae obtained from osteons 

at the initial stage of calcification . These authors claim that both types of 

lamellar samples, those ea. 30 JW1 and those ea. 100 JUn high, arc deformed 

in a manner similar to that of fully calcified lamellae. In our opinion such 

11 statement is not fu lly justified and further investigations are needed. 

Ascenzi and Benvenuti [2] investigated also decalcified lamellae. They 

found that such lamellae, addit ionally to those at the initial stage of calcifi­

ration, offer evidence that t he hydroxyapatite is not essential to the spira l de­

formation of opened lamellar samples. This is clearly depicted in Fig. 4(h- m). 

The lamellae shown in Fig. 4(h) and Fig. --l(i) were obtained by decalcification 

of the fully calcified lamellae seen in Fig . 4( a) and (b) . 
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FIGU RE <1. (a) (d ) Fully calcified ostconic lnmcllar samples a fter cutting. (c) (g) 
Osteonic lamella r samples cut a t initia l stage of calcifica t ion ; (h ) (m) Os t<'onic 

lamella r samples a ft er decalci fication a nd culling; samples {h) and (i) a re t he 

same as (a) and (b ); .\lagnifi cation: (a ) (m ) x :200. afte r 121. 

Asccnzi estimated residu al stresses in osteonic lamellae of lwight 100 ttm , 

tha t >vcre cylinclri cal before cutting a nd helicoidal after cutting, cf. Fig. 3(a) 

Rnd Fig. 4(b) 141. We observe th a t dC'formRtion from t he cylindrical to heli­

coicla l cut 1Rn1C'lla is geometrically nonlinear. Reported residual stress ranges 

up to 0.1 1 G Pa. U 11 for tunately no clc•t ai Is of ea lcula tion le Rei ing to es timation 

of residual stresses haYe been given . 

3. Mechanical R emodelling of Bone with R esidua l Stress 

l ll 1989 Scguchi I 56] proposed a mod el of mechanical remodelling of bone 

with residual st ress. This model is based on the uniform st1·ess hypolheszs. 
The model was fur t her developed and applied in 11 , 69 , 70, 71. 72, 7:3]. 

Seguchi ·s idea is simple. cf. 169 1. Consider two linear clastic bars with 

elastic moduli Ea , ex = 1, 2, which arc interconnected in a s tatically indeter­

minate way, as shown in Fig. 5(a ). 
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F'ICUitE 5. Slatically indeterminate lwo-bar structure of a lumped parameter 
system, after Tanaka and Adachi j69j. 

lni tially, these members have neither initial stress nor strains. and the 

relationship bet \\·een stress a a and strain Eu of each bar gi \·en by 

aa = EaEa, a= 1, 2 (no summation'). (3.1) 

The deformation of both members constrains each other, so the strain E 

in either bar is equal to 
l- lo 

E--­- lo · (3.2) 

11 ere l denotes the deformed length and lo is the natural length common 

to both bars. \\'hen load P is applied to the structure, both bars deform 

elastically to length lp resulting in strain Ep and stress apa , as sho\\"n in 

Fig. 5(b). Then the equilibrium equation Lakes obviously the following form: 

(3.3) 

where Aa denotes the cross-sectional area of the bar a. The stress in each bar 

nwy be different, and this dzjjeTence dnves 1·emodelling. If the local equisLTess 

condition (uniform stress hypothesis) is adopted as an expression of Fung's 

optimal performance requirement ]18], a remodelling is expected to take place 

and decrease this stress difference until the relation 

(3.4) 

becomes true under load P , cf. Fig. 5(c). This is accomplished through the 

change of apparent stress-strain relation toward 

aa(c) = Ea(E- c~), a= 1, 2, (no summation!) (3.5) 
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due to the change in the cross section and or natural length of each member. 

This also means that residual stresses a1·a and residual strain remain in the 

unloaclecl state, as shown in Fig. 5(d) where the equilibrium equation 

(3.6) 

should be satisfied . This process is schemat ically represented us a change in 

the stress-strain relationship in Fig. G. 

.. 

(a) Loading (b) Unloading 

I.'IGURE G. Change in stress-strain rclalionship due lo remodelling, after [69). 

This figure clearly shows the difference between the initial strains c~ 
(existing in the stress-free state) and residual strain Er (occurring \Yhen the 

loud \'ctnishes). the not ions oft en confused in the biomechanical lit eraturc . 

The mechanical system (3.6) is not dosed. Additional equation of evolu­

tion is postulated as follows. Tanalm and Adachi [G9J postulate that n•mo­

delling is essentially driven by the stress difference bet \\·cen the members: 

(3.7) 

where I denotes time. 

l ntroducing a positiYe threshold valn<' ( .. ::wt. the cffccth·c stress diHermcc 

is defined as follows 

Consequently. the volumetric change of each bar is achieved by the cross­

sectional change of each member, and its rate is assumed to be given by 

A0 (t)/An(t) = Kn{6a0 (t)Y, n = 1. 2, (no summation over n.). (3.9) 
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Jl erc A0 (t ) = dA0 (t)jdt and the parameter J\0 are t he positive remodelling 

rate of grow! h and atrophy in the bar o. respectively. From the relatiou 

(3.10) 

the sought evolution equat ion is given by 

(3 .11 ) 

Lazy zone is characterized by equating the r.h.s . of Eq. (3.9) to zero. 

Steady state is achieved by passing with t to infini ty (L---+ ). 
Tanaka and Adachi [69] considered also the cross-sectional change due to 

remodelling during a small time interval [t, t + 6 t] . Then we have 

Aa(t + 6t) = A0 (t) + Aya(t), n = 1, 2 (3.12) 

where 

Aya(t) = An(t)6t, Q = 1, 2 . (3.13) 

Ob\'iously, a positive value of Aya(t ) means growth and a negative value ­

a trophy. I t was also shown that thC' initial st ra in appearing in (3 .5) is given 

by 

(no summation O\'Cr o) . (3 .1-+) 

This is used to represent the change in the natural length of each bar as, cf. 

Fig . 7, 

loo(t + 61 ) = [1 + c~t(t + 6t)]lo(O), a= 1, 2. (3 .J 5) 

0 P,<t l P;(t-::l t) 0 

FIG Uiu.:: 7. Change in natural state clue to cross-sectional change be remodelling, 

aft cr [GH[ 
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Ta na ka nnd Adachi J70. p. 8 J sugges t t he fo llowing rat e equa tion for initial 

stra in c.-~ : 

.,:0 _ A n (c- _ e-o) 
'-n - A u '-Cl '-a , C\' = 1, 2. (3 .16) 

P rior to pns:-,ing to a simp lified mod o] of t ibiofibula bone. consider t he 

diaphy:-,is of a long botH' idealized as an axi:-.ym met ric, two-layered hollow 

cylinder shown in Fig . 8 

p 

zff 
I I 1 I 
I I 
I : I 
I 1. lo 
I : I 

i I I 

i I I 

P IGlJRE 8. Diaphyseal model a~ Lwo- laycrcd hollow cyli nder . aft er [G9]. 

J n Fig . 8, rn denotes t he radius of the bound ary between two layers, and r1 

and r 2 a re t he inner and outer racli i, respectively. Only the one-dimensiona l 

dis t ri bu t ion a long the circumfcrcnt ia l di rection is considered for t he st rcss 

com poncu t in the -::-direction. The ,·a lue of strC'SS is eYaluatecl r = Tn . The 

thickness and clastic modulus of la.rcr a arc denoted by ha(e, t) and E0 • 

respectively. d. JG9, 70J. The inner layer (o = 1) stands for the cancellous 

bone wl1 ilst outer layer (et = 2). t he cor t ical bone so that E t < E2 . If t he 

force acts at t he poin t r = Te (re is a measure of eccentricity) and 0 = 0. 

then the cquili b rium along t he z-axis is wri tten as follows 

'J :hr 

P = t J CJn(())hn(O)r11 d0. 
tl= l 0 

(3 . 1 7) 

Similarly. \\'e wri tc 

·J 2rr 

Pr~.. = t / CJ0 (0)h0 (0)r~ cosBdO. 
o= l 0 

(3 .18) 

T he stra in c:(B) in the z-axis d irect ion i::, defined as t he nominal st rain by 

referring to the uniform natural state, cf. Eq. (:3.2). The clt'format ion is con­

st ra ined by rigid p la tes . llence Lhe strain c(O) distributio n in the x-direct ion 
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takes the form 

The rate of thickness change of each layer Cl due to remodelling is expressed 

by 

(3.19) 

where {V'20"a:(B, t) Y = max{\72 jO"(B , t)j-(\72 0") 5
, 0}. Here the positive thresh­

old (\720") 5 is used for the lazy zone. The constants /(0 and Ca can be found 

in J69J. 
Consider now this two-layered , hollow cylinder subject to a centric load 

(re= 0) . The stress is now uniformly distributed in the circumferentia l direc­

tion of the B-axis. and the first term on the r.h.s. of Eq. (3.19) drives remod­

elling. The initial natural state is assumed to be uniform, and remodelling is 

investigated under repeated loading with the period of 2D.T, cf. Fig . 9(a) . 

The thresholds of the remodelling of the lazy zone are (60")5 = 0.1 ="IPa 

and (\720") 5 = 0.1 I\ IPa. respectively and D.T is set to uni t t ime. 

30 r 

~ 20 

Q' n lliliLrp 0 10 !-
u.. 

0 t_- -
llT Time 

(a) applied repealed loading 

;;; 2.0 
~ 

~ 10 

~ 
75 0.0 

(c) stress change 

Cil 2.0 -Layer\ t =0 ; ' 
u. ~---Layl.'f2 ;:;:..~' • t •OO 
~ ; 

;;1.0 ;~ 
~ ~ ~ t~o 
Cii 0.0 ~ .... ... l 1 J 

100 

Strain (x 10 ~ 

(e) st ress-s train relationship change 

07 I 0 6 r ..... --- --------~-~------ - --- - - 0 56 

E o slr<.-.._ h, 
~ 0 4 ----'-'-'------0 45 

Q 3 i -I. l l_ 1 l I I 

c: 50 
iil 
bl 

T1me 

(b) Lh ick ness change 

Tune 

(b) strain change 

tr • 17 

FIGURE 9. Remodelling of diaphysis model , modified after [69J. 
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The calculated change in the thickness of each layer wi th t ime, due to 

remodelling, is shown in Fig . 9(b) . At the time t = 0, t he applied load of 

P = 25 :\' resul ts in the stress of a p 1 = l.OG ~1Pa and a P2 = 2.12 ?\lPa in 

layers 1 and 2 respectively. vVe observe that in [70] . P = - 25 N and then 

a Pl = - l.OG ?\IPa a nd a P2 = -2.121\IPa. 

Remodelling is initiated by this stress difi'erence between layers . As re­

modelling progresses under the ex ternal cyclic load P , layer 2 grows and 

decreases stress aP2. In contrast . layer J unuergoes atrophy (resorpt ion) and 

the st ress a p 1 increases . The difference in stresses between layers decreases 

with time, cf. Fig. 9(c), (d ) . After some t ime, the difference in the residual 

stresses between layers is smaller than the range of the lazy zone, and remod­

elling does not occur during this unit Lime wi thout external load . As t ime 

runs, the difference in residual stresses between layers increases . As a result 

of successive remodelling in both loaded and unloaded states , the process 

tends to the steady state wi thout change in thickness, cf. Fig. 9(b , c and cl). 
Figure 9(e) depicts the apparent stress-strain relationship of each layer wit h 

time. 

Consider now the case of remodelling under eccentric load. The system 

im·estigated is Lhe same as previously. 1\ow the stress is distributed nonuni­

forn!ly in the circumferential direct ion . and the second term on the r .h .s of 

Eq. (3 . 1 9) also becomes active upon remodelling . We assume that the re­

peated load is applied aL the point re = 0, e = 0. Initially, t he t issue is in 

a uniform natural state, and the stress is distributed in each layer , cf. the 

solid line in Fig. 10. 

The change in the cross section due to remodelling is shown in Fig. 11. 

As can readily be seen, the remodelling results in non-nniform distribution 

of thickness in both layers of the model. 

4.0 
~ 3.0 
~ 2.0 

1.0 
0.0 

(f) 
(f) 
Q.) 
...... ....., 
(f) - 1.0 

- t:O 
- -- - t:CO 

O'p2 

riGtJIU: 10. Stress distribution in diaphysis (remodelling under eccentric load), 

after 1691. 
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_j X L_ 
- L. 4 - 4 

-4L 
(a) Initial (I= 0) (b) remodelling equilibrium (t = oo) 

FIGURE 11. Cross section of diaphysis (remodelling under eccentric load), af­

ter [69J. 

First application: r-abbit libiofibula bone 

The remodelling of tibiofibula bone was irn-estigated in !69. 70 , 71]. Ide­

alized model of the t ibiofibula system is presented in Fig. 12. 

y 

X 

I I 

J 
I I 

I I 

I I Et I I X 
I 

I I At 

r 
: I 

' I 

I I 
I 

FIG URE 12. Idealized model of Libiofibula system, modifiC'd after [69J. 

Additionally to the previous case we have to consider the fibula, being 

treated as a circular solid column of radius r. The O\'erall centroid of the 

Libiofibula system is at the point of re, indicated by the circle in Fig. 12. As 

previously, the load acts along the z-axis and is appl ied at the point of re 

aud f)= 0 (the cross in Fig. 12). 
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The equilibrium equations of the force and moment (with respect to the 

y-axis) are given by 

2 27r 

P = L / aa(O)ho(O)rndO + Arar, (3.20) 
a=lo 

2 27r 

Pre = L / ao(B)ho(B)r~ cosBdB + Ararrm, 
a=lo 

(3.21 ) 

where Ar denotes the cross-sectional area of the fibula. 

Kow the stress in the tibia is obviously inOuenced by the presence of the 

fibula; however the rate of thickness of the tibia still obeys the rule (3 .19). 

Let us pass to a discussion of remodelling under cyclic loading between 

zero and P = -25 -:\", appl ied at re = 0.5 mm. This corresponds approxi­

mately to a tibiofibula system under a load twice the body vYeight of a rabbit 

weighting 2.5 kg. The model parameters describing the t ibia coincide with 

those used previously; moreover r J = 1 mm and E J = 15.0 GPa. We do 

not postulate the lazy zone to emphasize the effect of stress regulation by 

remodelling. The uniform natural state is again assumed as t he initial state. 
The initial stress distribution in the tibia under load P is shown by the 

solid lines in Fig. 13, depicting ap1 and ap2. 

1.0 
<? 0.. 0.0 
~- 1 .0 
~ -2.0 
~ -3.0 

U5 -4.0 

FICURG 13. Stress distribution in tibia, after [69]. 

Now the magnitude of stress in the tibia becomes maximum at the site 

of B = 0. at which tibia faces the fibula, yielding the compressive stress 

( -0.89 t1Pa) in the fibula. The residual stresses in the tibia arc shown in 

Fig. 13. The tensile residual stress a J = 0.17 ~IPa also remains in the fibula 
in the unloaded state. 

The cross section of the tibia after remodelling is shown in Fig. 14. 

We see that the thickness decreases at the lateral side of the tibia facing 

the fibula; its increase is observed al the medial site. The overall centroid of 
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Ftbula Fibula 

8 
/-' 

(~1 Jx , __ ; 

(a) before cuLling the fibula (b) after culling the fibula 

1-'ICL' ItE 1·1. Tibiofibula system at remodelling equilibrium, after ]69]. 

the Libiofibula system moves from the initial position at Tc = 1.20 mm toward 

the loading point 7'e = 0.5 mm and settles at Tc = 0.73 mm. 

lt is instructive to investigate what happens after cutting the fibula and 

to compare the results with experimental data performed on rabbits, cf. [69, 

70 , 71J. Fibula cutting pa rtially releases the residual stress found previously. 

The results arc depicted in Figs. ].J (b), 15 a nd 16 . 

........ 
<D 20 b A c ..--

10 )( 

rr 2rr c 0 L , I 
·~ 8 
(j) - 10 B 

FIG URE 15. Tibia strai n after culling fibula, from ]69] . 

1.0 . 1T e 2rr 
C'\1 0 0 ' - - L -_ -=:t - - - I - - -Or2 
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FIGURE 16. Stress distribution after culling fibula, a fter Tanaka and i\dachi ]69]. 
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ln Fig. 16 circumferential positions labcled A, !3. and C correspond to 

the gauge sites employed in the experiment briefly described below. The 

strain change qualitatively agrees with the experimental data , as shown in 

F ig. 17(b). 

A Ant. s@ M~ t ~at. 
\ , t 

Ttbia c Fibula Post. 

' ;t ; Tibia tihula ;tnd >!iiLIJ.!P 

site~ 

30 

~ 20 
3 10 

c 0 t-'--"-r-,r'-:-"-

~ -10 
l/1-20 

-30 

\ b : Tibia strain 
upon Culling 
fibula 

P lGURE 17. ribula-cutting expC'riment in rabbil , aflcr [G9]. 

Upon cutting the fibu la, the ccntroid of the tibia moves to the position 

Tc = -0.39 mm, and the stress distribution under load P becomes uniform, as 

shown by solid lines in Fig. J 6. When the system without the fibu la remains 

under Lhc same loadi11g conditions between zero and P = -25 I\, remodelling 

is reactivated due to the stress distribution along the circumferential direction 

and between the layers. The stress achieves maximum in absolute value at 

the lateral site of 0 = 0 at the new initial time of l = 0. After remodel­

ling. the cross section of the tibia changrs to that shown in Fig.l4(b) at 

the remodelling equilibrium (t = oo), and the centroid of the cross section 

coincides with the position of the loading point re . 

Let us present now concisely the experimental data. Strain gauges arc 

attached to the surface of the rabbit tibia. By cutting the fibula, the residual 

stress in the tibiofibula statically indeterminate system is partially released. 

and the strain changes "·ere observed, cf. IG9, 70, 71]. 

Hind limbs were excised from twelve Japanese ,,·hite rabbits weighting 

2.5 ± 0.1 kg (mcan±S.D.). The tibia and fibula arc cleaned of muscle attach­

ment and the periosteum. The diaphysial surface of the tibia was scraped 

clean and s;vabbed dry, and three uniaxial waterproof strain gauges A, I3 and 

C, are bonded to the surface along the longitudina l axis using cyanoacrylate 

aclhe ive. The position of the centre of each gauge grid is marked with cross-
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hairs. cf. f'ig. J 7(a). The tibia is immediately returned to the physiological 

saline balh at room temperature of 21 °C. All the measurements were per­

formed in this bath. A dummy gauge was placed in the same saline bath to 

compensate the drift clue to change in temperature. The resolution of the 

nwasuring instrument was one microstrain, and the value of the drift was 

uegligibly small compared lo lhe measured values. 

In the rabbit, the fibuln branches from the tibia at mid-diaphysis and 

coniwcts at lhe proximal end of the tibia, forming a statically indeterminate 

structure. By cutting fibula at the position marked by the solid triangle in 

f'ig.l7 (a), statical indeterminancy is partially released, and the deformation 

of the tibia can be measured using strain gauges. Averaged values of the 

strain of tweh·e specimens along the longitudinal direction measured using 

gauges A, B. and C are shown in Fig. 17(b). PositiYe strains were measured 

using gauges A and Cat posterolateral and anterolateral sites whilst negative 

strain was observed using gauge B at the medial site. The change in strain is 

induced by the release of the residual stresses in the statically indetermi nate 

st ruct me consisting of the tibia and fibu la. We conclude that the lateral side 

of tibia was compressed. and the medial side was stretched, and the fibula 

"·as stretched. bending the tibia in the lateral direction. 

Second ap]Jlicalion: bovine coccygeal vertebrae 

Adachi et al. [1] used the uniform stress hypothesis to the study of bovine 

coccygeal Yertebrae. Experimental data concerning residual stresses were also 

clcli'"crccl , d. also [70. 71. 73] . 

\\'e pass now to a concise pres<•ntation of the results achieved in just 

mcnt ion eel papers of Japanese researchers. !\lore precisely Adachi et al. Ill 
im·cstigatcd twelve tails of approximately two-year-old steers, immediately 

after slaughter. The most cranial coccygeal vertebra from each was stored at 

-·.J.0°C until the experiment. The vertebral specimens were freed from adher­

ing soft tissues such as muscles. ligaments, vertebral disks, and periosteum, 

nnd kept at rest in a physiological saline bath at a fixed temperature of 20°C 

for more than ..J. hours. 

The surface of the specimen \\"as scraped clean and swabbed dry. Two bi­

axial water-proof strain gauges (SI<F-20250: I<yowa Electronic Instruments 

Co. Ltd.) were bonded on the cortical surface using cyanoacrylate adhe­

si,·c symmetrically positioned with respect to the saggittal plane between 

the spinous process and the transverse process on the middle plane in the 
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cephalocaud a l direction , as indicated wi th crosses (R and L) in Fig. 18. T he 

principal axes of t he gauges were arranged in t he cephalocaudal and circum­

ferent ial directions. 

Grov,·tn p•ate 

(a) (b) 

F IGURE 18. Observed strains in cutting experiment , after [lJ 

Adachi et al. [1] used t he classical cutting method to estimate experimen­

tally residual stress. In the case of bovine vertebrae, strain would be induced 

a t gauges on the cort ical surface, if any residual stress in the cephalocau­

dal and circumferent ial directions rema ined in t he vertebral body. The test 

proced ure ran as follows: 

( i) The reference state fo r t he strain measurement was determi ned after 

t he specimen with strain gauges had been maintained in t he saline for 

2 hours . 

(ii) Both cranial and caucla l end-plates, presented in Fig. 18(a), were re­

moved by cutt ing, the cranial and caudal growth plates with a hand­

saw. The specimen was kept in t he saline bath for more than 1 hour , 

a nd then the strain induced at the gauge was recorded . 

(iii ) A circular solid region , 6 mm in diameter, t he horizontally hatched re­

gion 1 in Fig. 18(b) , was removed from the central portion of t ransverse 

section of t he cancellous bone using a light-duty cutter. The specimen 

was t hen kept in the saline bath again for more than 1 hour, and then 

t he strain at the gauge was recorded. 

(iv) The remaini ng cancellous bone, region 2 in F ig. 18(b), was then re­

moved using t he same rota ry cutter , and the strain was recorded after 

t he specimen had been kept in the bath fo r more than 1 hour. 
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The described cutting sequence was selected because of geometry of the 

vertebral body. It was assumed that one part of the cutting does not affect 

the other cutting sequence, which cannot be tested experimentally. On ac­

count of this assumption and assumption of small strains, one can exploit the 

principle of superposition for strains. The resolution of the measurement in­

strument (UCA::-I90A: J(yowa Electronic Instruments Co. Ltd.) was of single 

microstrain order (lo-6 ). 

Let us pass to description of the strains observed by Adachi et al. [1], cf. 

Fig. 19. 
J n this figure tlcz and tlc{) denote the average strains of the right and 

the left gauges in the cephalocaudal and circumferential directions, respec­

tively. Data from right and left gauge sites are presumed to represent a sin­

gle belu:wiour , since lhe paired analysis does not show sign ificant differ­

ences between two gauge sites. Anyway, according to Adachi et al. [1], the 

lolal resultant strains were tensile strains: tlc~otal = 64.2 ± 50.4 x 10-6 , 

tlcbotal = 40.4 ± 38.1 x 10-6 on average. 

To perform simple theoretical analysis. the vertebral body was simplified 

in a manner presented in Fig. 20. 
Due to rigid plate at both ends the systems presented in Fig. 20 are sta­

Lically indeterminate. Regions J and 2 of cancel lous bone and the cortical 

bone a rc referred to as members l, 2, and 3, respectively. Obviously Eai 

140 r------------------------------------, 
120 

~lOO 
"? 

0 80 

-~ 60 
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20 
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Ea Clfcumfcrential : /::.ea 

n = 1?. 
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O Rern0111ng Remo' mg Rcmovi..cg Rcmovmg 
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uto A£1 tl£2 Al ~tiDU\1 £coo<rol 

FIGURE 19. ObservC'J strains in cutting experiment, after [lJ 
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FJCURE '20. Simple model of vertebral body: (a) three-layered cyliHdcr model of 

vertebra, (h) three-bar model, (c) three-layered plane strain model, after 111. 

(i = 1, 2, 3) is the Young modulus along the axis of symmetr)': E11 denotes 

Lhe Young modulus in the transven;e plane. Similar notation holds for the 

Poisson ratio Vai and Vti· 

A three-bar model shown in Fig. 20(b) \\"as used for the analysis in the 

cephalocaudal direct ion. U ndcr load P acting on this three-bar s_\"stenL the 

member stress a p 1 is expressed by 

(3.22) 

Jl c>n' Ep stands for the strain coHJmon to every bar. \Vc ha\'c 

(3 .23) 

:\ow the porosity of cancellous bone is taken into account: thus the stress 

ap1 is different from the effecti,·e stress apif(/JA, of bone material itself. Here 

<PA, is the area fraction of bone material in the cross section. 

The uniform stress hypothes1.s is expressed by 

(3.24) 
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where u~q is the unifonn st ress at the remodellmg equtlibrium. Figure 21 

depicts the st ress-strain relations of the bars ·with (different) initia l strains 

E~> and different area fractions. For the cort ical bone one may assume cp = 1.0. 

\\'e note that Eq. (3.2-t) is more general than Eq . (3A) used for the two-bar 

system. 

a 

........ apJ 

f--~ L1£ zl +.1£ z2 

FICURS :21. SlrP~:-.-slrain rclalio11~ i11 three-bar model. 

Adachi et a l. [1] est imated a;4 to equal to a;q = 1.92± 1.29 i\IPa; moreover 

tht'Y obtained cf' = -5"1.7 ± 38.8 x 10- 6 and P = -17 .1 ± 12l.O N. 

For the analysis in the circumferential direction, the three-layered struc­

ture presented in f'ig. 20(a) is simplified to a shrink fit model, shown in 

Fig,. 20 (c), as a plane strain problem in the (r, 0) plane at the gauge site. 

\\'e observt' . that the rad ii i11 uatural stal es arc different fro111 each other in 

general. as,., -:j; I'J. and 1'3 -:j; r,. Just this cliA'erence brings the contact pres­

sures at the interfaces betwct'n the adjacent layers and the residual stress in 

('ach of the cylinders in the circumferential direction into the model shown in 

Fig. 20(a). The uniform stress in radial direction a;q at the interface between 

cyli nders 1 2 was estimated a. a;q = 0.63 ± 0.62 i\!Pa. Of the same order is 

the circumferential uniform stress u~q = 0.67 ± 0.57 :..IPa, cf. [1]. 

To conclude this section it is \\'Orth noting that the uniform stress hypo­

thesis enables to take into nccount residual stress in bone structures treated 

ns indctermina te system. Furl her developments arc need en to use to. say to 

three-dimensional system. Also. nothing can be said about evolution of bone 

microstruct urc. 
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A corrun(,n.l on l'esit!twl .~/rC;s.ses at the McuL-cernenl 1/l.lcljace 

Such a problem is of practical value in orthopaedic biomechan ics. :.Ju iio 

and Avanzolini ~~~ ~ performed a finite t>l('lllL'Ilt analysis pertaining to inOucnce 

of residual st rcsses at the stem-ce1nent interface of cemented hip implants. 

The gcomctr)· of the idealized cy linclrical hip stem inserted into bone is shown 

in Fig. 22. 

FIC:UitE 22. Thrcc-dirncnsion;ll finite elc•mPnl llll'Sh of tlw ccnH•ntcd hip slctn 

analyzecl. :\11 dimensions in 111111. artl'r .\nt-lo and ,\\·a nzolilli 11 11. 

All the materials \\'CTL' assun1cd to lH' linear elastic. isotropic and hotno­

geneous. The Ti-GAl-4 V stem had '{oung·s modulus E = 110 000 ~IPa ancl 

Poisson·s ratio I/ = 0.3: th(• P.:--1\ fA n' IIH'nt mantle had E = 2700~IPa a nd 

v = 0.35: the cort ical bone had E = 15 500 .i\ l Pa and v = 0.2 The clistal 

ends of the cement mantle and the bone wen• completely fixed. The cement­

bone interface was assumed rigidly fix('cl. while the stcm-ccm(•nt intcrfac(' 

consisted of 29 I nonlinem ('ont act elements Contac5~. :~0 node- to-node ele­

ments. using Coulomb friction behm·iom allowing for sticking and sliding. A 

coefficient uf friction I'= 0.2 m1s assunwd (at Llie stem-ccmc1tt interface) . 

The compressi\'(~ residual radial stress due to cement curing at the stem­

cement interface was simulated by a pre:-,s-fil effect: an interference of 5/Llll 

\\'aS assigned to the contact elements corresponding to mdial residual stress 

of approxinwtcly 2.4 ~ [Pa. \\'c observe that residual stress can likewise be 

generated i>)' thermal expansion. 
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FIG URE 2•1. Hadial st,ress in the cement, manlle at, t,he interface on t,he laleral 

side for wit,hout, and wit,h residual radial st,ress ,·ersus t,he axial coordinat,e z; after 

[44[. 

Significant influence of residual stress is clearly shown in Fig. 23 and 

Fig. 24 . 

The analysis perfomed by )J uno and Avanzolini [<-!<-!] is simplified since t he 

issue of bone cement polymerization has not been considered, cf. [GO]. 



http://rcin.org.pl

342 J .J. TELEC:A and i\1. STA:'IC'ZYK 

P art II. Soft t issues 

In this part we intend to synthesize mam developments pertaining to 

existence of residual stress in soft tissues and its influence on adaptation. As 

we al ready know, residual stress ,,·as primarily shO\n l to exist in bone a nd 

then in t issues like bovine and porciue aortas and the left vent ri cle of rabbit 

(c f. [J 8 . 521). Jt is also known to exist in living t ree. :\lore precisely during 

the growth . an internal stress is generated in cambium zone of a t ree and is 

named growth stress, cf. Okuyama and Yamamato [..J.8]. 

4 . Aorta and A r teries 

According lo Rache,· and Greenwald [55] it has been known for at least 

.JO years, since the Ph.D. thesis by Bergcl [5], that when a ring segment 

is cut from an a rtery and an axial cut is made in the ring, it uncoils like 

a watch spring. In the pioneering paper by Vaishnav and Vossoughi [76] 3 

bovine all(] 9 porciue aortas \\"ere examined; sec also t he paper by these 

authors [75[. In a typical experiment . the segment of the aor ta extending 

from just below t he ~'tort ic arc!t to the di~Lal end of the abdominal aorta was 

freed of the loose tissue 011 the ad,·entitia and gent ly laid clown in its natural 

configuration . We recall that the blood vessel wall consists of three layers: 

the intima. media, and ach ·cntit ia . cf. [G[. Fung [21 [, Hnmphrey [33]. The 

intima is the innermost layer and contains endothelial cells. The media is 

the middle layer and contains the smooth muscle cells . The ach·entitiallayer 

is the ou termost layer and co n! ains collagen fibres an d ground substances. 

and some fi broblasts, macropbages, blood wssels (vasa n1sorum ), myelinated 

nerves. and nonmyelinated netTes. 

\ \ 'e return now to the paper by Vaishnav and Vossoughi !76]. Using a sharp 

razor blade, transverse culs approxi1nately 3 Lo .J mm apart were made along 

the entire lenglh of aort a so as to yield a large number of a lmost circular 

rings (in fact. they ,,·ere oval) . From 20 to .J(j rings \\We obtained from each 

aorta, with a total of 28Ci rings. The intact vessels as well as the rings were 

kept submerged or bathed in physiological saline at room temperature (from 

20 to 23°). Dorsal radial cuts were made through the thickness of each ring, 

which opened into a horseshoe shape upon being cut. Groups of rings we 

photographed, along with a milimeter scale. before and after being subjected 

to radial cut. The sets of rings and thei r open configmations were labelled 
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for reference. Figures 25 and 2G show a set of 9 rings from a bovine aorta 

before and after being cu L. 

The annular sections were oval in shape with the largest and the smallest 

miclwall diameters (a and b respcclivcly in Fig. 27) not differing by more than 

25 percent. 

r··:MY~a I loll~ J I 

00-,· 
. . 

FIGURE 25. Transverse annular SC'ctions from an aortic egment. The small divi­

sion on the scale represents one mm, after 1761 

' 

0(J;(J 
FIGURE 26. The open configuration obtained by radial sectioning of the transverse 
annular sections in Fig. 25, after 1761 
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I• !C URE 27. A typical transverse a nnu lar section of an aort ic segment. 1 and b 
are the maximum and minimum miclwall diallleters of the section , geneally in 

or t hogonal di rections , after J76J 

FIGURE 28. A typ ical t ra nsverse a nnula r section after radial sectioning, afer J76J 

A mean radius for each ring was calculated as follows: Ro = (1,4)(a + b). 
The opened up horseshoe shapes of the rings were approximated a.' arcs (see 

Fig. 28) with their mean midwa ll radii R calculated according to th· formula: 

R = (l /8)(c2 / h + 4h) . 
Assuming that the radial lines, stra ight in the closed configuaLion re­

mained stra ight and normal to the midwall curve after transit i•n to the 

cut-open configuration , the circumferential engineering strain eo a a radial 

distance r from the midwall in the closed configuration relative t the open 

configuration can be calculated a follows: 

( 4.1) 

It was fur ther assumed that the miclwa ll "fibre" is strain-free. T he :1aximu m 

posit ive and negative strains will occur at r = +t/2 (adventit ial suiace) and 

r = -t/2 (intimal surface), respectively, and have a maximum ma:nitude 

t ( 1 1) lcolmax = 2 Ro - R · (4.2) 

Here t denotes the mean wall t hickness and we preserve the nota;ion used 

in [76J. 
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Assuming that the open configuration is stress-free (now we know that 

such an assumption is not true), the stresses in the closed configu ration at 

a radial distance ,. from the mic! wall cun·c can be estimated from a uniaxial 

stres -strain curve for a circumferential s1rip. Then. the magnitude of the 

maximum tensile and comprcssiw stresses in the closccl ring, arc calculated 

as follows: 
Et ( 1 1) IO'olmax = 2 Ro - R , ( 4.3) 

,,.i th the intimal side being in compression a ne! the adYenti tial side in tension. 

ll ere E denotes the Young modulus. 

According to I7GI. the maximum magnitucles of the circumferential en­

gi neering stra ins through the wall thickness n1ry from O.Ocl<! to 0 124. and 

the corresponding stresses vary from ..J...J. lo l 2-J C cm2 (C ~ 9.81 x 10-3 N), 

where an approximate ,·alue of E = 1000 G cm2 has been used (Vaishna\' 

and Vossoughi write g cm2 instead of C cm2 ). Furthermore. these authors 

estimated the maximum residual stress amounting to approximately 14 to 17 

percent of the in vivo circumferential engineering stress. 

The aortic wall, similarly to other Yessel walls, is a layered material, hence 

it's inhomogeneous. The early procedure of estimation of residual stresses, 

outlined above. is typical for materials homogeneous through the thickness. 

Consider now the case when the intima is separated from the outer segment, 

cf. Fig. 29. 

(a) (b) (c) 

fiGURE 29. Bovine aortic ring after culling (a) and separation of lhe intima (b,c) 

from lhc outer segment, after [7 I 

The clashed line in Fig. 29 is the line along which separation into the inner 

and outer layer was performed. Figure 29 clearly shows that the segment 

containing the intimal layer opened up significantly more Lhan Lhe outer 
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FIGURE 30. Definition of the term "opemng angl!•"; sector represents circurnfercn­

tial cross section of a blood vessel at zern-stress stale. Angle subtended between 

2 lines originating from midpoint to tips of inner ,,·all is the opening angle, after 

!20J 

segment containing adventitial layer. This indicates that more residual strain 

was inherent to the intimal layer than that measured using Fig. 29(a) before 

separation. According to Vossoughi et al. [78[, the value of the intimal residual 

strain is approximately twice of that obtained using only one cut to the aortic 

ring. Unfortunately, no specific value was given. Also, it is not clear along 

which line the second cut was performed. 

Greenwald et al. [23] showed that residual strains arc not homogeneously 

distributed through the arterial wall. ;.rore precisely. a two-component repre­

sentation of the vessel wall was assumed (the authors use the term "two-layer 

representation .. ). The two layers are not necessarily intended to represent 

media and adventitia. The authors assume that the residual strains present 

in a particular component of the wall may be quantified by eliminating the 

mechanical effects of the other components. The major structural compo­

nents of Lhe artery wall were remo\·ecl chemically or thermally in one sets of 

experiments (aortas from nine lllale Sprague Dawley rats), and eliminated 

mechanically in another (bovine carotic! arteries from 12 animals). Residual 

strains in the artery wall were found to be concentrated in the inner layers, 

which contain more elastin than the other layers. 

Valenta et al. [77J prO\·iclecl experimental data on the influence of adven­

titia of opening angle. The concept of opening angle is illustrated in Fig. 30. 

Thrse authors performed experimental investigations using 21 specimens 

of the human aorta and coronary artery. The average age of subjects of both 

sexes was (G3.G±8.c!). Arterial rings of :30 80 mm in height were excised from 

the ascending and descending aorta. the vertex and the end of lhe aortic 

arch, between the diaphragm and above the bifurcation, and also from the 

right coronary artery. 
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Two approaches were used. In the first one the adventit ial layer was me­

chanically removed (the membrana elastica \\·as left undamaged) . In the 

second approach the advent it ial layer was left intact . Some of the results 

achieved a rc presen ted in Figs . 31 33. 

1'\'Ia tsumoto et al. [41] performed a refined analysis aiming at the deter­

mination of residual stresses in a so-called lamellar uni t of t he aortic media . 

We recall tha t aortic media is made of concent ric layers whose unit is just 

the lamellar uni t, a pair of elast ic lamina (EL) and a smooth muscle-rich 

layer (S::-.IL), cf. Humphrey [33]. Elastic modulus of elastin is about O.G ~IPa 

(sec [1 81) whilst that of the smooth muscle is of t he order of 0.01 MPa in the 

relaxed state. Thus we see t hat EL is much stiffer t han t he SML. 

If the stress-strain relationships describing the EL and SML are different, 

residual stresses between the two layers should also be different . Indeed , if 

the circumferential stress in the in vi vo condi tion is the same between the 

soft and st iff layers, compressive residual stress will arise in the stiff layer 

and tensile in the soft layer , cf. Fig. 34. 

Such residual stress is not fully released by radial cutting; however this 

stress is released in the a rea close to t he cut surface, causing '·hills and valleys" 

(ns ~.I ats umoto et al. wri te) on the surface due to compressive and tensile 

stresses, respectively. Jn the mechanical literature one uses the expression 

''wrinkles·' and . not '·hills and valleys". 

To check the hypothesis tha t wrinkles arise on the cut surface, ~Iatsumoto 

et al. [41] developed a scanning microindentation tester (SMIT), a scaled­

up version of an a tomic force microscop e (AF\I), and measured the surface 

topography and stiffness distribu tion of the cut surface of the porcine thoracic 

aortas . Residual stress and strain in the lamellar uni t was also estimated. To 

this end F E.l\I was used. 

The resid ual stress was estimated to be ( - 70 kPa) for the EL and 20 kPa 

for the S~IL. These values arc relatively large. Indeed, the macroscopic cir­

cumferent ial residual stress reported in the literature is in the range 1- 10 kPa 

whilst the physiological stress is about 300 kPa for the rat aortas, cf. t he rel­

evant references cited in t--Iatsumoto and Hayashi [42] and [41]. It seems that 

the values obtained can be viewed as an upper bound. 

Let us present now the main results obtained by Fung and his coworkers, 

and per taining to estimation of residual stresses and strains in the aortas and 

a rteries . 
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(a) (b) 

FIGURE 31. (a) The aort ic ring (media and advC'ntitia) of a 61-year old man; The 
ring was excised at t he place of passage through the diaphragm. (b) The state 
observed 25 min . after radial cut. Note that the open ing angle is greater than 
180°, a fter [77J 

F IGURE 32. T he ring of t he coronary artery of 83-year old woman. The state 
observed 25 min. after radial cut; the opening angle is equal approximately to 

180°, after [77J 
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FIGURE 33. The comparison of the opening angle of specimens with removed and 
intact adventitia (average value± S.D.), after [77J 
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a,> 0, o6 < 0, c, = Ea @ no load 

F IGURE 3 1. Residual stress caused by material heterogeneity; Tf the tensile 
stresses in the layers A and B a re equal in a loaded state, the unloaded ma­
terial has tensile stress in the soft layer (A) and compressive stress in the stifi' 
layer (B). In the no-load s tate the sum of the forces in the layers (A) and (B) 
bPcomes zero , after [41J. 

It is commonly assumed that tlte artery is a cylindrical tube, whose wall 

material is cylindrically or thotropic, cf. [9, l OJ . Assu ming also that the ma­

terial the tube is made of is homogeneous after the removal of residual stress 

from the unloaded state, the vessel ,,·all should become a sector of constant 

curntture and thickness. As we already know, the last assumption is not 

true si nee the arterial ,,·all is inhomogeneous through the thickness. Eventu­

ally, one could consider s lices of, say, media without int ima and adventitia. 

C lwong and Fung [9, 10] introduced the effective radii for the stress- free 

reference state from the noncircula r opened-up configuration taken from ex­

pNiments. 

Figure 35 shows the idealized \'essel wall configuration at various states. 

The stress-free reference state is called state 0, the unloaded state is state 1, 

and the subsequent loaded states arc states 2,3, . .. ,_V. \Vith cylindrical polar 

coordinates, a material point is denoted as (r, B, z) in the states 1. 2, 3, . . . ,N. 
The subscripts i and e denote the internal and external wall radii at various 

st a tcs. Go represents half of the angle of the arterial wall a t the stress-free 

state 0. 

The angle G0 and the in tcrual and externa l wall radii state 0 and 1 can be 

determined from the direct measurements of fibre lengths on both surfaces 
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FIGURE 35. The cross-section representation of an artery al the stress-frre refer­
ence stale 0, the unloaded stale 1, and subsequent loaded slates under l ranslllu ral 

pressure and axial force, after 191 

taken from the photos of the open-up specimen. For state 1 we have 

(4.4) 

for the internal and external surfaces, respectively, \\·here l denotes the mea­

sured fibre length. For state 0, we write 

(4.5) 

for the inner and outer walls where L denotes the fibre length measurements 

at this state. The determination of Ti and re for stale 1 is straightforward. 

However, another equation is needed to solve for the tree unknowns Go , Ri 
and Re in Eq. (4.5). Such an equation is provided by the incompressibility 

condition of the vessel \\·all: 

( 4.6) 

where Az is the axial stretch ratio and is to be measured directly. By solving 

Eqs. ("L5) and (cl-.G), the geometric description of state 0 is determiiieJ in 

terms of the effective values. 

The deformation of a thick-walled artery under transmural pressure and 

a..-xial tethering is described by 

T = T(R), e = (rr /Go)G. z = z(Z) (4.7) 
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for the transformation of the rad ial, circumferential and longitudinal coordi­

nates, respectively. The corresponding principal stretch ratio arc given by 

7r r 
A.o= -­

GaR' 
( <-1.8) 

Green's strains Ee, Ez and Er in the circumferential, longitudinal and ra­

dial directions, respectively, are related t he principal stretch ratios of Eq. ( 4.8) 

by 
1 ? . 

Ei = 2 (A. i - 1) , i = r, e, z . (4 .9) 

The arterial wall material is assumed to be characterized by an exponen­

tial strain energy fun ction: 

where 

c 
polV =- exp TV1 2 

( 4.10) 

(4.11) 

Here c, b1, b2, . . . , b6 are material moduli. The wall material is assumed 

to be incompressible. This constraint is added to the strain energy function 

th rough a Lagrangian multiplier, cf. P a rt Ill of our lectures. 

Chuong and Fung !9, 1 0] performed calculation for rabbit t horacic artery 

fo r the case where the measured geometric values arc: li = 8. 75 mm, le = 

12.5 mm , L; = 9.75mm, Le= ll.25mm. Then. solving Eqs. (-! .5) and (4.5), 

with the assumption of /\z = 1, we obtain Re = 4.52 mm, Rt = 3.92 mm, and 

8 0 = 71.4° as the effective external. internal radi i and the effective angle for 

the reference state 0. The material coefficients arc given by: c = 22.40 kPa, 

b[ = 1.0672, b2 = 0.4775, b3 = 0.0499, b.t = 0.093, b5 = 0.0585, b6 = 0.0042. 

Figure 3G(a) presents the residual strains in the arterial wall when the 

\'esscl is unloaded. The strains are expressed in terms of principal stretch 

ratios. It is seen that fibres at the inner wall arc shortened, while those 

at the outer wall are elongated. Figure 3G(b) prese11 ts the distribution of 

the residual stresses at the unloaded state. In the circumferential direction, 

the inner wall has a compressive residual stress of 1.5 kPa; the outer wall 

has a tensi le residual stress of 1.3 kPa. These are small numbers compared 

with stresses at loaded states shown in Fig. 37. However, t heir effects are 

significant. :\lore precisely, Fig. 37 shows the distribution of principal stretch 

ratios and principal stresses of the vessel wall at Pi = 120 mm Hg ("' 16.0 kPa) 
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Normalized Raatal Cooratnate Ncrma11zeo Rad1al Coorc1nate 
RIR. R/R 

(a) Distributions of principal stretch (b) Distributions of res idual stresses 

ratios Ao, A: , Ar ao, a= 

FIGURE 36. Residual strains and stresses in the wall of an unloaded thoracic 
artery, after [9] 
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F IG URE 37. Strain and stress distributions in the wall of a rabbit thoracic artery 
at p, = 120 mm llg ( .-.. J 6.0 k Pa) and A: = 1.691, after [9] 
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and axial stretch ratio A2 = 1.691. The circumferential stress at the inner wall 

is found to be 1 .LJ2 times larger then the average value across the vessel wall. It 

is worth noting that in an earlier \\·ork [8J, the same authors found that under 

the hypothesis that the unloaded tube is stress-free, the circumferential stress 

at the inner \\"all was 6.5 times larg<.>r then the average \·alue across the \·essel 

wall (the internal pressure is the same as previously: Pi = 120 mm J-Ig) . \Ne 

conclude that the removal of the hypothesis that unloaded state is stress-free 

has tl1e affect of reducing the stress concentration factor from 6.5 to l...J.2. 

Liu and Fung [39] studied the opening angle of short segments of aorta 

along the aortic tree of Sprague Dawley rat. cf. Figs. 38 and 39. According to 

these authors . for a short segment of aorta it may be sufficient to make one 

longitudinal cut to assess whether after one cut the segment is in a stress-free 

stat P. cf. a lso Rachev and Greenwald [55]. 

Outside 

Outs1de 

[.'JGURE 38. Left: ~olllenclature for sites: "oulerior", "posterior". "inside", and 
"outside". !light: Definition of the opening section angle 8 , afLN [39[. 

Fung and Liu [191 and Liu and Fung [..J.OI reported that residual stresses 

tn the rat aortic \\"all, represented by the openi11g angle. changed rapidly in 

response to the induction of hyperl ension. \Yhen they generated hyperten­

sion uy cons! rict i ng the abdominal aorta, they found a marked increase in 

the opening angle, from 171° to 21cl0 in 4 clays after constriction, followed 

by gradual decrease to an asymptotic value of 126° in ..J.O days in the as­

cending aorta. Hypertension \\"as created in 57 Spraguc-Draw rat by banding 

abdominal aorta with a metal clip 0.5lmm wide and G.6l mm in length. 

Fung and Liu [20! also observed similar and faster change in the opening 

angle in rat pulmonary arteries subjected to hypoxic hypertension: the angle 

increased from 294° to 385° in 12 h and then clecreasecl gradually to 193° in 

2.JO h. By comparing Lhe changes in opening angle with histological obser-
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FtGUHE 39 Photograph::. of the zeru-stres:-. configmalion !lf aorta along the aortic 

tn•c· (of rat ). The sy1nbuls A. P. I, 0 stand f!lr anterior. posterior. inside, and 

outside•. n·sJwdi\'ely (:-.<'<' l 'ig. :lH). aftN ):l9) 

valion, they explained the opening angil' by the nonuniform remodelling of 

art cry wa 11. 

Chuong and Fung 191 proposed a method of direct mcnsurc•mcnts of re­

sidual :;trains in aorta. The met hod com;ist in sprinkling small microdots 

of \\'alcr-insoluble ink onto the smface of the trans\·crse sections of aortic 

segments. I t :;ccms that 110\Yaclays one ('Oulcl use lru,cr or speckle met hods. 

A nat mal qtt('stion is: what is histological change associated with hyper­

tension ?, cf. :\Iatsumato and ll ayashi I..J2 1. To nns\\'Cr. at kast partially. this 

question, consider Fig . ..J.O. The figun' sho\\'s micrographs of the aortic sec­

tions of control. hypertem;ivc. and severely hypertensive rats. It is obvious 

thaL the to tal wall thickness was increased by the elevation in blood pressure. 
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(a) (b) 

) 
/j 

) 

FIGURE ·10. \[icrographs of the thoracic aorla in three operated rats, fixed under 

in vivo loading condition and stained with Azan (a) Normotensive rat (P•Y• = 
145mndlg), (b) hypertensive rat (P,ys = 200 mmllg). (c) Severely hypertensive 
rat (P,y, = 210 lllllllfg). Sections arc parallel to the longitudinal axis of the vessel; 

intimal surfaces face left. Length marker (50 JLlll) in (c) applies to all parts of the 
figure, after 1121 

The lamellar units had almost the same thickness throughout the wall thick­

ness in the normotensive rat (Fig. 40(a)). whibt in the severely hypertensive 

rat (Fig. -10(c)) the units were much thicker near the inner surface than near 

the outer surface. 

The thickening of the lamellar units was associated mainly with the in­

crease of ground substance ancl partly with the hypertrophy of smooth mus­

cle cells. Jt may thus be saicl that hypertension caused the wall thickening, 

especially in the subintimal region. 

Han et al. [25[ studied the opening angle of the autogenous \'C'in grafts of 

seventeen mongrel clogs. 15 21 kg in body weight (30 caninP grafts). Canine 

fpmoral ,·eins \\'ere grafted to femoral arteries in the end-to-end anastomosis 

fashion. The results show that the opening angles (mean±S.D.) arc 63.0 ± 

30.6° for normal femoral veins. and -0.4±4.6°, 6.1±19.4°, 25.4±20.1°. and 

47. ± 11.4.0 for vein grafts at 1 day, 1 week , J and 14 weeks post surgery, 

rcspecti,·ely, cf. Fig. 41. The postsurgical changes in opening angle reveal 

nonuniform transmural tissue remodelling in the vascular wall. 

Rache\' cl al. [53] dc\'C'loped a mathematical model which accounts for 

both the geometrical and mechanical remodelling of arteries in response to 

induced hypertensions, cf. also the lecture by A. Rachev in this ,·ollm1c. An 

essential point is to incorporate the remodelling rate equations. The problem 

\\'as reduced to .J evolution equations for four growth parameters. 
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FIGURE <11. Photographs of typical configuration of zero-stress states of the short 
segments of a normal femoral artery (Normal J\) a vein (l\ormal V), vein grafts 
(VG) at 1 day, 1 week, 4 weeks and 12 weeks post surgery, after [25J 

Taber [G2] proposed a biomcchan ical growth law for arteries and examined 

the behavior of a thick-walled tu be model of aorta under various conditions 

d uring development and maLuriLy. 

Taber and Humphrey [G<J] sLucliccl the effect of heterogeneous material 

properties on growth-induced residual stress in arteries (mainly rat aorta and 

bovine carotid artery) and the utility of using opening angles to characterize 

this residual stress. 

Uniform circumferential stress assumption was adopted by Ogdcn and 

Schulze-Bauer [47]. These authors obtaiucd the sign of residual stresses op­

posite Lo lhose reported by Chuong and Fung [10] and Takamizawa and 

Hayashi [GG]. 

Delfi no et al. [1 ..J] developed a model of the carotid a rtery bifurcation for 

studying Lhe wall stress field. The proposed model includes thick wall wiLh 

varying thickness, nonlinear clastic property (isotropy) and the zero sLress 

state. 

5. H eart 

The opening angle concept has also been used to characterization of resi­

dual stresses and strain in lhe left ventricle; cf. [49, 51, 63] and the references 

therein . 

Takarnizawa and l\Iatsuda [6 J proposed a mathematically sophisticated 

model of soft tissues with residual stresses. The hypothesis of uniform strain 
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distribution (through the wal l thickness) was employed. As a particular case 

a sphe rical lllodel of the left ventricle was studied. The uniform strain hypo­

thesis was advanced by Takamizawa and Hayashi [65], cf. also Takamizawa 

all(! Hayashi [GG. G7]. To put it brieAy in the uniform strain hypothesis .. strain" 

means the strain referred to a stress-free configuration. T he hypothesis im­

plies t hat the circumferent ia l stretch ratio. /\~), is independent of the radius 

fl(P); superscript (p) ind icate· the standard physiological stMe. 

Summerour et a l. [Gl] showed that opening angles (in rats) were s ignif­

icantly higher in ischaemic hearts than in sham-operated or strain-softened 

hearts. suggesting, that acute coronary artery occlusion may significantly in­

crease residua l stress a nd strain in the left ventricle. 

Omens et al. [50] showed that physiologic left ventricular remodelling in 

rats decreases myocardial residual stra in in proportion to the relative reduc­

tion in wall thickness-radius ratio. 

6. Cart ilaginous Tissue 

Curling of cartilaginous tissue was reported already in 195 by Gibson 

and Davis, cf. [58[. Curling behavior was also shown in [57[. The studies on 

residual stress (sometimes called "interlocked stress" or self-locked stress) in 

cartilaginous t issues, prove that our knowledge of residua l stresses in biologi­

ca l tissues is longer then commonly believed. For review of t he experimental 

results and modelling of cartilage behaviour the reader is referred to [34] 
and [7-l]. 

Par t Ill. l\I.IathCin a tical approach t o m odelling resi­
d ua l stress 

For the introduction and description of the basic mechanical concepts, 

relevant to lite discussion presenlccl in the following sections, t he reader is 

referred to the Appendices A D. 

7. R esidu a lly Stressed E lastic Materia ls 

Until now, in ou r considerations of constitutive modeling, existence of 

stress-free state (sometimes called natural stale) has always been assumed. 
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Rcsicl ual stress is the intrrnal stress present in a body, not necessar ily 

clastic, in an unloaded equilibrium config,mat ion. That st rcss is often Lhe 

result of t h<:> manu fact mi ng process used to form or construct the structure, 

or may be clue to the ddorznation history of the structure. The presence of 

a residual stress field can have a profound influence on effective mechanical 

proper ties of the structure. Residual stress is commonly studied in the con­

text of metals, where it is usually a product of plastic deformation and where 

the material is elastic only in small strain range. However. residual stress is 

present in a wide variety of materials. some of which respond elastically 

to large deformations, at least in a first approximation. For instance. human 

and animal bone. heart. arteries and carti lngc arc biologicalt issues which arc 

known to support significnnt residual st r<'ss fields, cf. Holzapfcl and Ogdrn 

1311. Jemiolo and Tclega I3Gj. Ogden lc!Gj, and the rcleYant references cited 

therein. Bone tissue is not of interest for us here since it beha\'es in a geo­

metrically linear way. Residual stress in biological tissue de\'clops through 

growth and rcmodcling. and are important lo the mechanical function of the 

t issues . cf. Rachcv [5cJ], Skalak et al. l59j. 
Predict ion of the mechanical bchavior of a res id ually st resscd body will 

typically require a constitutive model that <'xplicitly includes the influence of 

residual stress on deformation. In a series of papers, Hoger and her coworkcrs 

proposed general forms of constitutiYe rrlationships for resiclually stressed 

hyperclastic bodies that are composed of material with identified symmetry, 

cf. Dyke and Hoger llGj, ll oger [28, 29]. Johnson and Hogcr 1:37, 38]. The 

aim of the present section is to familiarise the reader with the main ideas 

in trod ucecl by 11 oger and her coworkers. 

7.1. Som e General R e latio n s 

Let us write the constitut ivc eqnation for the first (un:-,ymmetric) riola­

Kirchhoff stress tensor as follows 

P(x) = g(x, F(x)). (7. J) 
1' 

The residual stress P is defined as the stress in the n'fcrcnce configuration, 

i.e., "--
r 

P (x) = g(x, I ). (7.2) 

In the scquc>l of the present sect ion. the explicit dependence of the constitutive 

functions on x will be suppressed except where its appearance is needed for 

clarity. \\"e observe that x refers here to the residually stressed configuration. 
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For the ela. t ic re!>ponse to be independent of the observer, the response 

fu nction g must satisfy 

g (QF ) = Qg(F ) 

fo r e\·ery F E M!~ and every proper orthogonal Q. 
The symmetry group of an clastic material at x is now denoted by 9x, 

and is such that 

g (x , F Q) = g(x , F)Q 

fo r a ll F E M!~. Independence of the observer requires that 

g (x , QFQT) = Qg(x , F )QT (7.3) 

fo r all Q E 9x· By evaluating (7.3) at F = I , we find t hat the residual stress 
r 
P must satisfy 

1' r 
P (x)Q = QP(x) (7.4) 

for all Q E 9x· Hence we conclude that a material wi th a par ticular symmetry 

eau support only those residual stress fields t hat commu te with all elements 

of its symmetry group . From this condition the restrictions on the form of the 

residual stress appropriate to a specific material symmetry can be obtained . 

The relation between the fi rst P iola-Kirchhoff stress and the Cauchy 

stress a is given by 

P = ] a F - T. 

In the reference configuration F = I ; thus P = !r or P = pT Consequent ly 
r 

the residual stress P is symmetric. 

We will always take the reference configuration to be an unloaded equi­

li brium state. The residual stress must t hen satisfy the equilibrium equation 

in D. (7.5) 

and the zero t raction condition 
r 
Pm = O on DD (7.6) 

1' 

where m is a uni t vector normal to DD. We assume that P (x) is s ufficiently 

regular To admit a broader class of solut ions, Eq. (7.5) may be understood 
r 1· 

in the weak (variational) sense. Then P m is the t race of P on 8 D; i.e. the 

trace in the sense of "value" of function from a Sobolev space on aD. T he 

boundary [) 0. may contain edges and corners. 
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7 .1.1. Isotropy. For an isotropic material, according to (7.4), the residual 

st ress must commute with all proper orthogonal tensors. Therefore it is a hy­

drostatic pressure and because F = I , we have 

1' 

P (x) = p(x)I , X E Sl. (7.7) 

Equili brium equation becomes 

7' 

divxP (x ) = 'Vxp(x) = 0, 

sop is a constant. On account of (7.6) pis identically zero inn. The follo,,·ing 

result has been established: an isotropic body can support no residual stress. 

7.1.2. Transver se isotropy The symmetry group of transversely isotropic 

material is the set of all rotations about the axis of symmetry of the material , 

so the residual stress must be of the form 
1' 

P (x ) = p(x)I + q(x)M (x) (7.8) 

where M (x) = v (x) ® v (x ), and v (x) is a unit vector along the axis of 

symmetry at x. The possibility that q is identically zero is excluded; otherwise 

the material would be isotropic. 

The equilibrium equation (7.5) takes the form 

'Vxp(x ) + M(x)'Vxq(x) + q(x)[('Vxv(x))v(x) + (divxv(x)) v (x)] = 0 , in 0, 
(7.9) 

whilst the boundary condition (7.6) becomes 

pm + q( v · m ) m = 0 on 8D. (7.10) 

The last equation is satisfied if and only if at least one of the following holds 

on 80: 

p = q = 0, 

p = 0 and v · m = 0, 

p + q = 0 and (v · m)2 = l. 

Hoger [28] examined two specific cases: where the axis of symmetry is uni­

form , and where the parameters p and q are uniform. ~Ioreover, she also 

investigated full equations (7.9) and (7. J 0) for the specific body geometry of 

a right circular cylinder, cf. also Ogden [46]. It is not difficult to show that 

in these two specific cases we arrive at the following results: 
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(i) a transversely isot ropic body with uniform axis of symmetry can sup­

port no residual stress, 

(ii) a t rans \·ersely isotropi c body can support a nonzero residual stress field 

with uniform parameters p and q if and only if t he axis of symmet ry v 

satisfies 

d ivxv (x ) = 0 and (Vxv (x )) v (x) = 0 

throughout the body, and either 

v (x ) · m (x ) = 0 

at all points x E 8D., or 

[v (x ) · m (x )]:! = 1 

at a ll points x E 8D.. The residual st ress possible in each of these two 

cases is g iven by equations (7.11) and (7.12): 

,. 
P (x) = qM (x) (7 .1] ) 

\\'ith m (x ) · v (x ) = 0 , x E 8D.: 

T 

P (x) = p[I - M (x )] (7.] 2) 

with [m(x ) · v (x )j2 = 1, x E 8D.. 

Hoger [281 considered also bodies with crystal syrnmct ries. like cubic, 

tetragonal, hexagonal, and rhombic . 

7.1.3. The vi r t u a l confi g uration. Prior to passing to constitutive mod­

cling of resid ually stressed clastic ma terials we will discuss the concept of 

virtual configurat ion introduced and developed by J ohnson and lloger [3 ]. 

According to the last paper, the derivation of the const it uti,·c equation in 

the consid ered case is based on the idea t hat for each infinitesimal neighbor­

hoocl in the rcsiclually stressed b ody there exists a corresponding stress free 

configu ratio n. l n the general case the st ress free configuration is a t tained in 

the limit as the volume of the neighborhood tends to zero, so this stress free 

configuration can be thought of as a point. This stress free configuration can 

be used to derive the constitutive equation for the corresponding p oint in 

the resid ua lly stressed body. The stress free configu ration of a part of a body 
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is referred to as t he ··virtual configurat ion" of that part. \ Ve note that the 

virtual configuration provides only a physical interpretation of the mathe­

matics employed in the derivation. Thus the adjectiYc '·virtual"' emphasizes 

that this configuratiou is a conceptualization. The geometry of the ,·irtual 

configuration need not be clet.c'rmined explicitly, and the virtual configuration 

need not lJe attainalJlc experimentally. To be consistent with standard termi­

nology. we will refer to materia l that supports no stress as natural material; 

thus, a ,·irtual coufiguration is composed of natural material. 

The use of a virtual configuration for the derinltion of the constitu­

tive equation does not imply that the residual stres:, is actually a result of 

a prior clastic deformation. Consequently, this method cannot be thought of 

as a superposition of two (possibly fini te) deformations, where the rcsidually 

stressed lJody is just an intermediate configuration in the deformation. This 

is made especially dear by the fact that the (mathematical ly) constructed 

virtual configuration does not physically exist for most res id ually stressed 

elastic bodies, cf. Hogcr [29J. 
r r 

Let part RE of t he residunlly stressed body, in the configurat ion S2, be a 

spherical neighborhood which is cC'nterecl at x and has radius E. The bound-
r 

ary of the part, DRE . has outward unit normal ~ for en.'ry n1lue of E. The 

tractions J;.[L is imposed on the boundary iJRr:: by the rest of the lJody. If 
T 

t hese tractions could be rrmovcd, the part R e: would dd.orm into the con-
r T 

figurat ion RE. This clcfornw t iou is denoted by y E -l. and. for each c: . y E 1 is 

defined so that the image of the point xis always the point~= yE- 1(x): 
v-means ",·irlual". Obviously. in the limit. Hs c: approachrs zero. the rc>gion 

RE degenerates to a point. at ~ . ThC' configmat ion Re: supports the residual 

stress field ~~, which in g0ncrnl is not Zt' ro . .Johnson and J logt'r I38J pro\'ccl 

Lhat li me:-o ;;.~ = 0. so tlw material at the point ~ is a stress free configu-
r 

ration of x E n in the limit as c: appro<whes zero. J n essence, the proof is ,. 
based 0 11 Signorini 's mean stress theorem. i.e. the ,·olume a\'erage a<u(RE) 
of;;.~ is calculated first.. Exploiting next simple properties of t he mean v;:due 

;;.~1 (Re: ) a n cl performing some est imations, under physically plausible regu­

lar it) assumption!>, we arrive at the clesirecl result. 

As we alrl'acly know Johnson and Hoger I38J refer to the stress free con-
r 

figuration of a part of 0 (th0 n'sidually stressed configuration ) as the Yirtual 
r 

configuration, Rv say. Let the \'irlual configuration of 0 be denoted by Bu, 
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and define it as the closure of the union of the virtual configuration Rv,: 

}{ 

Bv = URv .. 
i=l 

Obviously, J( is finite for rcsidually stressed bodies in special cases only, 

and infinite for the typical residually stressed body. When J( is infinite the 

virtual configuration Rv has no volume and therefore cannot exist physically. 

HowcYcr, such a virtual configuration can be approximated experimentally, 

cf J ohnson and IIogcr [38]. 

Consider a deformation y defined on the res id ually stressed configura­

tion . When c: > 0, the deformation Ye:, which maps Re: into the deformed 

configuration is the composition of y and y c: for all point in Re: 

* r 
Yc:= y o y c:, 

so 
n* ~nr 
vyc: = Vyvyc: (7.13) 

in Re:. For the sake of simplicity the arguments of functions appearing in 

(7. 13) have been omitted. The limits of \lye: and \lye:, are well defined as c: 
approaches zero, cf. Johnson and Hoger [38]. 

So, with the definitions: 

r r v 
F = lim Vyc:(x), 

c:~o 
(7.14) 

(7.15) 

and 
* 7' 

F = FF. (7.16) 

Since the clastic material at~ is stress free , the applicable constitutive equa­

tion for the deformations Ye: and Ye:, in the limit as c: tends to zero, is the 

constitutive equation of the natural material: a = g (F ). We observe that the 
1' * 

tensors F and F have clear physical meanings as the deformation gradients 

(relative to the virtual, or natural, configuration) that produce the residual 
7' r * 

stress a at the point X: in 12, and the stress a at the point y = y(x) in llt, 
respectively. Thus we have 

7' r 
a= g (F ) (7.17) 
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and 
* 

O" = g (F ) (7.18) 

;,Jore precisely, the function g depends explicitly on the position in the body. 

7 .2. D erivatio n of t h e Consti t u t ive Relation ships 

Following I loger [29J a nd Johnson and Hogcr [38J we shall brieOy describe 

the cl cri vat ion of consti tu tiYe equatio ns for rcsicl nall.v stressed materia I. 

7.2.1. General approach. From our previous discussion it follows that 

the Cauchy stress O" in the deformed configuration is giveu by a response 
r 

function, g say, of the deformation gradient F (x ) . x E D, and the residual 
r 

stress O": 

(7.1 9) 

\\'e observe that it is not as!:>ttinccl that the process that originally produced 

the residual stress was clastic. 

The form (7.19) of the constitutive equation requires the inversion of the 

consti tu t i \'e re la tiouship rei at i ng ;;. \\·it h a 11 appropria tc strain measure. Two 

specific cases will nO\\' be considered. 

7.2 .2 . Isotropic natu ral materia l. ~uppose that the residual stress is 

known, ancl the underlying natural material is isotropic. Jt does not illlply, ,. 
however. that tlw residual stresses in the configmation D arc isotropic. 

From Section 10.2 \H' know that for an isotropic material \\·c haw 

O" = g(F) = g(V). (7.20) 

In terms of D = FFT = V 2 . we get 

O" = g(B). (7.21) 

,. 
The polar ckcompositiou of F yields 

r ,. r 

F = VR 

Thus (7.20) and (7.21) give 

r r 
!;. = g (F ) = g(B ). (7.22) 



http://rcin.org.pl

R ES IDU\ L STRESSES Al\D STRA I!\S AND RE~IODELLI :\G OF' TISSUES 365 

* 
On account of (7 .1 G) the gradient F from the virtual configmation to the 

deformed configuration of the body may b e written as 

* T T 1' 

F = FF = RUVR. (7.23) 

Heuce 
* * * r"' r , 
B = FF 1 = FBFr. (7.24) 

Recall t hat the principle of material frame indifference requires that the 

response funct ion satisfies the condition: 

g(F ) = Rg(U )R T. (7.25) 

The response function can equally be wri t ten in terms of C as follows 

g(C) = g ( vfc) = g(U ). (7.26) 

From (7.21 ), (7.24)-(7.2G) we geL 

* T 1' 

a= g (B ) = g (FBFT) = Rg(UBU)R T. (7.27) 

T 

Hoger 129] assu mes that g is locally invert ible. Then , on a neighborhood of B, 
there is an isotropic funct ion h = g;- 1 such t hat at each point of the body 

(7.22) can be inverted as 
T T 
B = h(a ) . (7.28) 

Finally, from t he last relat ion and (7.27), the Cauchy stress at y = y (x , t) E 

Dt can be wri t ten as 

(7 .29) 

Since U = R - 1F , the constitutive equation for the residually stressed body. 

isot ropic in the natural (vir tual) configuration is thus of the form (7.19). 

Jf g is not locally invertible, then t he Cauchy stress a in the deformed 
T 

configuration Dt is a function of U and B , like in (7.27) or a function of other 

s tra in measures. 

Remark 

(i) The natura l :\Iooney-Rivlin (incompressible) material is described by 

the following constit utive relationship: 
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where c1 and q arc material coefficients. It is known that the constitu­

tive relationship for a :\looney-Rivlin material is invertible. see Johnson 

and Hoger j38J for details. 

The Cauchy stress tensor u iu the deformed configuration D.t is now 

given by 

(7 .30) 

To obtain the constituti\·e equaliou (7.30) iu the form (7.19) one has 

to perform the inversion of: 

(7 .3] ) 

This was done by Johnson and Hogcr [38]. 

(ii ) Hoger [29] considered also lhe case where the underlying natural mate­

rial is transversely isotropic. The calculation is still algebraic, though 

lengthy. 

(iii) The method presented by Hoger j29J for transverse isotropy can be 

geueralizcd for any material symmetry with known basic invariants. 

For more details the reader is referred to the paper by Hoger [29]. 

8. Conclusion 

The residual stress 1s present 1n a large range of biological tissues m 

physiological cond itions. Jt usually builds up during the process of growth 

of tissue or i Ls adapt at ion to changing environment . AI though researchers 

were aware of these processes for a long time, the experimental evidence 

of the existence of the residual stress has been brought to light relatively 

recently. These findings led to a number of mathematical models aiming at 

calculation of the residual stress iu a giYen (physiological or pathological) 

conditions, which arc described in the present· paper. 

The knowledge of the residual stress in the living tissue is no less impor­

tant than in case of cuginccring materials because the state of this residual 

stress influences the biological mechanisms of remodelling and adaptation of 

the tissue. In that respect, the mechanical problem of finding the residual 

stress field and the biological problem of tissue remodelling are inseparable. 
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A. Kinem a tics 

Let x and y , respectively. denote the position vector of a material point 

in some reference configuration, denoted D, and the (deformed) current con­

figuration denoLcd by D1, which may vary with timet. The motion (or time­

dependent deformation) from D to D1 is known when y is specified as a func­

t ion of x and t. Then we write 

y = y(x, t) (A.1) 

where y is t he function describing the motion. For each t, y is inYertible and 

satisfi es appropriate rcgulari ty concli tions. 

The deformation grad ient tensor, denoted F (x. t ), is given by 

F = Y'xy(x, t) (A.2) 

and has Cartesian coordinates Fij = oyifoxj, \\·here Yi and Xj are Lhe compo­

nents of y and x. respectively, i, j = 1, 2, 3. Local invertibility of deform a Lion 

requires that F be non-singular and the usual couvcution that 

J :=deL F > 0 (A.3) 

is adopted , wherein J is defined. 

The inverse of y(x, t), t-fixed, is 

x = sr-l(y, t) (AA) 

where X E D. 
A motion is said to be rigid if t he distance beween a D.)' two particles of n 

does not change during the motion. T he rigid motion is defined by 

y := y(x, t) = Q(t)x + c(t) (A.5) 
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where Q (t) is a proper orthogona l second-order tensor and c(t) is a transla­

tion vector. 

J n the case of n the position vector x a nd time t serve as independent 

variables, and the fields arc then said to be defined in terms of the referential, 

material or Lagrangian description. Similarly, in the case of n1, y and t a re 

used and the description is saicl to be spatial or Euleria n. 

The vcloci t.y v and acceleration a of a material particle arc given, respec­

tively, by 
()2y 

a= J=)T(x, t) 
ut-

these being the fi rst and second material time derivatives of y. 

(A.G ) 

We already know that deL F =I 0, cf. (A.3). Hence F ha' an inverse F - 1 , 

gi\·en by 

\\'i t h com ponenLs 
ux· (F_, )u = D I . 

YJ 

Jndecd. a straightforward calculation y ields 

\\'e haYe 

i '('.I 

dy = Fdx , 

\\'hich ha:.; inverse 

(A.7) 

(A.8) 

(A.9) 

(A.JO) 

Equation (A.9) describes how small line elements dx of material at x 

t ransform under the deformation inlo dy (which consists of lhc same material 

as dx) at x. I t shows that line elements transform linearly since F depends 

on x. and not on dx . Thus, at each x, F is a lmear mappmg (i.e. a second­

order tensor). 

\\'e justify taking F to be non-singular (deL F =I 0) by noting Lhat Fdx =I 
0, i.e. a line clement cannot be annihilated by t he deformation process. 
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Let 9 be a scala r field defined on 0 1• i.e . cp(y. t). Since y 

may write 

dJ(y , t ) = cp[y (x. t ). t] = <D (x. t ) 

which defi nes the notation <D. 

y (x. t) we 

(A.JJ ) 

The mateTial deTivative of cp is the rate of cha nge of cp a t fixed material 

point P. i.e. at fixed x. Usually, the nwterial derivative is written D <J;/ Dl. 
P erformi ng s imple calculation and using (A.G)1 . (A. ll ) we geL 

Do Do 
- = - + V · '\7 0 . Dt fJt y 

(A.J 2) 

Sometimes the notation ~ is used instead of Dcpj Dt. 
Similarly, in the spatial description the acceleration a is given by 

Dv Dv 
a = Dt = Dt +(v·'Vy )v. (A.13) 

Let <j;, u , T respectively be scalar, vector. ;mcl seco nd-order tensor fields 

associated with a moving body. The following useful formula hold: 

'Vx u = ('Vyu)F. 
(A.J 1) 

divx T = J divy(J - 1 FT). 

\ Ve recall LhaL J = deL F. 

Let us pass now to the deformation of Hrea and ,·olumc clclllcnls. First, 

consider a surfaceS in D which deforms into the surface 51 in 0 1. Let x E S 
and let y be the corresponding point on 51. 13y dx 1 and dx ·2 we denote line 

elements of ma terial on S based at x \Yi t h images dy 1 an cl dy1 on St \lncl er 

the deformation. 0 bviously, the line elen1enl s m e tangential to the surface. 

The trnnsfonna t ion of l he surface elcnwnt is given by the follo\\·ing eq ua­

tion (Nanson's formula) 

ndAt = J F '~'md.tl (A.l5) 

where n denotes versor normal to the surface element dJ11 (deformed con­

figuration) and m denotes versor normal to smface clement dA (reference 

configuration). 

The t ransformation law for the volume elements is simply 

d\11 = J d\f. (A.J 6) 
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Hence we conclude that J is a measure of the change in volume under the 

deformation. The deformation is said to be isochoric if there is no change in 

volume. i.e. 

J = clet F = l. (A.l7) 

A material for which (A. l7) holds for all deformations is called an incom­

wessible material. 

Let F be the deform ation gradient, det F > 0. There exist unique, positive 

defini te. symmetric tensors, U and V , and a unique proper orthogonal tensor 

R such that 

F = RU = VR. (A.1 8) 

The la!::it relation is called the polar decomposition theorem. 

Since U is positive definite and symmetric there exist unique eigenvectors 
u (i) such LhaL 

where/\ > 0 arc the principal stretches of the deformation and u (i) arc the 

pr-incipal directions; obviously, Ai = >.( u (il) . Simple calculation shows that 

Ai > 0 and Ai arc also the eigenvalue!::i of V with eigenvcctors Ru(i) . 

~ow we proceed to introducing the notion of stTetch, ex:lension, shear 

and strain. LeL c and d be unit vectors a long dx and dy respectively, so that 

dx = c idxl, dy = d ldy l and (A.9) yields d ldyl = Fcldx l. Hence 

(A.20) 

The last relation gives 

ldyl CI' I 
- = IFcl = [c · (F Fc)]'i = >. (c ), 
ldx l 

(A.21) 

which defines >.(c), called the st1'etch in the diTection c at x. \Ye observe thaL 

0 <>.(c)< +oo for all uni t vectors c. 

Take now a pair of line elements clx 1, dx2 based at x so that 

Let 0 denote the angle between them and {) the corresponding angle a fter 

deformation. Then 
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T he change in angle e- {) (which may be positive or negative) is called the 

shear of the d irections c 1, c 2 in the plane of c 1 c 2. 

Furthermore, from (A.20) we get 

(A. 22) 

The material is said to be unstrained a t x if no line element changes length , 

I. e .. 

clx · (F TF - I )dx = 0 V dx , 

or , equivalent ly, 

,\(c)= 1 for all uni t vectors c. 

l t follows that F TF - I = 0 , the zero tensor . Then F is just a rotation R , 
s ince, for orthogonal R , we have R TR = I. 

Stmin is measured locally by changes in t he lengths of line elements, i.e., 

by t he value of (A.22). Thus, t he tensor F TF - I is a mcasur·e of s tr-ain. The 

so-called GTcen strain tensor E is defined by 

E = ~ (FTF - I) 2 . (A.23) 

Us ing the polar decomposition (A.l 8) for t he deformation gradient F , we 

may also fonn the following tensor measures of deformation: 

(A.24) 

'vVe refer to C and B as lhe Tight and left Cauchy- Green def orm ation tensoTs, 

rcspccLi\'c ly. Then E may be wri tten as follows: 

1 1 2 
E = - (C - I)= -(U - I ). 

2 2 
(A.25) 

The tensors U and V a rc called t he right a nd left slTetch lensors, re­

spect ively. \ \·e observe that t he deformation F rotates the principal axes of 

U inlo those of V as well as consists of s trcLching along those directi ons. 

The principal axes of U am! V a rc often referred to as t he Lagmngian and 

Eulerian principa l axes, respectively. 

In fact , one may define an infini te family of strain measures based on U . 

For instance, we defin e E (m) as follows: 

E (O) = ln U if m = 0, 

E (m) = ~ (U 111 
- I ) 

m. 
if m :f. 0, 

(A.26) 

(A. 27) 
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where m is a real number. not n<'cessarily an integer. These are Lagrangian 

tcnt:>ors, all coaxial with U , and having cigcnvalucs ln Ai for m = 0 and 

( .Ai1 
- 1) /m for rn -::/= 0. Corresponding Eulcrian tensors e (m) a re based on V 

and arc defined by 

e (O) = In V if m = 0, 

c (nl) = ~(vm- I ) if m-::/= 0. 
m 

(A.28) 

(A.29) 

We observe that, on recal ling the connection V = RURT, e(m) = n.E(m)R T 

for each m. Consequently, E (m) and e(m) have the same eigenvalues. 

The reader probably noticed that we use interchangeably the expressions 

·'s t rain tensor" and ·'strain measure", like many authors do. 

Let us recall that the displacement vector u of a particle is defined as 

follows: 

U = y - X. (A.30) 

Hence 

y =x+ u 

and 

F = "'VxY = I + Vx u . (A.31) 

I I ere \lx u is the displacement gradient. 

Analysis of motion 

Previously, the Ye!ocity has been introduced and denoted by v. The ve­

locity gradzent L is defined by 

(A.32) 

It can be verified that thr following iclenti ties hold 

F = LF. (A.33) 

· 8 . Dvi 
J = -;::)(det F ) = JtrL = JL 11 = Jdivyv = J-;::;-. 

ut uyt 
(A.3<1) 

Hence we conclude that di''yV measures the rate at which volume changes 

during the motion. Consider an isochoric motion : J = 1, J = 0; consequently 

divy v = 0. 
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Let us set 

L = D + W , (A.35) 

where 

(A .36) 

D is called the (Euler-ian) strain-rate tensor or rate of stretching tensor. 

Obviously, the motion is rigid if and only if D = 0 . 
\ Ve have 

D D . 
Dt (dy) = Dt (F dx) = F dx = LFdx = Ldy = (D + W )dy . 

Let now D = 0 , so t hat 

a ot dy = W dy = W X dy 

where w is t he axial vector of W , i.e., 

Wi = Eijk 1Vjk · 

Here (E1jk) is the permutat ion or orientat ion symbol. 

(A.37) 

Formula (A.37) shows that in this specific case (D = 0) the motion is 

locally a rigid rotation and W is a measure of the m ie of m tation (or spin) of 

line elements and it is called the body spin. The sum of D and W shows t hat 

t he motion consists of stretching and rotation (similar to the interpretat ion of 

U and R ). However , if D -:1 0 then it contributes a rotation to line elements 

and the interpretation of W requires modifica t ion , cf. Ogden [<!6]. 

B . B a la n ce Laws, Field Equat ions and Stress 

Let R t be an arbitra ry region in the current configuration D1. Under the 

assumpt ion of no mass t ransfer, as R t moves it always consists of the same 

material, so its mass does not change, i.e., 

d ; · dt p dvt = o. (B.l ) 

Rt 

The last equation presents one form of the conservation of mass equation. To 

derive the local equation, we use one of t ransport formu las. Let cjJ be a scalar 

field defined on rlt , and particulary on Rt . 'vVe have 

:t J cpd\'t= J(~+cp trL) dvt = J(~+cp cli vyv) d\'t. (B.2) 

R t Rt Rt 
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Applying (B.2) to (B. 1) and noting that R1 is arbitrary. we obtain 

p + pdivyv = 0. (B .3) 

This equation is known as the conl.inaity equation. Recalling that, see Eq. 

(A.l2), 
. Dp op 
p = Dt = ot + V. Vyp , 

Eq. (B.:3) is transformed into <tn c>q11ivalent form 

~ + divy(pv) = 0. (B...!) 

Recall , form (A.3.J), that j = J divyv. Substitution for divyv from (B.3) 

then gives pj + pJ = 0. Hence fJ(pJ) j fJt = 0. In the reference configura­

tion J = 1 so that pJ = p0 . \\·here p0 is the mass density in the reference 

configuration. Thus, 

(B .5) 

The concepts of force and torque describe the action of a moving body B 
on its surroundings and the mutual actions of the parts of B on each other. 

With R 1 C Dt we associate two vectors, F (R1) and G (Rt; 0), called the force 

and torque with respect to origin 0 on the material in Rt. In general two 

types of force and torque rmist be accounted for. These arc body forces and 

body torques. which act on the particles of a body (arising from graYity or 

magnetic fields. for example), and contact forces and contact torques resulting 

from the act ion of one part of the body on another acros · a separating surface 

(for example, pressure, friction or adhesion). 

Tll<' body force and to rque, measured per unit mass, arc denoted b and c , 

respectively. Their contributions to F (Rt) and G (R ; 0) arc 

J pb d1ft, j [y x (pb ) +pc] dVt , 
Rr l?t 

respccli\'cly. where y is the position vector of the point at which b acts. 

A mathematical description of conl<tct forces (but not torques) relics on 

Cauchy ·s stress principle, which is regarded as an axiom. This states that 

the artion of the matenal ocrupying that part of 0 1 exterior to 

a rlosed surface 51 on the material orwpying the interior part is 

n'prcsented by a vector field, denoted t (n , y ), defined on 5 1 and 

with physical dimensions of f01·ce per unit area. 
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\ \ 'e re' fe r to t as the Cauchy sh·css vector. 

For non polar materials the total force and total torque (sometimes re­

ferred to as couple) about 0 acting, on R1 are given by 

R (Rt) = J pb d\'t + J t dA1, (13.6) 

1-11 Dli1 

G (R ( 0) = J p(y x b + c) dVt + J y x t (lA 1. (B. 7) 

R, 8Rt 

The linear momentum of the material occupying R1 c 0 1 is dcfinccl as 

M (Rt) = J pv dV/ . (B.8) 

F!, 

\Yith respect to an ongm 0, the nngular momentum of the material 

occupying R1 is defined as 

H (Rt; 0) = / y x (pv ) dV[ . 

Rt 

B .l. Etller's Laws of Rota tion 

Eulcr's laws of motion arc defined by 

dM = F 
dt , 

dii = G . 
dl 

(13.9) 

(B.lO) 

They parallel ::\ewton 's laws fo r partic:les and rigid bodies. There is, how­

ever, a difference. In classic a I mcchan ics ( 8. J 0 ):2 is a conseq uencc of (B. J 0) 1 , 

whereas in continuum mechanics t his is not l he case and lhc l wo equal ions 

in (B.J 0) arc independent. 

To write (B.lO) in an explicit numncr one needs t he following transport 

formula 

~~ / u dVt = j ru + ( trL)u] dVt (B.ll) 

Rt U, 

which holds for any vector field u . 

Setting c = 0 and applying (B.JJ) to (B.l0) 1 \\'ith u = pv and taking 

into account (B.3) \\'e obtain 

/ p(a- b) dVt = J t dA1, (B.J 2) 

F/1 8R1 
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where a = v denotes the acceleration. 

Similarly from (B. 1 0)2 we get 

/ py X (a - b) d1ft_ = / y X t dAt . (B.l3) 

Rt 8Rt 

Note that v x v = 0. 

B.2. Cauchy Stress Tensor 

Let (t , b) be a system of surface (contact) and body forces for l3 during 

a motion. A necessm·y and sufficient condition fo r the momentum balance 

equations (B.12) and (B.l3) to be satisfied is that there exists a second order 
tensor er = ( O" ij), called the Cauchy stress tensor, such that 

(a) for each unit vector n , 

t (n , x ) = cr (y )n (y ), (B.l4) 

where a- is independent of n , 

(b) the tensor er is symmetric, i.e., 

(B.l5) 

(c) er satisfies the equation of motion 

pa = divyo- + pb . (B.l6) 

B.3. Energy Balance Equation 

This equation has the following form 

(B.l7) 

Here Pe(Rt) denotes the rate of working, or power, of the forces acting on Rt 
defined by 

Pe(Rt) = J pb ·V d1ft + J t · v dAt· (B.l8) 

Rt BRt 
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The kine tic energy K (R 1) oft he material occupying R 1 is defin ed as fol-

lows 
1 ; · K (R t) = 2 pv · v dVt (B.J 9) 

R t 

and 

P;n(Rt) = J tr(aD) dVt. (B .20) 

Rt 

From (B.l7) we conclude tha t the power of forces act ing on R t is con­

verted into kinetic energy and Pm(R t) · T he lat ter rnay consist of stored (or 

potential) energy or be a measure of the amount of work dissipated in the 

fo rm of heat or be a mixture of the two. 

C . Conjugate Pairs of Stress and Stra in Ten sors 

Using 1 a nson 's formul a (A.J5) the t raction on an area element n dAt in 

the current configuration can be wri tten as follows 

(c. J) 

wherein the first (unsymmetric) Piola-K iTdwff stress tensor is defined by 

(C.2) 

The fi rst P iola-Kirchoff st ress tensor measures the force per unit reference 

area while a measures the force per unit deformed aTea. 

The symmetry of a gives 

The equaton of motion (B.JG) can be writ ten in lerms of P 

divxP + p0b = p0v. 

(C.3) 

(CA) 

Alterna tively, the identity divy(J- 1F ) = 0 , obtained from (A.J 4)4 by 

setting T = I , can be used to give 

In the reference configurat ion the integral for P in becomes 

j J tr(aD) dV. 

R 

(C.5) 
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The last integrand presents the rate of wor-king of the str-esses per unit refer­

ence volume, i. e., the st ress power density. Using the symmetry of a together 

with (A.32), (A.33) and (C.2) we obtain 

J t r (aD) = J t r(aL) = tr(FPTL) = tr(P TLF) = t r(P TF ) = t r (SF). 

(C.6) 
Hence we conclude that the stress power is also given by t r( S F ). We say 

that S and F consistute a pair of conjugate strc.c;s and deformation tensors. 

Furthermore, by set ting E = E (2) we wri te 

Hence, by using (A.33) we get 

:E<2) = ~(FTF + F TF ) = F TDF. 
2 

The stress power is wri tten as 

(C.7) 

t r(P TF ) = tr(SF) = tr (SF-TF TF ) = tr(SF-TE (2)) = t r(T (2) :8(2)) 

(C.8) 

where 

(C.9) 

is lhc second (symmetric) Piola-Kirchoff stress tensor, i. e. S = ST T he first 

and second Piola- I<irchoff stress tensors arc related by 

P = FS. (C.lO) 

The stress and strain pair (T (2), E (2)) or (S, E ) is a pa ir of conj ugate 

stress and strain tensors. 

by 

The KirchofJ stress tensor-, being the "weighted" Cauchy stress, is denoted 

r = J a . (C.ll) 

We already know t hat F'~'F = U 2 , cf. (A. 2<-J) 1 . I I cnce we also have 

:E<2) = ~(UU + UU). 
2 

Using t he symmetry of T (2) and of U we obtain 
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T hus we may int roduce the definition of the Biot stress tensor T (l ), conjugate 

to the strain tensor 

E (l ) ::::::: U - I , (C. l 2) 

as 

(C.l3) 

Indeed , _E ( l ) = U and consequently t he st ress and strain pair (T (l ), E (1) ) 

coHstit utc a pai r of conj ugate st ress and st rain tensors. 

By using the polar decomposition (A.l8), the Biot stress tensor takes the 

fo rm 

(C. l 4) 

Summarizing, we have the connections 

(C.l5) 

loreovcr, S = p T, T (2) = S , and P and S denote the fi rst and secoud 

Piola- J{irchoff stress tensor , respectively. The strain measure E (2) is usually 

deHotcd by E . 

f\ lore generally, the symmetric stress tensor T (m) conjugate to the strain 

tensor E (m) ::::::: ( U (m) - I)/m may be defined via the identity 

(C.l6) 

The limit case m. ---+ 0 is much more complex and we will not discuss it 

here. 

D . Genera l C onsti t u t ive R elationships for E lastic Materia ls 

This section presents an introduction to consti tutive mocleling of nonli­

near clast ic ma teri als. We shall discuss isotropic, transversally isotropic and 

orthotropic ma terials. Inelastic materials will not be discussed , though con­

tact problems wi th friction for fini tely deformed plas tic materia ls a re of great 

practical interest. 

Revival of interest in nonlinear elasticity is due to the development of 

rubber-like ma terials (sec Dorfmann and t\luhr, [15]) and constit ut ive mod­

cling of soft tissues, cf. Jiolzapfcl and Ogdcn [46], Jemio!o and Telega [36J . 
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D.l. G eneral R ela tions 

Let us first introduce the notion of Cauchy elasticity. A material is said to 

be elastic in the sense of Ca.uchy if it is described by the constitutive equation 

in the form, cf. Cia.rlet [ll J, Ogden [45, 46], 

cr = g (F ) . (D.l ) 

Here g is a. symmetric tensor valued function, defined on the space of defor­

mation gradients F . We recall that cr = crT. Equation (D.l ) states that the 

stress in n at a point x depends only on the deformation grad ient at x and 

not on the history of deformation. In particular, it is independent of the path 

of deformation taken to reach the point F. The function g is referred to as 

the Cauchy str·ess response function. 

T he elastic material is called homogeneous if g does not depend explicit ly 

on X E n. If it does, the material is inhomogeneous. For instance, g may 

depend on x if 

(D.2) 

As previously, p0 denotes t he mass density in the reference configuration . 

Soft tissues as well as bone t issue are inhomogeneous biological materi al. 

When the stress is removed the deformation vanishes, so that 

g (I ) = 0. (D.3) 

It means that the underformed configurat ion is fr·ee of stress. 

Condit ion (D.3) is not satisfied in the presence of residual stresses, like 

in soft t issues . 

Suppose now that a rigid-body motion 

y = Q (t)y + c(t) (D.4) 

is superimposed on the motion y = y (x , t ). Then the deformation gradient, 

F say, is given 

F = QF. (D .5) 

Indeed , since 

we obta in 



http://rcin.org.pl

388 J J. TELEGA and M. STANCZYK 

and thus 

For an elas t ic material with response function g , the stress tensor , er say, 

associated with the deformation grad ient F is 

Under the rotation Q the un it normal to 8Rt becomes n = Q11 a nd the 

t raction vector t becomes t = Qt. Since t = a-11, t = ern we obtain 

Qa-11 = crQ11. 

This holds for arbitrary 11 and hence 

The response function g must therefore satisfy the invariance requirement 

g(F) = g (QF) = Qg(F)QT (D.6) 

for each F a nd all rotations Q The last relation expresses the fact the 

const itu t ive equation (D 1) (and similarly (D.2)) is objective. For a deeper 

discussion , the reader is referred to Ciarlet [11], Ogdcn [45], [46, p. -!7]. 

Let cp, u .. T be scalar , vector and second-order tensor fi elds defined on Dt , 
i.e. they arc Eulcrian in character. Let J;, u, T be the corre!:>ponding fields on 

Dt, where D1 i!:i obtained from Dt by the rigid-body motion (D.4) . The fields 

arc said to be objective if, for all such motions, 

u= Qu, (D.7) 

It eau ea ·ily be verified that if cp is an objective scalar field then Vy c/J is 

an objectiYe vector field , i.e. 

We note t hat neither the velocity nor acceleration arc objective vectors. 
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D.2. Materia l Symmetry 

Let 9 be a subgroup of the full orthogonal group 0(3). 9 is called the 

symmetry gr-otlp of the material relative to n if 

g (FQ) = g(F ) (D.8) 

for all Q E 9. In the part icular case, if 9 is the proper orthogonal group then 

the material is said to be isotropic relative to n , and (D.8) holds for all proper 

orthogonal Q (for every deformation gradient F ) . P hysically, this means that 

t he response of a "small" specimen of material cut from n is independent of 

its orientation in n. 
To find the general form of isotropic constitut ive equation for a nonli­

near isotropic material one may use t he theo ry of representation of isotropic 

second-order symmetric t ensor functions, cf. Jemiolo and Telega [35], Zheng 

[81 [. 

Let us apply this theory to isotropic elastic materials. From (D.8) we have 

o- = g(F ) = g (FQ) (D.9) 

for all proper orthogonal Q and each deformation gradient F. 

The choice Q = RT and use of the polar decomposition F = VR in (D.9) 

yield 

o- = g(V ). 

We have 

Qg(V )QT = Qg(F )QT = g(QF). 

Replacing F by QF and Q by n _T Q T and knowing that. F = VR we get 

(D.lO) 

for all proper orthogonal Q. However, since Q occurs twice on each side of 

(D.lO), allowing Q to be improper orthogonal does not affect (D.lO), which 

then states that g (V ) is an isotropic, second-order tensoT function of V , cf . 
.Jcmiolo and Telega [35], Zheng [81 [. 

Note that for an isotropic elastic material, a- = g(V ) is coaxial with V , 
i.e. with the Eu lerian principal axes. According to the representation theory 

of isotropic tensor functions we have, cf. Jemiolo and Telega [35], Zhang [ 1[ 

(D.ll ) 
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where c/Jo, cjJ1, c/J2 are scalar (invari ant) functions of V , i.e. functions 0: 

h = .\1 + .\2 + .\3 = trV , 

h = AIA2AJ . 

We may also write 
3 

a = L aiv(i) ® v (i)' 

i=l 

where 

i= 1, 2, 3. 

D .3. Hyperelastic Materials 

The energy bala nce equation can be written in the form 

J pb · v dvt + J t ·V dAt = :t J ~pv ·V dvt + J tr (aD)dvt. (0.12) 

Rt 8 Rt Rt Rt 

If there is no dissipa tion then the work done by the body and surface forces is 

converted into kinetic energy and stored elastic energy. Thus a natural need 

for an interpretation of the second term on the right-hand side of (0 .12) 
a rises. We have 

j tr(aD) dVt = j J tr(aD) dV. 

Rt R 

Recall that t r(aD) = t r(aL); then, the integrand J tr(aL) is interpreted as 

the rate of increase of elastic energy per unit volume in n. 
Thus it is natural to introduce the elastic stored energy TV(F ) per unit 

volume in n such t hat a ot W(F) = J tr(aL). (J.l3) 

We observe that W (F ) is a lso referred to as the strain energy or potc;ntial 

energy per unit volume in 0. Then, we get 

The integral 

J tr(aD) d\lt = J! W(F ) dV = :t J W(F ) dV. 

Rt R R 

J W(F) dV 

R 
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is the total elastic strain energy in the region R. T he right-hand side of (D. l2) 
can now be writ ten as follows 

d (k' . . ) - met1c energy + stram energy . 
dt 

Since F = LF and W depends only on F (and on x for inhomogeneous 

materials), we have 

a _ aw aFij _ ·(aw. T) _ aw _ [ (aw )T ] at W(F)- aFij at- t r aF F - aFij LikFkj- tr F aF L . 

Comparison of this with (D. l3) yields 

(D.l 4) 

Recalling that a = g(F ) we get 

(D.lS) 

Taking into accou nt the relation (C.2) between the Cauchy st ress a and the 

first Piola-Kirchhoff stress P we readily obtain 

P = aw_ 
aF (D.l6) 

An elastic material which possesses a stored energy function W is said to 

be hyperelastic or Green elastic material. 

Note that the stra in-energy function W may be isotropic or anisot ropic, 

depending on material. 

D.4. Objectivity of W 

The stored energy function W is a scalar function. In this case objectivity 

requires that it is unaffected by a superimposed r igid-body rotation after 

deformation , i.e., 

W (QF) = W(F ) (D.l7) 

for all rotations Q for each deformation gradient F . In other words, W is 

indifferent to observer transformation . 
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