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The aim of these notes is to synthesize the available results on experimental data
and mathematical modelling of residual stresses and strains in bone and soft
tissues. Their role in bone and soft tissue remodelling is carefully discussed.

1. Introduction

During lifetime both bone and soft tissue undergo permanent changes
dependent on many mechanical and biological factors like aging, nutrition,
drugs. As a rule tissues are anisotropic and inhomogeneous. After a thought
one intuitively feels that residual stresses should be present in bones and soft
tissues. Surprisingly, their existence was shown relatively late, if one thinks of
already long history of biomechanics of bone and soft tissues. We recall that
residual stresses are the stresses which remain in material after unloading
(no-load condition). We will use equivalently the notion “residual stress” or
“initial stress”.

It seems that the first who showed existence of residual stress in bone were
Ascenzi and Benvenuti [2|. These authors provided evidence that isolated
osteonic lamellae are in a state of initial stress, cf. Section 2 of our paper.
However, no estimation of magnitude of the stress was given. Such an attempt
was undertaken in 1999 by Ascenzi [4].

From the historical perspective one should also mention the papers by
Gebhardt [22] and Caglioti [7]. According to the first author the parallel but
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opposite orientation of positive monoaxial birefringence of the collagenous
fibres and the negative monoaxial birefringence of the calcified interfibrillar
cementing substance should be attributed to a state of tension between these
two components of the calcified bone, cf. Ascenzi and Benvenuti [2].

In his investigation on X-ray diffraction of bone, Caglioti |7] claimed that,
in bone collagen, amino acids are kept under tension and held up by the apa-
tite crystallites which are elongated and arranged parallel to the collagenous
fibres.

In 1994, Tanka and Adachi [69] proposed a simple one-dimensional model
for mechanical bone remodelling incorporating residual stress. These authors
speculate about the existence of residual stress in bone by analogy with earlier
discovered residual stress in soft tissue. Next, residual stress was examined for
the leporine tibiofibula bone [70] and the bovine coccygeal vertebra [1, 70).

Residual stress in soft tissues was discovered several years later. According
to Fung [18] residual stress in soft tissues were discovered independently by
Vaishnav and Vossoughi in 1983 [76], and his former student P. Pattituci [52],
who discovered such stress in left ventricle of a rabbit in 1982. The former
authors investigated an aortic segment.

Currently attempts are made to incorporate residual stress into soft tissue
remodelling.

The aim of this lecture is to synthesize and present current views on the
role of residual stress in bone and soft tissues. Available models of remod-
elling taking into account residual stress are also presented. Particularly, the
hypothesis of uniform strain distribution, due to Takamizawa and Hayashi
[65, 66, 67|, is critically assessed.

Part I. Hard tissues

2. Residual Stress in Osteonic Lamellae

Ascenzi and Benevenuti |2] obtained osteons from femoral shafts of human
subjects aged between 19 and 31, showing no apparent skeletal defects. In
turn, Ascenzi [4| obtained osteons also from the femoral shaft (human corpse,
aged 35 yrs.; transverse cut: 100 um apart). Two series of cross-sections, the
first 30 and the second 100 pm thick, were prepared by grinding. The method-
ology of selection and dissection of osteon samples and their mechanical test-
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ing was elaborated earlier by Ascenzi and his coworkers, cf. the relevant
references in [2, 3, 12].

Let us now briefly describe the dissection and isolation of osteonic lamel-
lae, cf. [2]. Each osteon sample was subjected to direct compression perpen-
dicular to its axis and the points on its circumference, where pressure was
applied were continually changed by rotation. This was done by using a glass
slide on which 18 x 18 mm coverslip was firmly fixed with Canadian balsam.
On one edge the coverslip, which was 160 pan thick, functioned as stopper
during the loading. Each cylindrical osteon sample was put on the slide with
its surface touching the edge of the coverslip tangentially. The osteon sam-
ples were placed in position and turned by hand, and pressure was applied by
pressing a very small spatule against the side of the osteon opposite the cov-
erslip, ¢f. Fig. 1. The whole process was observed under a light microscope,
cf. Fig. 2.

When an osteon sample with fibre bundles in one lamella making an angle
of nearly 90° with the fibre bundles in the next, is loaded perpendicular to
its axis, and the direction of loading is then changed continually by rotation,
arc-shaped, concentrically distributed cracks appear. They grow longer, join
up and eventually become circular. The polarizing microscope reveals that
the cracks involve dark lamellae, i.e. lamellae whose fibres have a marked
longitudinal spiral course, while bright lamellae, i.e. lamellae whose fibres
have an almost transverse spiral course, remain unaffected. Obviously, special
care is to be taken to apply low or fairly low pressure-loads. With higher loads
lamellae, whose fibres have almost transverse course are severely damaged
too, and radical and transverse cracks appear in them.

SLIDE OSTE
Ficure 1. Two projection diagram showing technique to compress an alternate

osteon sample perpendicular to its axis. Slide, coverslip, osteon, and spatule are
clearly seen, after [4].
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Ficure 2. Alternate osteon containing lamellar sample: (top) view from external
lateral surface (x280) showing outer height I of the lamella checking equal
to osteon height; (bottom) sectional view (x280) showing mean diameter and
thickness T}, of the lamella. Dimensions are measured by Delta Sistemi [AS 2000

image analysis system, after [4].

In alternately structured osteon samples, the circular cracks produced in
lamellae with fibres having a marked longitudinal spiral course are actually
deep fractures which extend to the full depth of each lamella. This allows
one to isolate individual unaffected lamellae, whose fibres and crystallites
have an almost transverse spiral course, using a steel needle for microscopic
dissection. Dissected osteonic lamellae were next examined after immersion
in a saline solution, thus resembling physiologic state. To avoid extraction
artifacts, the examination of the lamellae in saline solution was reduced to
a minimum. Figure 3 shows the shape of osteon lamellae, prepared by the
dissection method outlined above, and possessing transversally oriented fibre
bundles and crystallites.

The experimental data due to Ascenzi and Benvenuti [2] clearly show
that the behaviour of isolated osteon lamellae, when they are set free in
saline solution, strongly depends on their heights and diameters. For instance,
lamellar samples whose height is only ca. 30 jum, especially those with large
diameters, show a strong tendency to twist and become strangely deformed
when set free in saline solution, see Fig. 3.

Unfortunately, neither Ascenzi and Benvenuti 2| nor Ascenzi [4] inves-
tigated the influence of saline concentration on the behaviour of osteonic

lamellae.
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Figure 3. (a) Side-view of an isolated osteonic lamellar sample, ca. 100 um
high. (b) The same sample as in (a) seen under polarizing microscope. (¢) Isolated
osteonic lamellar sample ca. 30 gm high. (d) and (e) two osteonic lamellar samples
ca. 30 um high showing clear deformations as if induced by internal stress. All
the samples are fully calcified. Magnifications (a)-(c) x320, (d) x750, after [2].

Figure 4 presents a broad spectrum of osteonic lamellar samples set free
in saline solution and then sectioned along a line perpendicular to its circular
ends. Ascenzi and Benvenuti investigated also lamellae obtained from osteons
at the initial stage of calcification. These authors claim that both types of
lamellar samples, those ca. 30 um and those ca. 100 um high, are deformed
in a manner similar to that of fully calcified lamellae. In our opinion such
a statement is not fully justified and further investigations are needed.

Ascenzi and Benvenuti 2] investigated also decalcified lamellae. They
found that such lamellae, additionally to those at the initial stage of calcifi-
cation, offer evidence that the hydroxyapatite is not essential to the spiral de-
formation of opened lamellar samples. This is clearly depicted in Fig. 4(h-m).
The lamellae shown in Fig. 4(h) and Fig. 4(i) were obtained by decalcification

of the fully calcified lamellae seen in Fig. 4(a) and (b).
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Fi1Gure 4. (a)-(d) Fully calcified osteonic lamellar samples after cutting. (e)—(g)
Osteonic lamellar samples cut at initial stage of calcification; (h)-(m) Osteonic
lamellar samples after decalcification and cutting; samples (h) and (i) are the
same as (a) and (b); Magnification: (a)-(m) x200, after [2].

Ascenzi estimated residual stresses in osteonic lamellae of height 100 pm,
that were cylindrical before cutting and helicoidal after cutting, cf. Fig. 3(a)
and Fig. 4(b) [4]. We observe that deformation from the cylindrical to heli-
coidal cut lamella is geometrically nonlinear. Reported residual stress ranges
up to 0.11 GPa. Unfortunately no details of calculation leading to estimation

of residual stresses have been given.

3. Mechanical Remodelling of Bone with Residual Stress

In 1989 Seguchi |56] proposed a model of mechanical remodelling of bone
with residual stress. This model is based on the uniform stress hypothesis.
The model was further developed and applied in [1, 69, 70, 71, 72, 73].

Seguchi’s idea is simple, cf. [69]. Consider two linear elastic bars with
elastic moduli E,, a = 1,2, which are interconnected in a statically indeter-

minate way, as shown in Fig. 5(a).
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Ficure 5. Statically indeterminate two-bar structure of a lumped parameter
system, after Tanaka and Adachi [69)].

Initially, these members have neither initial stress nor strains, and the
relationship between stress o, and strain €, of each bar given by

0a = Eaéa, @ =1,2 (no summation!). (3.1)

The deformation of both members constrains each other, so the strain e
in either bar is equal to

I el ] (3.2)
lo

Here I denotes the deformed length and [y is the natural length common
to both bars. When load P is applied to the structure, both bars deform
elastically to length [, resulting in strain £, and stress op,, as shown in
Fig. 5(b). Then the equilibrium equation takes obviously the following form:

op1Ay +oppd2 =P (3.3)
where A, denotes the cross-sectional area of the bar a.. The stress in each bar
may be different, and this difference drives remodelling. If the local equistress
condition (uniform stress hypothesis) is adopted as an expression of Fung's
optimal performance requirement [18], a remodelling is expected to take place
and decrease this stress difference until the relation

Ui’:l = U{')'z. (34)

becomes true under load P, cf. Fig. 5(c). This is accomplished through the
change of apparent stress-strain relation toward

0ale) = Ea(e =€), a=1,2, (nosummation!) (3.5)
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due to the change in the cross section and/or natural length of each member.
This also means that residual stresses 0,4 and residual strain remain in the
unloaded state, as shown in Fig. 5(d) where the equilibrium equation

CfrlAll + (71'244{2 =il (36)

should be satisfied. This process is schematically represented as a change in

the stress-strain relationship in Fig. 6.
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I1curE 6. Change in stress-strain relationship due to remodelling, after [69].

This figure clearly shows the difference between the initial strains &%
(existing in the stress-free state) and residual strain ¢, (occurring when the
load vanishes), the notions often confused in the biomechanical literature.

The mechanical system (3.6) is not closed. Additional equation of evolu-
tion is postulated as follows. Tanaka and Adachi [69] postulate that remo-
delling is essentially driven by the stress difference between the members:

Aoy (t) = 04(t) —op(t), a#B af=1,2 (3.7)
where t denotes time.
Introducing a positive threshold value (Acg)®, the effective stress difference
is defined as follows

{Aca(t)}® = sgn{Ac(t)} max{|Acs(t)| — (Ac)?, 0}. (3.8)

Consequently, the volumetric change of each bar is achieved by the cross-
sectional change of each member, and its rate is assumed to be given by

Aa(t)/An(t) = Ka{Aoa(t)}®, a=1,2, (nosummation over o). (3.9)
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Here .~'1n(t) = dA,(t)/dt and the parameter K, are the positive remodelling

rate of growth and atrophy in the bar a respectively. From the relation
{Ao1(1)) = ~{A0a(t)} (3.10)
the sought evolution equation is given by
Ag(t) /Ay (t) = =K Aq(t)/ K1 Ay (t). (3.11)

Lazy zone is characterized by equating the r.h.s. of Eq.(3.9) to zero.
Steady state is achieved by passing with t to infinity (¢ — o0).

Tanaka and Adachi [69] considered also the cross-sectional change due to
remodelling during a small time interval [t,t + At]. Then we have

Aalt + At) = An(t) + Ayal(t), a=1,2 (3.12)

where

Apa(t) = Ag(t)At, a=1,2, (3.13)

Obviously, a positive value of Ay, (f) means growth and a negative value —
atrophy. It was also shown that the initial strain appearing in (3.5) is given

by

Ayalt)ep + Aa(t)e5(2)

. no summation over ). 3.14
ALt + At) VB e

X (t+ At) =

This is used to represent the change in the natural length of each bar as, cf.

Fig. 7,

loa(t + At) = [1 4+ 2 (¢ + AD)]le(0), a=1,2. (3.15)
Z
0 Pt % Pt) = Pady O
i
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Ficure 7. Change in natural state due to cross-sectional change be remodelling,
after [69)
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Tanaka and Adachi |70, p. 8] suggest the following rate equation for initial
strain £V -
L= ﬁ(ea -€9), a=1,2. (3.16)
Ao
Prior to passing to a simplified model of tibiofibula bone, consider the
diaphysis of a long bone idealized as an axisymmetric, two-layered hollow

cyvlinder shown in Fig. 8
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FiGure 8. Diaphyseal model as two-layered hollow cylinder, after [69)].

In Fig. 8, r, denotes the radius of the boundary between two layers, and
and ry are the inner and outer radii, respectively. Only the one-dimensional
distribution along the circumferential direction is considered for the stress
component in the z-direction. The value of stress is evaluated r = r,,. The
thickness and elastic modulus of layer a are denoted by h,(6,t) and E,,
respectively, cf. [69, 70]. The inner layer (o = 1) stands for the cancellous
bone whilst outer layer (o = 2), the cortical bone so that E; < Ey. If the
force acts at the point r = re (re is a measure of eccentricity) and 6 = 0,
then the equilibrium along the z-axis is written as follows

9 2w

P=>" [ 0a(6)ha(0)r,do. (3.17)

a=1 0

Similarly, we write

2 2w
:Z]a(, ) (6)r2 cos Bd0. (3.18)
a=1

The strain £(f) in the z-axis direction is defined as the nominal strain by
referring to the uniform natural state, cf. Eq. (3.2). The deformation is con-
strained by rigid plates. Hence the strain £(6) distribution in the z-direction
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takes the form

e(f) = a+ fr = a+ Frycosb.

The rate of thickness change of each layer « due to remodelling is expressed
by

J

ha(0,)/ha(8,t) = KalA0a(0,6))° = Cal®){VZ0u(6,0)}°,  (3.19)

where {V20,(0,t)}¢ = max{V?o(0,t)|— (V%)% 0}. Here the positive thresh-
old (V20)* is used for the lazy zone. The constants K, and C, can be found
in [69].

Consider now this two-layered, hollow cylinder subject to a centric load
(re = 0). The stress is now uniformly distributed in the circumferential direc-
tion of the #-axis, and the first term on the r.h.s. of Eq. (3.19) drives remod-
elling. The initial natural state is assumed to be uniform, and remodelling is
investigated under repeated loading with the period of 2AT, cf. Fig. 9(a).

The thresholds of the remodelling of the lazy zone are (Ag)’ = 0.1 MPa
and (V20)% = 0.1 MPa, respectively and AT is set to unit time.
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(a) applied repeated loading (b) thickness change
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(c) stress change (b) strain change
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(e) stress-strain relationship change

FiGure 9. Remodelling of diaphysis model, modified after [69].
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The calculated change in the thickness of each layer with time, due to
remodelling, is shown in Fig.9(b). At the time ¢t = 0, the applied load of
P = 25N results in the stress of op; = 1.06 MPa and opy; = 2.12MPa in
layers 1 and 2 respectively. We observe that in [70], P = —25N and then
op; = —1.06 MPa and ops = —2.12 MPa.

Remodelling is initiated by this stress difference between layers. As re-
modelling progresses under the external cyclic load P, layer 2 grows and
decreases stress ops. In contrast, layer 1 undergoes atrophy (resorption) and
the stress opy increases. The difference in stresses between layers decreases
with time, cf. Fig.9(c), (d). After some time, the difference in the residual
stresses between layers is smaller than the range of the lazy zone, and remod-
elling does not occur during this unit time without external load. As time
runs, the difference in residual stresses between layers increases. As a result
of successive remodelling in both loaded and unloaded states, the process
tends to the steady state without change in thickness, cf. Fig. 9(b, c and d).
Figure 9(e) depicts the apparent stress-strain relationship of each layer with
time.

Consider now the case of remodelling under eccentric load. The system
investigated is the same as previously. Now the stress is distributed nonuni-
formly in the circumferential direction. and the second term on the r.h.s of
Eq.(3.19) also becomes active upon remodelling. We assume that the re-
peated load is applied at the point r, = 0, § = 0. Initially, the tissue is in
a uniform natural state, and the stress is distributed in each layer, cf. the
solid line in Fig. 10.

The change in the cross section due to remodelling is shown in Fig. 11.
As can readily be seen, the remodelling results in non-uniform distribution
of thickness in both layers of the model.

. 4.0
& 3.0
= 2.0
2 1.0
£ 00
w-10

FIGURE 10. Stress distribution in diaphysis (remodelling under eccentric load),
after [69].
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4
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(a) Initial (¢t = 0) (b) remodelling equilibrium (¢ = o)

Ficure 11. Cross section of diaphysis (remodelling under eccentric load), af-
ter [69].

First application: rabbit tibiofibula bone

The remodelling of tibiofibula bone was investigated in |69, 70, 71]. Ide-
alized model of the tibiofibula system is presented in Fig. 12.

%
efcfi/ o JR2 3
Fibula
. Tibia
N
! y T
: i
1 i
i : x | Ef 0
! : AP
e = ]

Ficure 12. Idealized model of tibiofibula system, modified after [69].

Additionally to the previous case we have to consider the fibula, being
treated as a circular solid column of radius 7. The overall centroid of the
tibiofibula system is at the point of 7., indicated by the circle in Fig. 12. As
previously, the load acts along the z-axis and is applied at the point of r,
and 6 = 0 (the cross in Fig. 12).
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The equilibrium equations of the force and moment (with respect to the

y-axis) are given by

2
Pi= 3 / Ta(0)ha (0)rndl + Aoy, (3.20)
=1 0
9 2m
Pr, = Z/aﬂ (9)110.(9)7«3 cos 0db + Ao, (8:21)
a=]1 )

where A; denotes the cross-sectional area of the fibula.

Now the stress in the tibia is obviously influenced by the presence of the
fibula; however the rate of thickness of the tibia still obeys the rule (3.19).

Let us pass to a discussion of remodelling under cyclic loading between
zero and P = —25N, applied at r, = 0.5mm. This corresponds approxi-
mately to a tibiofibula system under a load twice the body weight of a rabbit
weighting 2.5kg. The model parameters describing the tibia coincide with
those used previously; moreover vy = 1mm and Ey = 15.0GPa. We do
not postulate the lazy zone to emphasize the effect of stress regulation by
remodelling. The uniform natural state is again assumed as the initial state.

The initial stress distribution in the tibia under load P is shown by the

solid lines in Fig. 13, depicting op; and ops.

_ 1b u 6 2
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£.80 F  ——1e0

O_40 L e 65 5

FIGURE 13. Stress distribution in tibia, after [69].

Now the magnitude of stress in the tibia becomes maximum at the site
of & = 0, at which tibia faces the fibula, yielding the compressive stress
(—0.89MPa) in the fibula. The residual stresses in the tibia are shown in
Fig. 13. The tensile residual stress oy = 0.17 MPa also remains in the fibula
in the unloaded state.

The cross section of the tibia after remodelling is shown in Fig. 14.

We see that the thickness decreases at the lateral side of the tibia facing
the fibula; its increase is observed at the medial site. The overall centroid of
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FIbUlG

-1.

(a) before cutting the fibula (b) after cutting the fibula

Ficure 14. Tibiofibula system at remodelling equilibrium, after [69].

the tibiofibula system moves from the initial position at r. = 1.20 mm toward
the loading point r. = 0.5 mm and settles at r. = 0.73 mm.

It is instructive to investigate what happens after cutting the fibula and
to compare the results with experimental data performed on rabbits, cf. [69,
70, 71]. Fibula cutting partially releases the residual stress found previously.
The results are depicted in Figs. 14(b), 15 and 16.

— N
o © O

Strain (x10°8)

LN
o

Ficure 15. Tibia strain after cutting fibula, from [69].

FIGURE 16. Stress distribution after cutting fibula, after Tanaka and Adachi [69)].
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In Fig. 16 circumferential positions labeled A, B, and C correspond to
the gauge sites employed in the experiment briefly described below. The
strain change qualitatively agrees with the experimental data, as shown in
Fig. 17(b).

Proximal L1=1036254 Distal
[ 04l
Anterior

yTibia 2y T ~)
e
\\ = —__Posterior
Fibula Cutting

A MedAml'_

B[() e
ANY

Tibia™% Fibula

1
Post.

bl Tibia strain

ta; Tibia-fibula and gauge upon cutting
sites fibula

FiGure 17. Fibula-cutting experiment in rabbit, after [69].

Upon cutting the fibula, the centroid of the tibia moves to the position
re = —0.39mm, and the stress distribution under load P becomes uniform, as
shown by solid lines in Fig. 16. When the system without the fibula remains
under the same loading conditions between zero and P = —25 N, remodelling
is reactivated due to the stress distribution along the circumferential direction
and between the layers. The stress achieves maximum in absolute value at
the lateral site of @ = 0 at the new initial time of ¢ = 0. After remodel-
ling, the cross section of the tibia changes to that shown in Fig. 14(b) at
the remodelling equilibrium (¢ = o), and the centroid of the cross section
coincides with the position of the loading point r.

Let us present now concisely the experimental data. Strain gauges are
attached to the surface of the rabbit tibia. By cutting the fibula, the residual
stress in the tibiofibula statically indeterminate system is partially released,
and the strain changes were observed, cf. [69, 70, 71].

Hind limbs were excised from twelve Japanese white rabbits weighting
2.5+ 0.1 kg (mean£S.D.). The tibia and fibula are cleaned of muscle attach-
ment and the periosteum. The diaphysial surface of the tibia was scraped
clean and swabbed dry, and three uniaxial waterproof strain gauges A, B and
C, are bonded to the surface along the longitudinal axis using cyanoacrylate
adhesive. The position of the centre of each gauge grid is marked with cross-
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hairs, cf. Fig.17(a). The tibia is immediately returned to the physiological
saline bath at room temperature of 21°C. All the measurements were per-
formed in this bath. A dummy gauge was placed in the same saline bath to
compensate the drift due to change in temperature. The resolution of the
measuring instrument was one microstrain, and the value of the drift was
negligibly small compared to the measured values.

In the rabbit, the fibula branches from the tibia at mid-diaphysis and
connects at the proximal end of the tibia, forming a statically indeterminate
structure. By cutting fibula at the position marked by the solid triangle in
Fig.17(a), statical indeterminancy is partially released, and the deformation
of the tibia can be measured using strain gauges. Averaged values of the
strain of twelve specimens along the longitudinal direction measured using
gauges A, B, and C are shown in Fig. 17(b). Positive strains were measured
using gauges A and C at posterolateral and anterolateral sites whilst negative
strain was observed using gauge B at the medial site. The change in strain is
induced by the release of the residual stresses in the statically indeterminate
structure consisting of the tibia and fibula. We conclude that the lateral side
of tibia was compressed, and the medial side was stretched, and the fibula
was stretched, bending the tibia in the lateral direction.

Second application: bovine coccygeal vertebrae

Adachi et al. [1] used the uniform stress hypothesis to the study of bovine
coccygeal vertebrae. Experimental data concerning residual stresses were also
delivered, cf. also 70, 71, 73|.

We pass now to a concise presentation of the results achieved in just
mentioned papers of Japanese researchers. More precisely Adachi et al. [1]
investigated twelve tails of approximately two-year-old steers, immediately
after slaughter. The most cranial coccygeal vertebra from each was stored at
—40°C until the experiment. The vertebral specimens were freed from adher-
ing soft tissues such as muscles, ligaments, vertebral disks, and periosteum,
and kept at rest in a physiological saline bath at a fixed temperature of 20°C
for more than 4 hours.

The surface of the specimen was scraped clean and swabbed dry. Two bi-
axial water-proof strain gauges (SKF-20250: Kyowa Electronic Instruments
Co. Ltd.) were bonded on the cortical surface using cyanoacrylate adhe-
sive symmetrically positioned with respect to the saggittal plane between
the spinous process and the transverse process on the middle plane in the
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cephalocaudal direction, as indicated with crosses (R and L) in Fig. 18. The
principal axes of the ganges were arranged in the cephalocaudal and circum-

ferential directions.

Growih p:ate . , Ena-piate

Posterior
Growih plate sae(+)

(a) (b)

F1GURE 18. Observed strains in cutting experiment, after [1]

Adachi et al. [1] used the classical cutting method to estimate experimen-
tally residual stress. In the case of bovine vertebrae, strain would be induced
at gauges on the cortical surface, if any residual stress in the cephalocau-

dal and circumferential directions remained in the vertebral body. The test

procedure ran as follows:

(i)

(iif)

The reference state for the strain measurement was determined after
the specimen with strain gauges had been maintained in the saline for
2 hours.

Both cranial and caudal end-plates, presented in Fig. 18(a), were re-
moved by cutting, the cranial and caudal growth plates with a hand-
saw. The specimen was kept in the saline bath for more than 1 hour,
and then the strain induced at the gauge was recorded.

A circular solid region, 6 mm in diameter, the horizontally hatched re-
gion I in Fig. 18(b), was removed from the central portion of transverse
section of the cancellous bone using a light-duty cutter. The specimen
was then kept in the saline bath again for more than 1 hour, and then

the strain at the gauge was recorded.

The remaining cancellous bone, region 2 in Fig. 18(b), was then re-
moved using the same rotary cutter, and the strain was recorded after
the specimen had been kept in the bath for more than 1 hour.
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The described cutting sequence was selected because of geometry of the
vertebral body. It was assumed that one part of the cutting does not affect
the other cutting sequence, which cannot be tested experimentally. On ac-
count of this assumption and assumption of small strains, one can exploit the
principle of superposition for strains. The resolution of the measurement in-
strument (UCAM90A: Kyowa Electronic Instruments Co. Ltd.) was of single
microstrain order (1079).

Let us pass to description of the strains observed by Adachi et al. [1], cf.
Fig, 19.

In this figure Ae, and Aey denote the average strains of the right and
the left gauges in the cephalocandal and circumferential directions, respec-
tively. Data from right and left gauge sites are presumed to represent a sin-
gle behaviour, since the paired analysis does not show significant differ-
ences between two gauge sites. Anyway, according to Adachi et al. [1], the
total resultant strains were tensile strains: As'o® = 64.2 4+ 50.4 x 1075,
Aeiet™l = 40.4 £+ 38.1 x 107° on average.

To perform simple theoretical analysis, the vertebral body was simplified
in a manner presented in Fig. 20.

Due to rigid plate at both ends the systems presented in Fig. 20 are sta-
tically indeterminate. Regions 1 and 2 of cancellous bone and the cortical
bone are referred to as members 1, 2, and 3, respectively. Obviously Eg;

140
vs. Control
120 L E] Cephalocaudal: At w4 *p <0.0]
**p <0.005
& 100 - Circumferential: Ags
S 8 5 2
&, n=J2
[ =4 a5 e
£ &0 )
&
40
20 |- I l
O 1 L L 1 L J-I-l

Removing Removing Removicg Removing  Total Control
End-Plate Region1 Region2 Reg.l&2
Ao AE}) Ag2 A€ Atuxal Ecosirol

Ficure 19. Observed strains in cutting experiment, after [1]
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FIGURE 20. Simple model of vertebral body: (a) three-layered cylinder model of
vertebra, (b) three-bar model, (¢) three-layered plane strain model, after [1].

(¢ = 1,2,3) is the Young modulus along the axis of symmetry; Fy; denotes
the Young modulus in the transverse plane. Similar notation holds for the
Poisson ratio v,; and 1.

A three-bar model shown in Fig. 20(b) was used for the analysis in the
cephalocaudal direction. Under load P acting on this three-bar system, the
member stress op; is expressed by

0 : 1 ‘ o
agp; = Ea,'(&'p _E'l')’ = l,Q,d. (\522)
Here €, stands for the strain common to every bar. We have
op1Ay + oprAs +op3A; = P (3.23)

Now the porosity of cancellous bone is taken into account; thus the stress
op; is different from the effective stress op; /¢4, of bone material itself. Here
@4, is the area fraction of bone material in the cross section.

The uniform stress hypothesis is expressed by

lopy] _ lopel _ lopsl _ eq
¢fh (}J).-lg @,43 o

(3.24)
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where 059 is the uniform stress at the remodelling equilibrium. Figure 21

depicts the stress-strain relations of the bars with (different) initial strains

-0
!

We note that Eq. (3.24) is more general than Eq. (3.4) used for the two-bar

system.

and different area fractions. For the cortical bone one may assume ¢ = 1.0.

FiGure 21. Stress-strain relations in three-bar model.

Adachi et al. [1] estimated 05" to equal to o5 = 1.9241.29 MPa; moreover

they obtained ep = —54.7 + 38.8 x 107% and P = —178.1 +£ 121.0N.

For the analysis in the circumferential direction, the three-layered struc-
ture presented in Fig.20(a) is simplified to a shrink fit model, shown in
Fig. 20(c), as a plane strain problem in the (r,#) plane at the gauge site.
We observe, that the radii in natural states are different from each other in
general, as r; # ro and r3 # ryq. Just this difference brings the contact pres-
sures at the interfaces between the adjacent layers and the residual stress in
each of the cylinders in the circumferential direction into the model shown in
Fig. 20(a). The uniform stress in radial direction o;? at the interface between
cylinders 1-2 was estimated as 0.} = 0.63 £ 0.62 MPa. Of the same order is
the circumferential uniform stress o = 0.67 + 0.57 MPa, cf. [1].

To conclude this section it is worth noting that the uniform stress hypo-
thesis enables to take into account residual stress in bone structures treated
as indeterminate system. Further developments are needed to use to, say to
three-dimensional system. Also, nothing can be said about evolution of bone
microstructure.

http://rcin.org.pl



340 J.J. TELEGA and M. STANCZYK

A comment on residual stresses at the stem-cement nterface

Such a problem is of practical value in orthopaedic biomechanics. Nufio
and Avanzolini [44] performed a finite element analysis pertaining to influence
of residual stresses at the stem-cement interface of cemented hip implants.
The geometry of the idealized cylindrical hip stem inserted into bone is shown
in Fig. 22,

fareral PAINLA

praximl

s verse
load

medral

Ficgure 22, Three-dimensional finite element mesh of the cemented hip stem
analyzed. All dimensions in mm, aflter Nuno and Avanzolini [14].

All the materials were assumed to be linear elastic, isotropic and homo-
geneous. The Ti-6Al-4V stem had Young's modulus £ = 110000 MPa and
Poisson’s ratio v = 0.3; the PMMA cement mantle had EF = 2700 MPa and
v = 0.35; the cortical bone had F = 15500 MPa and v = 0.28. The distal
ends of the cement mantle and the bone were completely fixed. The cement-
bone interface was assumed rigidly fixed, while the stem-cement interface
consisted of 294 nonlinear contact elements Contaci2, 3D node-to-node ele-
ments, using Coulomb friction behaviour allowing for sticking and sliding. A
coefficient of friction g = 0.2 was assumed (at the stem-cement interface).

The compressive residual radial stress due to cement curing at the stem-
cement interface was simulated by a press-fit effect: an interference of 5 um
was assigned to the contact elements corresponding to radial residual stress
of approximately 2.4 MPa. We observe that residual stress can likewise be
generated by thermal expansion.
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Ficure 23. von Mises stress in the cement mantle at the interface on the lateral
side without and with residual stresses, versus the axial coordinate z, after [44].
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Ficure 24. Radial stress in the cement mantle at the interface on the lateral
side for without and with residual radial stress versus the axial coordinate z; after
[44].

Significant influence of residual stress is clearly shown in Fig.23 and
Fig. 24.

The analysis perfomed by Nufio and Avanzolini [44] is simplified since the
issue of bone cement polymerization has not been considered, cf. [60].
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Part II. Soft tissues

In this part we intend to synthesize main developments pertaining to
existence of residual stress in soft tissues and its influence on adaptation. As
we already know, residual stress was primarily shown to exist in bone and
then in tissues like bovine and porcine aortas and the left ventricle of rabbit
(cf. [18, 52]). It is also known to exist in living tree. More precisely during
the growth, an internal stress is generated in cambium zone of a tree and is
named growth stress, ¢f. Okuyama and Yamamato [48].

4. Aorta and Arteries

According to Rachev and Greenwald [55] it has been known for at least
40 years, since the Ph.D. thesis by Bergel [5], that when a ring segment
is cut from an artery and an axial cut is made in the ring, it uncoils like
a watch spring. In the pioneering paper by Vaishnav and Vossoughi [76] 3
bovine and 9 porcine aortas were examined; see also the paper by these
authors [75]. In a typical experiment, the segment of the aorta extending
from just below the aortic arch to the distal end of the abdominal aorta was
freed of the loose tissue on the adventitia and gently laid down in its natural
configuration. We recall that the blood vessel wall consists of three layers:
the intima, media, and adventitia, cf. [6], Fung [21], Humphrey [33]. The
intima is the innermost layer and contains endothelial cells. The media is
the middle layer and contains the smooth muscle cells. The adventitial layer
is the outermost layer and contains collagen fibres and ground substances,
and some fibroblasts, macrophages, blood vessels (vasa vasorum), myelinated
nerves, and nonmyelinated nerves.

We return now to the paper by Vaishnav and Vossoughi [76]. Using a sharp
razor blade, transverse cuts approximately 3 to 4 mm apart were made along
the entire length of aorta so as to yield a large number of almost circular
rings (in fact, they were oval). From 20 to 46 rings were obtained from each
aorta, with a total of 286 rings. The intact vessels as well as the rings were
kept submerged or bathed in physiological saline at room temperature (from
20 to 23°). Dorsal radial cuts were made through the thickness of each ring,
which opened into a horseshoe shape upon being cut. Groups of rings we
photographed, along with a milimeter scale, before and after being subjected
to radial cut. The sets of rings and their open configurations were labelled
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for reference. Figures 25 and 26 show a set of 9 rings from a bovine aorta
before and after being cut.

The annular sections were oval in shape with the largest and the smallest
midwall diameters (a and b respectively in Fig. 27) not differing by more than

25 percent.

Ficure 25. Transverse annular sections from an aortic segment. The small divi-
sion on the scale represents one mm, after [76)

Fiaure 26. The open configuration obtained by radial sectioning of the transverse

annular sections in Fig. 25, after |76]
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— b

FIGURE 27. A typical transverse annular section of an aortic segment. ¢ and b
are the maximum and minimum midwall diameters of the section, geneally in

orthogonal directions, after [76].

FIGURE 28. A typical transverse annular section after radial sectioning, afer [76]

A mean radius for each ring was calculated as follows: Ro = (14)(a + b).
The opened up horseshoe shapes of the rings were approximated a:arcs (see
Fig. 28) with their mean midwall radii R calculated according to th: formula:
R = (1/8)(c*/h + 4h).

Assuming that the radial lines, straight in the closed configuation re-
mained straight and normal to the midwall curve after transitin to the
cut-open configuration, the circumferential engineering strain ¢y a a radial
distance r from the midwall in the closed configuration relative tothe open

configuration can be calculated a follows:

1 1
‘EOIT(R—_D_E)} (4])

It was further assumed that the midwall “fibre” is strain-free. The naximum
positive and negative strains will occur at 7 = +¢/2 (adventitial suface) and
r = —t/2 (intimal surface), respectively, and have a maximum manitude

t 1 1
E@|max = 3 - E 4.2
[€6]ma 2 (R.g R) 4.2)

Here t denotes the mean wall thickness and we preserve the notaion used
in [76].
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A\»'Illllill".)‘ that the open cr.r!lii;,glll‘elliuu is stress-free (now we know that
such an assumption is not true), the stresses in the closed configuration at
a radial distance 7 from the midwall curve can be estimated from a uniaxial
stress-strain curve for a circumferential strip. Then, the magnitude of the

maximum tensile and compressive stresses in the closed ring are calculated

E't ] 1 "
!(TU max — 9 /, = 7;; ) { ’))
P 1 L)

with the intimal side ])('illj:‘ in « ompression and the adventitial side in tension.

as follows:

Here E denotes the Young modulus.

According to [76], the maximum magnitudes of the circumferential en-
gineering strains through the wall thickness vary from 0.044 to 0.124, and
the corresponding stresses vary from 44 to 124 G/em? (G~ 9.81 x 107 N),
where an approximate value of £ = 1000G /cm* has been used (Vaishnav
and Vossoughi write g/cm? instead of G/cm?). Furthermore, these authors
estimated the maximum residual stress amounting to approximately 14 to 17
percent of the in vivo circumferential engineering stress.

The aortic wall, similarly to other vessel walls, is a layered material, hence
it’s inhomogeneous. The early procedure of estimation of residual stresses,
outlined above, is typical for materials homogeneous through the thickness.
Consider now the case when the intima is separated from the outer segment,

of. Fig. 29.

[FIGURE 29. Bovine aortic ring after cutting (a) and separation of the intima (b,c)

from the outer segment, after 78]

The dashed line in Fig. 29 is the line along which separation into the inner
and outer layer was performed. Figure 29 clearly shows that the segment

containing the intimal layer opened up significantly more than the outer
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o

a < 180° 180° < « < 360° a > 360°

1cure 30. Definition of the term “opening angle”; sector represents circumferen-
tial cross section of a blood vessel at zero-stress state. Angle subtended between
2 lines originating from midpoint to tips of inner wall is the opening angle, after

[20]

segment containing adventitial layer. This indicates that more residual strain
was inherent to the intimal layer than that measured using Fig. 29(a)—before
separation. According to Vossoughi et al. [78], the value of the intimal residual
strain is approximately twice of that obtained using only one cut to the aortic
ring. Unfortunately, no specific value was given. Also, it is not clear along
which line the second cut was performed.

Greenwald et al. [23] showed that residual strains are not homogeneously
distributed through the arterial wall. More precisely, a two-component repre-
sentation of the vessel wall was assumed (the authors use the term “two-layer
representation”). The two layers are not necessarily intended to represent
media and adventitia. The authors assume that the residual strains present
in a particular component of the wall may be quantified by eliminating the
mechanical effects of the other components. The major structural compo-
nents of the artery wall were removed chemically or thermally in one sets of
experiments (aortas from nine male Sprague Dawley rats), and eliminated
mechanically in another (bovine carotid arteries from 12 animals). Residual
strains in the artery wall were found to be concentrated in the inner layers,
which contain more elastin than the other layers.

Valenta et al. [77] provided experimental data on the influence of adven-
titia of opening angle. The concept of opening angle is illustrated in Fig. 30.

These authors performed experimental investigations using 21 specimens
of the human aorta and coronary artery. The average age of subjects of both
sexes was (63.6+8.4). Arterial rings of 30-80 mm in height were excised from
the ascending and descending aorta, the vertex and the end of the aortic
arch, between the diaphragm and above the bifurcation, and also from the

right coronary artery.
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Two approaches were used. In the first one the adventitial layer was me-
chanically removed (the membrana elastica was left undamaged). In the
second approach the adventitial layer was left intact. Some of the results
achieved are presented in Figs. 31-33.

Matsumoto et al. [41] performed a refined analysis aiming at the deter-
mination of residual stresses in a so-called lamellar unit of the aortic media.
We recall that aortic media is made of concentric layers whose unit is just
the lamellar unit, a pair of elastic lamina (EL) and a smooth muscle-rich
layer (SML), cf. Humphrey [33]. Elastic modulus of elastin is about 0.6 MPa
(see [18]) whilst that of the smooth muscle is of the order of 0.01 MPa in the
relaxed state. Thus we see that EL is much stiffer than the SML.

If the stress-strain relationships describing the EL and SML are different,
residual stresses between the two layers should also be different. Indeed, if
the circumferential stress in the in vivo condition is the same between the
soft and stiff layers, compressive residual stress will arise in the stiff layer
and tensile in the soft layer, cf. Fig. 34.

Such residual stress is not fully released by radial cutting; however this
stress is released in the area close to the cut surface, causing “hills and valleys”
(as Matsumoto et al. write) on the surface due to compressive and tensile
stresses, respectively. In the mechanical literature one uses the expression
“wrinkles” and not “hills and valleys”.

To check the hypothesis that wrinkles arise on the cut surface, Matsumoto
et al. [41] developed a scanning microindentation tester (SMIT), a scaled-
up version of an atomic force microscope (AFM), and measured the surface
topography and stiffness distribution of the cut surface of the porcine thoracic
aortas. Residual stress and strain in the lamellar unit was also estimated. To
this end FEM was used.

The residual stress was estimated to be (—=70kPa) for the EL and 20 kPa
for the SML. These values are relatively large. Indeed, the macroscopic cir-
cumferential residual stress reported in the literature is in the range 1-10 kPa
whilst the physiological stress is about 300 kPa for the rat aortas, cf. the rel-
evant references cited in Matsumoto and Hayashi [42] and [41]. It seems that
the values obtained can be viewed as an upper bound.

Let us present now the main results obtained by Fung and his coworkers,
and pertaining to estimation of residual stresses and strains in the aortas and
arteries.
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A

ag,>0,05<0, g, =£y @ no load

FiGure 34. Residual stress caused by material heterogeneity; If the tensile
stresses in the layers A and B are equal in a loaded state, the unloaded ma-
terial has tensile stress in the soft layer (A) and compressive stress in the stiff
layer (B). In the no-load state the sum of the forces in the layers (A) and (B)
becomes zero, after [41].

It is commonly assumed that the artery is a cylindrical tube, whose wall
material is cylindrically orthotropic, cf. [9, 10]. Assuming also that the ma-
terial the tube is made of is homogeneous after the removal of residual stress
from the unloaded state, the vessel wall should become a sector of constant
curvature and thickness. As we already know, the last assumption is not
true since the arterial wall is inhomogeneous through the thickness. Eventu-
ally, one could consider slices of, say, media without intima and adventitia.
Chuong and Fung [9, 10] introduced the effective radii for the stress-free
reference state from the noncircular opened-up configuration taken from ex-
periments.

Figure 35 shows the idealized vessel wall configuration at various states.
The stress-free reference state is called state 0, the unloaded state is state 1,
and the subsequent loaded states are states 2,3,...,N. With cylindrical polar
coordinates, a material point is denoted as (r, ¢, z) in the states 1, 2, 3,...,N.
The subscripts ¢ and e denote the internal and external wall radii at various
states. ©p represents half of the angle of the arterial wall at the stress-free
state 0.

The angle ©g and the internal and external wall radii state 0 and 1 can be

determined from the direct measurements of fibre lengths on both surfaces
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F1GURE 35. The cross-section representation of an artery at the stress-free refer-
ence state 0, the unloaded state 1, and subsequent loaded states under transmural
pressure and axial force, after [9]

taken from the photos of the open-up specimen. For state 1 we have
2rry =1, 2mre = g (4'4)

for the internal and external surfaces, respectively, where | denotes the mea-
sured fibre length. For state 0, we write

90oR; = Li, 209R. = L. (4.5)

for the inner and outer walls where L denotes the fibre length measurements
at this state. The determination of r; and r. for state 1 is straightforward.
However, another equation is needed to solve for the tree unknowns Oy, R;
and Re in Eq.(4.5). Such an equation is provided by the incompressibility

condition of the vessel wall:

Oo(R2 - R2) = mA,(r2 = 12) (4.6)
where A, is the axial stretch ratio and is to be measured directly. By solving
Egs. (4.5) and (4.6), the geometric description of state 0 is determined in
terms of the effective values.

The deformation of a thick-walled artery under transmural pressure and
axial tethering is described by

r=r(R) @=(r/0)0; z=2z(4) (4.7)
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for the transformation of the radial, circumferential and longitudinal coordi-
nates, respectively. The corresponding principal stretch ratio are given by
or T 0z

— —_—— L= — 4,
Ar Ao O R’ A= 57 (4.8)

IR’

Green's strains Fg, Ez and E, in the circumferential, longitudinal and ra-

dial directions, respectively, are related the principal stretch ratios of Eq. (4.8)
by

E;= %(/\,2 -1}, t=rb2 (4.9)

The arterial wall material is assumed to be characterized by an exponen-
tial strain energy function:

oW = %exp W (4.10)
where
Wi = b E} + boE? + b3E? + 2b4EyE, + 2bsE.E, + 2b6 E.Eg.  (4.11)

Here ¢, by, ba, ..., bg are material moduli. The wall material is assumed
to be incompressible. This constraint is added to the strain energy function
through a Lagrangian multiplier, cf. Part I11 of our lectures.

Chuong and Fung [9, 10] performed calculation for rabbit thoracic artery
for the case where the measured geometric values are: [; = 8.75mm, [, =
12.5mm, L; = 9.75mm, L. = 11.25mm. Then, solving Eqs. (4.5) and (4.5),
with the assumption of A, = 1, we obtain R, = 4.52mm, R; = 3.92mm, and
Oy = T71.4° as the effective external, internal radii and the effective angle for
the reference state 0. The material coeflicients are given by: ¢ = 22.40kPa,
by = 1.0672, by = 0.4775, bz = 0.0499, by = 0.093, bs = 0.0585, bg = 0.0042.

Figure 36(a) presents the residual strains in the arterial wall when the
vessel is unloaded. The strains are expressed in terms of principal stretch
ratios. It is seen that fibres at the inner wall are shortened, while those
at the outer wall are elongated. Figure 36(b) presents the distribution of
the residual stresses at the unloaded state. In the circumferential direction,
the inner wall has a compressive residual stress of 1.5kPa; the outer wall
has a tensile residual stress of 1.3kPa. These are small numbers compared
with stresses at loaded states shown in Fig.37. However, their effects are
significant. More precisely, Fig. 37 shows the distribution of principal stretch
ratios and principal stresses of the vessel wall at p; = 120 mm Hg (~ 16.0 kPa)
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FiGure 36. Residual strains and stresses in the wall of an unloaded thoracic

artery, after [9]
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at p; = 120mm Hg (~ 16.0kPa) and A. = 1.691, after [9]
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and axial stretch ratio A. = 1.691. The circumferential stress at the inner wall
is found to be 1.42 times larger then the average value across the vessel wall. It
is worth noting that in an earlier work (8|, the same authors found that under
the hypothesis that the unloaded tube is stress-free, the circumferential stress
at the inner wall was 6.5 times larger then the average value across the vessel
wall (the internal pressure is the same as previously: p; = 120mm Hg). We
conclude that the removal of the hypothesis that unloaded state is stress-free
has the affect of reducing the stress concentration factor from 6.5 to 1.42.

Liu and Fung [39] studied the opening angle of short segments of aorta
along the aortic tree of Sprague Dawley rat, cf. Figs. 38 and 39. According to
these authors, for a short segment of aorta it may be sufficient to make one
longitudinal cut to assess whether after one cut the segment is in a stress-free
state, cf. also Rachev and Greenwald [55].

QOutside

Pasternor
Outside! posiror Outside e

Anterior .
9 Anterior

I'IGURE 38. Left: Nomenclature for sites: “outerior”, “posterior”, “inside”; and
“outside”. Right: Definition of the opening section angle O, after [39].

Fung and Liu [19] and Liu and Fung [40] reported that residual stresses
in the rat aortic wall, represented by the opening angle, changed rapidly in
response to the induction of hypertension. When they generated hyperten-
sion by constricting the abdominal aorta, they found a marked increase in
the opening angle, from 171° to 214° in 4 days after constriction, followed
by gradual decrease to an asymptotic value of 126° in 40 days in the as-
cending aorta. Hypertension was created in 57 Sprague-Draw rat by banding
abdominal aorta with a metal clip 0.5] mm wide and 6.61 mm in length.

Fung and Liu [20] also observed similar and faster change in the opening
angle in rat pulmonary arteries subjected to hypoxic hypertension: the angle
increased from 294° to 385° in 12h and then decreased gradually to 193° in
240h. By comparing the changes in opening angle with histological obser-
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LCostac—)

Menantaric

F1cure 39. Photographs of the zero-stress configuration of aorta along the aortic
tree (of rat). The symbols A, P, I, O stand for anterior, posterior, inside, and

outside, respectively (see I'ig. 38), after [39
I 4

vation, they explained the opening angle by the nonuniform remodelling of
artery wall.

Chuong and Fung [9] proposed a method of direct measurements of re-
sidual strains in aorta. The method consist in sprinkling small microdots
of water-insoluble ink onto the surface of the transverse sections of aortic
segments. It seems that nowadays one could use laser or speckle methods.

A natural question is: what is histological change associated with hyper-
tension?, cf. Matsumato and Hayashi [42]. To answer, at least partially, this
question, consider Fig. 40. The figure shows micrographs of the aortic sec-
tions of control, hypertensive, and severely hypertensive rats. It is obvious

that the total wall thickness was increased by the elevation in blood pressure.
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Ficure 40. Micrographs of the thoracic aorta in three operated rats, fixed under
in vivo loading condition and stained with Azan (a) Normotensive rat (Pys =
145mm Hg), (b) hypertensive rat (P.ys = 200 mm Hg). (¢) Severely hypertensive
rat (Puys = 240 mm Hg). Sections are parallel to the longitudinal axis of the vessel;
intimal surfaces face left. Length marker (50 um) in (c) applies to all parts of the
figure, after [42]

The lamellar units had almost the same thickness throughout the wall thick-
ness in the normotensive rat (Fig.40(a)), whilst in the severely hypertensive
rat (Fig. 40(c)) the units were much thicker near the inner surface than near
the outer surface.

The thickening of the lamellar units was associated mainly with the in-
crease of ground substance and partly with the hypertrophy of smooth mus-
cle cells. It may thus be said that hypertension caused the wall thickening,
especially in the subintimal region.

Han et al. [25] studied the opening angle of the autogenous vein grafts of
seventeen mongrel dogs, 15-21 kg in body weight (30 canine grafts). Canine
femoral veins were grafted to femoral arteries in the end-to-end anastomosis
fashion. The results show that the opening angles (mean+S.D.) are 63.0 £
30.6° for normal femoral veins, and —0.4 +4.6°, 6.1 +19.4°, 25.4+20.1°, and
47.8 £ 11.4° for vein grafts at 1 day, 1 week, 4 and 14 weeks post surgery,
respectively, cf. Fig.41. The postsurgical changes in opening angle reveal
nonuniform transmural tissue remodelling in the vascular wall.

Rachev et al. [53] developed a mathematical model which accounts for
both the geometrical and mechanical remodelling of arteries in response to
induced hypertensions, cf. also the lecture by A.Rachev in this volume. An
essential point is to incorporate the remodelling rate equations. The problem
was reduced to 4 evolution equations for four growth parameters.
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FI1GURE 41. Photographs of typical configuration of zero-stress states of the short
segments of a normal femoral artery (Normal A) a vein (Normal V), vein grafts
(VG) at 1 day, 1 week, 4 weeks and 12 weeks post surgery, after [25]

Taber [62] proposed a biomechanical growth law for arteries and examined
the behavior of a thick-walled tube model of aorta under various conditions
during development and maturity.

Taber and Humphrey [64] studied the effect of heterogeneous material
properties on growth-induced residual stress in arteries (mainly rat aorta and
bovine carotid artery) and the utility of using opening angles to characterize
this residual stress.

Uniform circumferential stress assumption was adopted by Ogden and
Schulze-Bauer [47]. These authors obtained the sign of residual stresses op-
posite to those reported by Chuong and Fung [10] and Takamizawa and
Hayashi [66].

Delfino et al. [14] developed a model of the carotid artery bifurcation for
studying the wall stress field. The proposed model includes thick wall with
varying thickness, nonlinear elastic property (isotropy) and the zero stress

state.

5. Heart

The opening angle concept has also been used to characterization of resi-
dual stresses and strain in the left ventricle; cf. [49, 51, 63| and the references
therein.

Takamizawa and Matsuda [68| proposed a mathematically sophisticated

model of soft tissues with residual stresses. The hypothesis of uniform strain
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distribution (through the wall thickness) was employed. As a particular case
a spherical model of the left ventricle was studied. The uniform strain hypo-
thesis was advanced by Takamizawa and Hayashi |65], cf. also Takamizawa
and Hayashi [66, 67]. To put it briefly in the uniform strain hypothesis “strain”
means the strain referred to a stress-free configuration. The hypothesis im-

plies that the circumferential stretch ratio, AP

, is independent of the radius
R®); superscript (p) indicates the standard physiological state.

Summerour et al. [61] showed that opening angles (in rats) were signif-
icantly higher in ischaemic hearts than in sham-operated or strain-softened
hearts, suggesting that acute coronary artery occlusion may significantly in-
crease residual stress and strain in the left ventricle.

Omens et al. [50] showed that physiologic left ventricular remodelling in
rats decreases myocardial residual strain in proportion to the relative reduc-
tion in wall thickness-radius ratio.

6. Cartilaginous Tissue

Curling of cartilaginous tissue was reported already in 1958 by Gibson
and Davis, cf. [58]. Curling behavior was also shown in [57]. The studies on
residual stress (sometimes called “interlocked stress” or self-locked stress) in
cartilaginous tissues, prove that our knowledge of residual stresses in biologi-
cal tissues is longer then commonly believed. For review of the experimental
results and modelling of cartilage behaviour the reader is referred to [34]
and |74].

Part III. Mathematical approach to modelling resi-
dual stress
For the introduction and description of the basic mechanical concepts,

relevant to the discussion presented in the following sections, the reader is
referred to the Appendices A-D.

7. Residually Stressed Elastic Materials

Until now, in our considerations of constitutive modeling, existence of
stress-free state (sometimes called natural state) has always been assumed.
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Residual stress is the internal stress present in a body, not necessarily
elastic, in an unloaded equilibrium configuration. That stress is often the
result of the manufacturing process used to form or construct the structure,
or may be due to the deformation history of the structure. The presence of
a residual stress field can have a profound influence on effective mechanical
properties of the structure. Residual stress is commonly studied in the con-
text of metals, where it is usually a product of plastic deformation and where
the material is elastic only in small strain range. However, residual stress is
present in a wide variety of materials, some of which respond elastically
to large deformations, at least in a first approximation. For instance, human
and animal bone, heart, arteries and cartilage are biological tissues which are
known to support significant residual stress fields, cf. Holzapfel and Ogden
[31], Jemiolo and Telega [36], Ogden [46], and the relevant references cited
therein. Bone tissue is not of interest for us here since it behaves in a geo-
metrically linear way. Residual stress in biological tissue develops through
growth and remodeling, and are important to the mechanical function of the
tissues, cf. Rachev [54], Skalak et al. [59].

Prediction of the mechanical behavior of a residually stressed body will
typically require a constitutive model that explicitly includes the influence of
residual stress on deformation. In a series of papers, Hoger and her coworkers
proposed general forms of constitutive relationships for residually stressed
hyperelastic bodies that are composed of material with identified symmetry,
cf. Dyke and Hoger [16], Hoger [28, 29|, Johnson and Hoger (37, 38]. The
aim of the present section is to familiarise the reader with the main ideas

introduced by Hoger and her coworkers.

7.1. Some General Relations
Let us write the constitutive equation for the first (unsymmetric) Piola-
Kirchhoff stress tensor as follows
P(x) = g(x. F(x)). (7.1)
B
The residual stress P is defined as the stress in the reference configuration,
l.e., ‘
.
P(x) = g(x,I). (7.2)
In the sequel of the present section, the explicit dependence of the constitutive

functions on x will be suppressed except where its appearance is needed for
clarity. We observe that x refers here to the residually stressed configuration.
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For the elastic response to be independent of the observer, the response
function g must satisfy
g(QF) = Qg(F)
for every F € Mi and every proper orthogonal Q.
The symmetry group of an elastic material at x is now denoted by G,
and 1s such that

g(x, FQ) = g(x,F)Q

for all F € M2 . Independence of the observer requires that

g(x, QFQ’) = Qg(x. F)Q" (7.3)
for all Q € Gx. By evaluating (7.3) at F = I, we find that the residual stress
P1’ must satisfy

5 "

P(x)Q = QP(x) (7.4)
for all Q € Gx. Hence we conclude that a material with a particular symmetry
can support only those residual stress fields that commute with all elements
of its symmetry group. From this condition the restrictions on the form of the
residual stress appropriate to a specific material symmetry can be obtained.

The relation between the first Piola-Kirchhoff stress and the Cauchy
stress o is given by

P=JaB T,
i T r T T T
In the reference configuration F = I; thus P = & or P = P*. Consequently
r
the residual stress P is symmetric.
We will always take the reference configuration to be an unloaded equi-
librium state. The residual stress must then satisfy the equilibrium equation

T
divy, P =0 in , (7.5)
and the zero traction condition
r
Pm=0 on 0f (7.6)

where m is a unit vector normal to 02. We assume that f)( ) is sufficiently
regular. To admit a broader class of solutions Eq. (7.5) may be understood
in the weak (variational) sense. Then Pm is the trace of P on 052; i.e. the
trace in the sense of “value” of function from a Sobolev space on 9Q2. The
boundary d€2 may contain edges and corners.
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7.1.1. Isotropy. For an isotropic material, according to (7.4), the residual
stress must commute with all proper orthogonal tensors. Therefore it is a hy-
drostatic pressure and because F = I, we have

P(x) = p(x)I, x € (. (7.7)

Equilibrium equation becomes
"
diveP(x) = Vkp(x) = 0,
so p is a constant. On account of (7.6) p is identically zero in €2. The following
result has been established: an isotropic body can support no residual stress.

7.1.2. Transverse isotropy The symmetry group of transversely isotropic
material is the set of all rotations about the axis of symmetry of the material,
so the residual stress must be of the form

T
P(x) = p(x)T + (x)M(x) (7.8)
where M(x) = v(x) ® v(x), and v(x) is a unit vector along the axis of
symmetry at x. The possibility that ¢ is identically zero is excluded; otherwise
the material would be isotropic.
The equilibrium equation (7.5) takes the form

Vap(x) + M(x) Vxg(x) + ¢(x)[(Vxev(x)) v(x) + (divev(x))v(x)] = 0, in &,
(7.9)
whilst the boundary condition (7.6) becomes

pm+g(v-m)m =0 on 0€. (7.10)

The last equation is satisfied if and only if at least one of the following holds

on 0%

p=q=0,

p=0 and v-m=0,

p+q=0 and (v-m)’=1.
Hoger [28] examined two specific cases: where the axis of symmetry is uni-
form, and where the parameters p and ¢ are uniform. Moreover, she also
investigated full equations (7.9) and (7.10) for the specific body geometry of
a right circular cylinder, cf. also Ogden [46]. It is not difficult to show that
in these two specific cases we arrive at the following results:
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(i) a transversely isotropic body with uniform axis of symmetry can sup-
port no residual stress,

(ii) a transversely isotropic body can support a nonzero residual stress field
with uniform parameters p and ¢ if and only if the axis of symmetry v
satisfies

divkyv(x) =0 and (Viv(x))v(x)=0

throughout the body, and either

at all points x € 99, or

at all points x € J€2. The residual stress possible in each of these two
cases is given by equations (7.11) and (7.12):

r

P(x) = ¢M(x) (T.A1)

with m(x) - v(x) = 0, x € 9%

P(x) = plT - M(x)] (7.12)
with [m(x) - v(x)]* =1, x € 9.

Hoger 28| considered also bodies with crystal symmetries, like cubic,
tetragonal, hexagonal, and rhombic.

7.1.3. The virtual configuration. Prior to passing to constitutive mod-
eling of residually stressed elastic materials we will discuss the concept of
virtual configuration introduced and developed by Johnson and Hoger [38].
According to the last paper, the derivation of the constitutive equation in
the considered case is based on the idea that for each infinitesimal neighbor-
hood in the residually stressed body there exists a corresponding stress free
configuration. In the general case the stress free configuration is attained in
the limit as the volume of the neighborhood tends to zero, so this stress free
configuration can be thought of as a point. This stress free configuration can
be used to derive the constitutive equation for the corresponding point in
the residually stressed body. The stress free configuration of a part of a body
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is referred to as the “virtual configuration” of that part. We note that the
virtual configuration provides only a physical interpretation of the mathe-
matics employed in the derivation. Thus the adjective “virtual” emphasizes
that this configuration is a conceptualization. The geometry of the virtual
configuration need not be determined explicitly, and the virtual configuration
need not be attainable experimentally. To be consistent with standard termi-
nology, we will refer to material that supports no stress as natural material;
thus, a virtual configuration is composed of natural material.

The use of a virtual configuration for the derivation of the constitu-
tive equation does not mply that the residual stress is actually a result of
a prior elastic deformation. Consequently, this method cannot be thought of
as a superposition of two (possibly finite) deformations, where the residually
stressed body is just an intermediate configuration in the deformation. This
is made especially clear by the fact that the (mathematically) constructed
virtual configuration does not physically exist for most residually stressed
elastic bU(l]L‘b cf. Hoger [29].

Let part R¢ of the residually stressed body, in the configuration Q be a
spherical neighborhood which is centered at X and has radius . The bound-
ary of the peu‘t OIr? , has outward unit normal n for every value of =. The
tractions on is imposed on the boundary d]? by the rest of the body. If

these tractions could be removed, the part R, would deform into th(‘ con-

~1 and, for each ¢, y_ 1 is

figuration R-. This deformation is denoted by y6
defined so that the image of the point x is always the point X = 37}5_1 (X);
v-means “virtual”. Obviously, in the limit, as £ approaches zero, the region
R- dcg,onomtvs to a point at x. The configuration R. supports the residual
stress field a_, which in general is not zero. Iuhnxun and Hoger [38] proved
that lim._g cr_ = 0, so the material at the point X is a stress free configu-
ration of X € Q in the limit as € approaches zero. In essence, the proof is
based on Signorini’s mean stress theorem, i.e. the volume average 5"\,([{ )
of 0- is calculated first. Exploiting next simple properties of the mean value
D’_M(RE) and performing some estimations, under physically plausible regu-
larity assumptions, we arrive at the desired result.

As we already know Johnson and Hoger [38] refer to the stress free con-
figuration of a part of Q (the residually stressed Conﬁnumtlon) as the virtual

configuration, R, say. Let the virtual configuration of S) be denoted by By,
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and define it as the closure of the union of the virtual configuration R,,:

Obviously, K is finite for residually stressed bodies in special cases only,
and infinite for the typical residually stressed body. When K is infinite the
virtual configuration 12, has no volume and therefore cannot exist physically.
However, such a virtual configuration can be approzimated experimentally,
cf. Johnson and Hoger [38].

Consider a deformation y defined on the residually stressed configura-
tion. When ¢ > 0, the deformation )*fs, which maps R. into the deformed
configuration is the composition of ¥ and :;/E for all point in R,

Vy. = V§Vy. (7.13)

in .. For the sake of simplicity the arguments of functions appearing in
(7.13) have been omitted. The limits of V)*/E and V)T/E, are well defined as ¢
approaches zero, cf. Johnson and Hoger [38].

So, with the definitions:

P

F= 1111(1J Vy ( x), (7.14)
F = 1mév§}5(§), (7.15)

and i i
F = FF. (7.16)

Since the elastic material at X is s‘ncss free, the applicable constitutive equa-
tion for the deformations yE and y,, in the limit as ¢ tends to zero, is the
constitutive equation of the natural material: & = g(F). We observe that the
™ *
tensors F and F have clear physical meanings as the deformation gradients
(relative to the virtual, or natmdl configuration) that produce the residual
T * o,
stress o at the point X in Q and the stress o at the point y = y(X) in Q,
respectively. Thus we have
.
o =g(F) (7.17)
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and

*

o =g(F) (7.18)

More precisely, the function g depends explicitly on the position in the body.

7.2. Derivation of the Constitutive Relationships

Following Hoger [29] and Johnson and Hoger [38] we shall briefly describe
the derivation of constitutive equations for residually stressed material.

7.2.1. General approach. From our previous discussion it follows that
the Cauchy stress o in the deformed configuration is ﬂnou by a response

funcnon g say, of the deformation gradient F(x), x € Q, and the residual

Stl(’sq
o=g(F. o). (7.19)

We observe that it is not assumed that the process that originally produced
the residual stress was elastic.

The form (7.19) of the ((uhtmltlvc equation requires the inversion of the
constitutive relationship relating o with an appropriate strain measure. Two
specific cases will now be considered.

7.2.2. Isotropic natural material. Suppose that the residual stress is
known, and the underlying natural material is hotm])l( It does not imply,

however, that the residual stresses in the configuration Q are isotropic.

From Section 10.2 we know that for an isotropic material we have
o = g(F) =g(V). (7.20)
In terms of B = FFT = V2 we get
o =g(B). (7.21)
The polar decomposition of ];‘ yields

r ror

Thus (7.20) and (7.21) give
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*
On account of (7.16) the gradient F from the virtual configuration to the
deformed configuration of the body may be written as

* r P r

F=FF=RUVR. (7.23)
Hence

* * *T r T

B=FF" =FBF". (7.24)

Recall that the principle of material frame indifference requires that the
response function satisfies the condition:

g(F) = Rg(U)R". (7.25)
The response function can equally be written in terms of C as follows
&(C) = g(VC) = g(U). (7.26)

From (7.21), (7.24)—(7.26) we get

®

o = g(B) = 5(FBFT) = Rg(UBU)RT. (7.27)

5
Hoger [29] assumes that g is locally invertible. Then, on a neighborhood of B,

there is an isotropic function h = g~! such that at each point of the body

(7.22) can be inverted as
T
B = h(a). (7.28)
Finally, from the last relation and (7.27), the Cauchy stress at y = y(x,t) €
(}; can be written as
o = Rg(Uh(a)U)R". (7.29)
Since U = R™!F, the constitutive equation for the residually stressed body,
isotropic in the natural (virtual) configuration is thus of the form (7.19).
If g is not locally invertible, then the Cauchy stress o in the deformed

p-
configuration €2, is a function of U and B, like in (7.27) or a function of other

strain measures.
Remark

(i) The natural Mooney-Rivlin (incompressible) material is described by
the following constitutive relationship:

o=—pl+ 2B - 2B},
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where ¢ and ¢ are material coefficients. It is known that the constitu-
tive relationship for a Mooney-Rivlin material is invertible, see Johnson

and Hoger [38] for details.

The Cauchy stress tensor o in the deformed configuration §2; is now
given by

T g} 7
o =—pl+2¢FBF' —20,F-'B F~ T, (7.30)

To obtain the constitutive equation (7.30) in the form (7.19) one has
to perform the inversion of:

r r
g =—pl+2B—2cB . (7.31)
This was done by Johnson and Hoger [38].

(ii) Hoger [29] considered also the case where the underlying natural mate-
rial is transversely isotropic. The calculation is still algebraic, though

lengthy.

(iii) The method presented by Hoger [29] for transverse isotropy can be
generalized for any material symmetry with known basic invariants.
For more details the reader is referred to the paper by Hoger [29].

8. Conclusion

The residual stress is present in a large range of biological tissues in
physiological conditions. It usually builds up during the process of growth
of tissue or its adaptation to changing environment. Although researchers
were aware of these processes for a long time, the experimental evidence
of the existence of the residual stress has been brought to light relatively
recently. These findings led to a number of mathematical models aiming at
calculation of the residual stress in a given (physiological or pathological)
conditions, which are described in the present paper.

The knowledge of the residual stress in the living tissue is no less impor-
tant than in case of engineering materials because the state of this residual
stress influences the biological mechanisms of remodelling and adaptation of
the tissue. In that respect, the mechanical problem of finding the residual
stress field and the biological problem of tissue remodelling are inseparable.

http://rcin.org.pl



RESIDUAL STRESSES AND STRAINS AND REMODELLING OF Tissues 367

References

1.

o

~

10.

I 8

12:

13.

T. ApacHl, M. TANAKA, and Y. TOMITA, Uniform stress in bone struc-
ture with residual stress, J. Biomech. Eng. 120:342-347, 1998

. A. Ascenzi and A. BENVENUTI, Evidence of a state of initial stress in

osteontc lamellae, J. Biomech. 19 :447-453, 1977

A. Ascenzi, A. BENveENuUTI, A. Bicl, E. ForesTi, M.H.J. KOCH,
I'. MANGO, A. RipAMONTI, and N. ROVERI, X-ray diffraction on cycli-
cally loaded osteons, Calcif. Tissue Int. 62:266-273, 1998

. M.-G. ASCENzI1, A first estimation of prestress in so-called circulatory

fibered osteonic lamellae, J. Biomech. 32:935-942, 1999

D.H. BERGEL, The residual properties of the arterial wall, London 1960

. A. BoCHENEK and M. REICHER, Human anatomy, Vol. 3: Vascular sys-

tern (in Polish), Panstwowy Zaktad Wydawnictw Lekarskich Warszawa
1978

V. CaGrioTl, Sulla struttura delle ossa, Atti. Congr. naz. Clin. pura ed
appl., pp.320-331, 1935

C.J. Cuuonag and Y.C. Fung, Three-dimensional stress distribution in
arteries, J. Biomech. Eng. 105:268-274, 1983

. C.J. CHUONG and Y.C. FUNG, On residual stress in arteries, J. Bio-

mech. Eng. 108:189-192, 1986

C.J. CHuonG and Y.C. FunG., Residual stress in arteries, In G.W.
Schmid-Schonbein, S.L.-Y. Woo, and B.W. Zweifach [eds.], Frontiers in

Biomechanics, pp.117-129, Springer-Verlag, Berlin 1986

P.G. CI1ARLET, Mathematical elasticity, North Holland, Amster-
dam 1988

S.C. Cowin [ed.] Bone Mechanics Handbook, CRC Press, Boca Raton
2001

J.D. CURREY, DBones: Structure and Mechanics, Princeton University
Press, Princeton 2002

http://rcin.org.pl



368

J.J. TELEGA and M. STANCZYK

14.

15.

16.

17.

18.

19.

.20.

21.

23.

24.

A. DELFINO, N. STERGIOPULOS, J.E. MOORE, and J.-J. MEISTER,
Residual strain effects on the stress field in a thick wall finite element
model of the human carotid bifurcation, J. Biomech., 30:777-786, 1997

A. DorrMAN and A. MuHR [eds.|, Constitutive models for rubber,
Proc. The First European Conference on Constitutive Models for Rubber,
held in Viena 9-10 September 1999, pages 23-28, Rotterdam-Brookfield,
Balkema 1999

T.J. VAN DYKE, A new method for predicting the opening angle for soft
tissue, J. Biomech. Eng. 124 :347-354, 2002

P. Fripez, M. ZULLIGER, F. BoBARD, G. MoNTORZI, H. MIYAZAKI,
K. HAvAsHI, and N. STERGIOPULOS, Geometrical, functional, and his-
tomorphometric adaptation of rat carotid artery in induced hypertension,
J. Biomech. 36:671-680, 2003

Y. C. FUNG, Biomechanics: Circulation, Springer-Verlag, New York
1997

Y.C. FUuNG and S.Q. Liu, Change of residual strains in arteries due
to hypertrophy caused by aortic constriction, Circulation Res. 65 :1340-
1349, 1989

Y.C. FuNG and S.Q. Liu, Changes of zero-stress state of rat pulmonary
arteries in hypotoric hypertension, J. Appl. Physiol. 70: 2455-2470, 1991

Y.C. FUNG, Biomechanics, mechanical properties of living tissues, sec-
ond, enlarged and revised edition, Springer-Verlag, Berlin-New York
1993

F.A.M.W. GEBHARDT, Uber funktionell wichtige Anordnungsweisen
der groberen und feineren Bauelemente des Wirbeltierknochen. I. All-
gemeiner Teil, Arch. Entw. Mech. 12:1-52, 1901

S.E. GREENWALD, J.E. MoOORE, A. RacHev, T.P.C. KANE, and
J.-J. MEISTER, Ezperimental investigation of the distribution of residual
strains in the artery wall, J. Biomech. Eng. 119:439-444, 1997

H. GREGERSEN, T.C. LEE, S. CHIEN, R. SKALAK, and Y.C. FUNG,
Strain distibutin wn the layered wall of the esophagus, J. Biomech. Eng.
121 :442-448, 1999

http://rcin.org.pl



RESIDUAL STRESSES AND STRAINS AND REMODELLING OF Tissues 309

30.

31.

32.

33.

30.

5. H-C. HAN, L. ZHAO., M. HuAaNg, L.-S. Hou, Y.-T. HUANG, and

Z.-B. KUANG, Postsurgical changes of the opening angle of canine auto-
genous vein graft, J. Biomech. Eng. 120:211-216, 1998

. H.C. HAN and Y.C. FuNG, Direct measurement of transverse residual

strains in aorta, Am. J. Physiol. 270: H750-H759, 1996

. K. HAYASKI, Residual stress in living materials, In H. Fujiwara, T. Abe,

and K. Tanaka [eds.|, Residual stress III: Science and Technology vo-
lume 1, pp.121-127, Elsevier Applied Science, New York 1992

. A. HOGER, On the residual stress possible in an elastic body with material

symmetry, Arch. Rat. Mech. Anal. 88:271-289, 1985

. A. HOGER, Virtual configurations and constitutive equations for resid-

ually stressed bodies with material symmetry, J. Elasticity 48:125-144,
1997

G.A. HOLZAPFEL, Structural and numerical models for the (visco)elastic
response of arterial walls with residual stresses, In G.A. Holzapfel and
R.W. Ogden [eds.], Biomechanics of Soft Tissue, CISM Courses and
Lectures, Springer-Verlag, Wien-New York 2002

G.A. HorLzarreL and R.W. OGDEN |eds.|, Biomechanics of Soft Tissue,
CISM Courses and Lectures, Springer-Verlag, Wien—New York 2003

J.D. HUMPHREY, Remodeling of collagenous tissue at fired lenghts,
J. Biomech. Eng. 121:591-597, 1999

J.D. HumPHREY, Cardiovascular Solid Mechanics: Cells, Tissues and
Organs, Springer Verlag, New York 2002

J.M. HuvyGHE and P.H.M. BOVENDEERD, Biological Miztures, in:
AMAS Lecture Notes 20, Modelling Coupled Phenomena in Saturated
Porous Materials, pp.227-276, Warszawa-Bydgoszcz 2004.

. S. JEmIOLO and J.J. TELEGA, Representations of tensor functions and

applications in continuum mechanics, IFTR Reports, 3, 1997

S. JEMIOLO and J.J. TELEGA, A pseudo-hyperelastic model of soft tis-
sues, Acta Bioeng. Biomech., Vol. 3(Supp. 1), pp.208-216, 2001.

http://rcin.org.pl



370 J.J. TELEGA and M. STANCZYK
37. B.E. JounsonN and A. HOGER, The dependence of the elasticity tensor

38.

39.

40.

41.

42.

43.

44,

46.

47.

on residual stress, J. Elasticity 33:145-165, 1993

B.E. JounsoN and A. HOGER, The use of virtual configuration in for-
mulating constitutive equations for residually stressed elastic materials,
J. Elasticity 41:177-215, 1995

S.Q. Liv and Y.C. FUNG, Zero-stress state of arteries, J. Biomech. Eng.
110:82-84, 1988

S.Q. Liv and Y.C. FUNG, Relationship between hypertension, hypertro-
phy, and opening angle of zero-stress state of arteries following aortic
constriction, J. Biomech.Eng. 111 :325-335, 1989

T. Marsumoro, T. Goto, T. FURUKAWA, and M. SATO, Residual
stress and strain in the lamellar unit of the porcine aorta: experiment
and analysis, J. Biomech. 37 : 807-815, 2004

T. MarsumMoTO and K. HAYASHI, Response of arterial wall to hy-
pertension and residual stress, In K. Hayashi, A. Kamiya, and K. Ono
leds.|, Biomechanics— Functional Adaptation and Remodelling, Springer-
Verlag, Tokyo 1996

J.-J. MEISTER, Residual strains effects on the stress field in a thick
wall finite element model of the human carotid bifurcation, J. Biomech.
30:777-786, 1997

N. NuNO and G. AVANZOLINI, Residual stresses at the stem-cement in-
terface of an idealized cemented hip cement, J. Biomech. 35:849-852,
2002

R.W. OGDEN, Non-linear Elastic Deformations, Dover Publications,
New York 1997

R.W. OGDEN, Nonlinear Elasticity with Application to Material Mod-
elling, Lecture Notes, 6, Centre of Excellence for Advanced Materials and
Structures, AMAS, IFTR PAS Warsaw, Poland 2003

R.W. OGDEN and C.A.J. SCHULZE-BAUER, Phenomenological and
structural aspects of the mechanical response of arteries, In J. Casey and
G. Bao |eds.], Mechanics in Biology, vol. AMD-242, BED-46, pp.125-140,
The American Society of Mechanical Engineers, New York 2000

http://rcin.org.pl



RESIDUAL STRESSES AND STRAINS AND REMODELLING OF TIssurs 371

48

52.

T. OkuyaMA and H. YAMAMOTO, Residual stress in living tree, In
H. Fujiwara, T. Abe, and K. Tanaka [eds.], Residual stress III: Science
and Technology, pp.128-133, Elsevier Applied Science, New York 1992

. J.H. OMENS and Y.-C. FUNG, Residual strain in rat left ventricle, Cir-

culation Res. 66 :37-45, 1990

. J.H. OMENS, S.M. VAprLON, B. FazeLl, and A.D. McCULLOCH, Left

ventricular geometric remodeling and residual stress in the rat heart,

J. Biomech. Eng., 120:715-719, 1998

. J.H. OmENS, A.D. McCurLocH, and J.C. CRISCIONE, Complez dis-

tribution of residual stress and strains in the mouse left ventricle: experi-
mental and theoretical models, Biomechan. Model. Mechanobiol. 1:267-
277, 2003

P. Parirucc, Computer program for fitting pseudo-strain energy func-
tions to soft tissue experimental stress and strain data, Digital Equip-
ment Users Society, DECUS, One lron Way Marlboro, Masachussetts
1982 pp.11-548

3. A. RACHEV, N. STERGIOPULOS, and J.-J. MEISTER, A model for geo-

metric and mechanical adaptation of arteries to sustained hypertension,

J. Biomech. Eng., 120:9-17, 1998

. A. RACHEV, A model of arterial adaption to alterations in blood flow,

J. Elasticity 61:83-111, 2000

A. RAacHEV and S.E. GREENWALD, Residual strains in conduit arteries,
J. Biomech. 36:661-670, 2003

. Y. SEGucHl, Preliminary study on adaptation by remodeling, Tissue En-

gineering, page 75, 1989

. L.A. SETTON, H. ToHYAMA, and V.C. Mow, Swelling and curling

behaviors of articular cartilage, J. Biomech. Eng. 120:355-361, 1998

. F.H. Siver and G. BRADICA, Mechanobiology of cartilage: how do in-

ternal and external stress affect mechanochemical transduction and elas-
tic energy storage?, Biomechan. Model. Mechanobiol. 1:219-238, 2002

http://rcin.org.pl



372

J.J. TELEGA and M. STANCZYK

89.

60.

G1.

62.

63.

64.

65.

66.

67.

68.

69.

R. SKALAK, S. ZARGARYAN, R.K. JAIN, P.A. NETTI, and A. HOGER,
Compatibility and the genesis of residual stress by volumetric growth,
J. Math. Biol. 34:889-914, 1996

M. STANCZYK, Thermal problems in orthopaedic biomechanics [in Po-
lish|, PhD thesis Institute of Fundamental Technological Research, Polish
Academy of Sciences Warsaw, Poland 2004

S.R. SuMMEROUR, J.L. EMERY, B. Fazeri, J.H. OMENS, and
A.D. McCuLLOCH, Residual strain in ischemic ventricular myocardium,
J. Biomech. Eng., 120:710-714, 1998

L.A. TABER, A model of aortic growth based on fluid shear and fiber
stresses, J. Biomech. Eng. 120:348-354, 1998

L.A. TABER and S. CHABERT, Theoretical and experimental study
of growth and remodeling in the developing heart, Biomech. Modeling
Mechanobiol. 1:29-43, 2002

L.A. TABER and J.D. HUMPHREY, Stress-modulated growth, residual
stress, and vascular heterogeneity, J. Biomech. Eng. 123 :528-535, 2001

K. Takamizawa and K. HavasHl, Constitutive law of the arterial wall
and stress distribution, In G. Yagawa and S.N. Atluri [eds.], Compu-
tational Mechanics‘86: Theory and Applications, Proc. Int. Conf. Com-
putational Mechanics, May 25-29, pp.IV-149-1V-154, Springer-Verlag,
Tokyo 1986

K. TakaMmizawa and K. Havasui, Strain energy density function and
uniform strain hypothesis for arterial mechanics, J. Biomech. 20:7-17,
1987

K. TaAkaM1ZAWA and K. HAYAsHL, Uniform strains hypothesis and thin-
walled theory in arterial mechanics, Biorheology 25 :555-565, 1988

K. TakamizawA and T. MATSUDA, Kinematics for bodies undergoing
residual stress and its applications to the left ventricle, J. Appl. Mech.
57:321-329, 1990

M. TANAKA and T. ADACHI, Preliminary study on mechanical remod-
eling permitting residual stress, JSME Int. J. 37:87-95, 1994

http://rcin.org.pl



RESIDUAL STRESSES AND STRAINS AND REMODELLING OF TIssuEs 373

72,

73.

74.

79.

M. TANAKA and T. ADpAcHI, Model and simulation of bone remodel-
ing considering residual stress, In K. Hayashi and H. Ishikawa [eds.],
Computational Biomechanics, pp.3—-21, Springer, Tokyo 1996

71. M. TANAKA and T. AbpacHl, Residual stress in bone structure: ex-

perimental observation on model study with uniform stress hypothesis,
In K. Hayashi and K. Ono |eds.|, Biomechanics— Functional Adaptation
and Remodeling, pp.169-184, Springer-Verlag, Tokyo 1996

M. TaNAKA, T. AbacHl, Y. SEcucHI, and Y. MORIMOTO, Residual
stress of biological tissues and model of adaptation by remodeling, In
H. Fujiwara, T. Abe, and K. Tanaka |eds.], Residual stress III: Science
and Technology, volume 1, pp.134-139, Elsevier Applied Science, New
York 1992

M. TaNAKA, T. ApacHl, and Y. ToMmiTA, Mechanical remodeling of
bone structure considering residual stress, JSME Int. J. 39 :297-305, 1996

J.J. TELEGA and R. WOUNAR, Streamning potentials in biological tis-
sues, in: AMAS Conference Proceedings 5, Orthopaedic Biomechanics,
pp.383-453, Warszawa 2003.

R.N. Vaisunav and J. VossouGHI, Residual stress and strain in aortic
segments, J. Biomech. 20:235-239, 1987

R.S. VaisuNAv and J. VOSSOUGHI, Estimation of residual strains in
aortic segments, In C.W. Hall [ed.], Biomedical Engineering II, Recent
Developments, pp.330-333, Pergamon Press, New York 1983

7. J. VALENTA, T. HURUS, M. SOCHOR, R. ClHAK, C. PovysiL, and

J. STEIDL, Residual stresses in the human aorta and thewr influences by
growth and remodelling, Bio-Medical Mater. Eng. 7:159-169, 1997

J. VossouGHI, Z. HEDJAZI, and F.S. BORRIS, Intimal residual stress
and strain in large arteries, In BED, 1993 Bioengineering Conference,
ASME, Vol. 34, pp.434-437, 1993

H. WEINANS, R. HuiskEs, and H.J. GROOTENBOER, Effect of material
properities of femoral hip components on bone remodelling, J. Orthop.
Res. 10:845-853, 1992

http://rcin.org.pl



374 J.J. TELEGA and M. STANCZYK

80. J.J. WeENTZEL, F.J.H. G1IsEN, N. STERGIOPULOS, P.W. SERRUYS,
C.J. SLAGE, and R. KRAMS, Shear stress, vascular remodeling and
neointimal formation, J. Biomech. 36 : 681-688, 2003

81. Q.-S. ZHENG, Theory of representations for tensor functions—a unified
wnvariant approach to constitutive equations, Appl. Mech. Rev., 47 : 545
587, 1994

A. Kinematics

Let x and y, respectively, denote the position vector of a material point
in some reference configuration, denoted (2, and the (deformed) current con-
figuration denoted by §2;, which may vary with time ¢. The motion (or time-
dependent deformation) from 2 to € is known when y is specified as a func-
tion of x and ¢. Then we write

y =¥(x,t) (A1)

where y is the function describing the motion. For each t, y is invertible and
satisfies appropriate regularity conditions.
The deformation gradient tensor, denoted F(x, 1), is given by

F = Vi¥(x, 1) (A.2)

and has Cartesian coordinates Ij; = dy;/dx;, where y; and x; are the compo-
nents of y and x, respectively, i, j = 1,2, 3. Local invertibility of deformation
requires that F be non-singular and the usual convention that

J=detF >0 (A.3)

is adopted, wherein J is defined.
The inverse of y(x,t), t-fixed, is

x=yy,t) Vyeq (A4)
where x € Q.
A motion is said to be rigid if the distance beween any two particles of

does not change during the motion. The rigid motion is defined by

y = 9(x,1) = Q(t)x + c(t) (A.5)
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where Q(t) is a proper orthogonal second-order tensor and c(t) is a transla-
tion vector.

In the case of € the position vector x and time t serve as independent
variables, and the fields are then said to be defined in terms of the referential,
material or Lagrangian description. Similarly, in the case of €;, y and ¢ are
used and the description is said to be spatial or Eulerian.

The velocity v and acceleration a of a material particle are given, respec-
tively, by

£, AP

v = %(x, t), o= (())_ti,
these being the first and second material time derivatives of y.

We already know that det F # 0, cf. (A.3). Hence F has an inverse F~1,

given by

(x,1) (A.6)

P = x (A.7)
with components
Jdx;
F= = A8
( ) J OUJ ( )

Indeed, a straightforward calculation yields

Qyi Oz Oy

FF—I - .‘F~l i = _____:(5
( )u zk( )k_] 8;rk Byj Byj 1)
We have 5
s
Fijdz; = %dl‘j = dy;,
1.€.,
dy = Fdx, (A.9)
which has inverse
dx = Fldy. (A.10)

Equation (A.9) describes how small line elements dx of material at x
transform under the deformation into dy (which consists of the same material
as dx) at x. It shows that line elements transform linearly since F depends
on x, and not on dx. Thus, at each x, F is a linear mapping (i.e. a second-
order tensor).

We justify taking F to be non-singular (det F # 0) by noting that Fdx #
0, i.e. a line element cannot be annihilated by the deformation process.
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Let ¢ be a scalar field defined on €, i.e. ¢(y,t). Since y = y(x,t) we
may write

o(y,t) = 9[F(x, 1), 1] = B(x, 1) (A1)

which defines the notation .

The material derivative of ¢ is the rate of change of ¢ at fixed material
point P, i.e. at fixed x. Usually, the material derivative is written D¢/Dt.
Performing simple calculation and using (A.G);, (A.11) we get

Dy 9o

Sometimes the notation ¢ is used instead of D¢/ Dt.
Similarly, in the spatial description the acceleration a is given by

Dv  Ov |
a=—=—+(v-V,)v. A.13
Dt o TV W ) (A.13)
Let ¢, u, T respectively be scalar, vector, and second-order tensor fields

associated with a moving body. The following useful formula hold:

Vi = FTV, 0, Vxu = (Vyu)F,
(A.14)
divxu = J divy(J~'Fu), divyT = J divy(J'FT).

We recall that J = det F.

Let us pass now to the deformation of area and volume elements. First,
consider a surface S in €2 which deforms into the surface S; in €2;. Let x € S
and let y be the corresponding point on S;. By dx; and dx; we denote line
elements of material on S based at x with images dy; and dys on S; under
the deformation. Obviously, the line elements are tangential to the surface.

The transformation of the surface element is given by the following equa-

tion (Nanson's formula)
nd4, = JF TmdA (A.15)

where n denotes versor normal to the surface element dA; (deformed con-
figuration) and m denotes versor normal to surface element dA (reference
configuration).

The transformation law for the volume elements is simply

dvy = JdV. (A.16)
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Hence we conclude that J is a measure of the change in volume under the
deformation. The deformation is said to be isochoric if there is no change in
volume, i.e.

J=detF = 1. (A.17)

A material for which (A.17) holds for all deformations is called an incom-
pressible material.

Let F be the deformation gradient, det F > 0. There exist unique, positive
definite, symmetric tensors, U and V, and a unique proper orthogonal tensor
R such that

F=RU =VR. (A.18)
The last relation is called the polar decomposition theorem.

Since U is positive definite and symmetric there exist unique eigenvectors

u” such that

U = u® @ u® = 2u® @ u® + 2u® @ u?@ + A5u® @ u®  (A19)

where A; > 0 are the principal stretches of the deformation and ul are the
principal directions; obviously, A\; = )\(u('i)). Simple calculation shows that
Ai > 0 and ), are also the eigenvalues of V with eigenvectors Ru(.

Now we proceed to introducing the notion of stretch, extension, shear
and strain. Let ¢ and d be unit vectors along dx and dy respectively, so that
dx = c|dx|, dy = d|dy| and (A.9) yields d|dy| = Fe|dx|. Hence

ldy|? = (Fc) - (Fc)|dx|? = (FTFe) - c|dx|?. (A.20)
The last relation gives

:%1_1 = |Fc| = [c - (FTFe)]? = A(c), (A.21)

which defines A(c), called the stretch in the direction ¢ at x. We observe that
0 < A(c) < +oc for all unit vectors c.
Take now a pair of line elements dx, dxs based at x so that

dy1 = Fdxi, dyy = Fdyo.

Let # denote the angle between them and ¢ the corresponding angle after
deformation. Then

costl = ¢y - ¢y, cost =
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The change in angle § — 9 (which may be positive or negative) is called the
shear of the directions ¢, ¢ in the plane of ¢ cs.
Furthermore, from (A.20) we get

|dy|? — |dx|* = dx - (FTF — I)dx. (A.22)

The material is said to be unstrained at x if no line element changes length,
lLe.,
dx - (FTF - Ddx =0  Vdx,
or, equivalently,
Me)=1 for all unit vectors c.

It follows that FTF — I = 0, the zero tensor. Then F is just a rotation R,
since, for orthogonal R, we have RTR = 1.

Strain is measured locally by changes in the lengths of line elements, i.e.,
by the value of (A.22). Thus, the tensor FTF — T is a measure of strain. The
so-called Green strain tensor E is defined by

E = %(FTF =T (A.23)

Using the polar decomposition (A.18) for the deformation gradient F, we

may also form the following tensor measures of deformation:
C=F'F=U% B=FF =V (A.24)

We refer to C and B as the right and left Cauchy-Green deformation tensors,
respectively. Then E may be written as follows:

1 1,

E(C_I) = —(U* -1). (A.25)

b 2

The tensors U and V are called the right and left stretch tensors, re-

spectively. We observe that the deformation F rotates the principal axes of

U into those of V as well as consists of stretching along those directions.

The principal axes of U and V are often referred to as the Lagrangian and
FEulerian principal axes, respectively.

In fact, one may define an infinite family of strain measures based on U.

For instance, we define E(™ as follows:

E® =InU if m=0, (A.26)
. 1

EM™ = (U™ -1) if m#0, (A.27)
m
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where m is a real number, not necessarily an integer. These are Lagrangian
tensors, all coaxial with U, and having eigenvalues InA; for m = 0 and
(A" —1)/m for m # 0. Corresponding Eulerian tensors el™) are based on V
and are defined by

e =mnv it sn =0, (A.28)
1

e™=_—(V™_1) if m#D0. (A.29)
m

We observe that, on recalling the connection V.= RURT, ™) = RE(MRT
for each m. Consequently, E(™ and e(™) have the same eigenvalues.

The reader probably noticed that we use interchangeably the expressions
“strain tensor” and “strain measure”, like many authors do.

Let us recall that the displacement vector u of a particle is defined as
follows:

u=y-—-x (A.30)
Hence
Yy=x+4+u
and
F = Viy =1+ Viu. (A.31)

Here Vxu is the displacement gradient.

Analysis of motion

Previously, the velocity has been introduced and denoted by v. The ve-
locity gradient L is defined by

L = Vyv. (A.32)
It can be verified that the following identities hold

F =LF. (A.33)

;0 . dv;
J= a(det F) = Jtrh = JLg = Jdivyw = ]d—y: (A.34)

Hence we conclude that divyv measures the rate at which volume changes
during the motion. Consider an isochoric motion: J = 1, J = 0; consequently

divyv = 0.
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Let us set
L=D+ W, (A.35)

where
1
2

D is called the (Fulerian) strain-rate tensor or rate of stretching tensor.

D=SL+1"), W= é(L _LT), (A.36)

Obviously, the motion is rigid if and only if D = 0.

We have
J 13, .
a(dy) = at(F(lx) = Fdx = LFdx = Ldy = (D + W)dy.
Let now D = 0, so that
%dy =Wdy =w x dy (A.37)

where w is the axial vector of W, i.e.,
w; = E,jjkI/ij.

Here (g,%) is the permutation or orientation symbol.

Formula (A.37) shows that in this specific case (D = 0) the motion is
locally a rigid rotation and W is a measure of the rate of rotation (or spin) of
line elements and it is called the body spin. The sum of D and W shows that
the motion consists of stretching and rotation (similar to the interpretation of
U and R). However, if D # 0 then it contributes a rotation to line elements
and the interpretation of W requires modification, cf. Ogden [46].

B. Balance Laws, Field Equations and Stress

Let Ry be an arbitrary region in the current configuration €2;. Under the
assumption of no mass transfer, as R; moves it always consists of the same
material, so its mass does not change, i.e.,

d
— [ pdVy = 0. (B.1)
dt
Ry
The last equation presents one form of the conservation of mass equation. To
derive the local equation, we use one of transport formulas. Let ¢ be a scalar
field defined on €2, and particulary on R;. We have

d

= /Mv, = /(m ¢trL) dV;, = /(qs+ ¢ divyv) dVi. (B.2)
R; R R
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Applying (B.2) to (B.1) and noting that R; is arbitrary, we obtain
p+ pdivyv =0. (B.3)

This equation is known as the confinuity equation. Recalling that, see Eq.
(A.12),
. Dp 0Op
= —=—+4+v- -V,p,
=Dt " am yp
Eq. (B.3) is transformed into an equivalent form
d
._[) + divy(pv) = 0. (B.4)
ot
Recall, form (A.34), that J = J divyv. Substitution for divyv from (B.3)
then gives pJ + pJ = 0. Hence d(pJ)/dt = 0. In the reference configura-
tion J = 1 so that pJ = p°, where p is the mass density in the reference
configuration. Thus,
p=J"1p0 (B.5)

The concepts of force and torque describe the action of a moving body B
on its surroundings and the mutual actions of the parts of B on each other.
With Ry C §2; we associate two vectors, F(R;) and G(Ry; O), called the force
and torque with respect to origin O on the material in R,. In general two
types of force and torque must be accounted for. These are body forces and
body torques, which act on the particles of a body (arising from gravity or
magnetic fields, for example), and contact forces and contact torques resulting
from the action of one part of the body on another across a separating surface
(for example, pressure, friction or adhesion).

The body force and torque, measured per unit mass, are denoted b and c,
respectively. Their contributions to F(R;) and G(R; Q) are

[ avie [ty (ob) + pel avi
Ry Ry

respectively, where y is the position vector of the point at which b acts.
A mathematical description of contact forces (but not torques) relies on
Cauchy’s stress principle, which is regarded as an axiom. This states that

the action of the material occupying that part of € exterior to
a closed surface S; on the material occupying the interior part is
represented by a vector field, denoted t(n,y), defined on S; and
with physical dimensions of force per unit area.
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We refer to t as the Cauchy stress vector.
For nonpolar materials the total force and total torque (sometimes re-

ferred to as couple) about O acting on R, are given by

R(R)) = /pb dVy + / t dAy, (B.6)
R aR,
G(R;0) = fp(y xb+c)dVi+ ] y X t dA,;. (B.7)
Ry ARy

The linear momentum of the material occupying Ry C §; is defined as

M(R;) = ‘/)v dv;. (B.8)
/

With respect to an origin O, the angular momentum of the material

occupying Iy is defined as

H(R; 0) = [y x (ov) Vi (B.9)
Ry

B.1. Euler’s Laws of Rotation

Euler’s laws of motion are defined by
dM dH
= F, F G. (B.10)
They parallel Newton’s laws for particles and rigid bodies. There is, how-
ever, a difference. In classical mechanics (B.10), is a consequence of (B.10);,
whereas in continuum mechanics this is not the case and the two equations
in (B.10) are independent.
To write (B.10) in an explicit manner one needs the following transport
formula
;—It/udV, = /[u + (trL)u] dV; (B.11)
R Ry
which holds for any vector field u.
Setting ¢ = 0 and applying (B.11) to (B.10); with u = pv and taking

into account (B.3) we obtain

/p(a— b) dV; = /t dA,, (B.12)

R aR,
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where a = v denotes the acceleration.
Similarly from (B.10), we get

] py x (a—b)dV, = / y % t dA;. (B.13)
Ry IRy

Note that v x v = 0.

B.2. Cauchy Stress Tensor

Let (t,b) be a system of surface (contact) and body forces for B during
a motion. A necessary and sufficient condition for the momentum balance
equations (B.12) and (B.13) to be satisfied is that there exists a second order
tensor o = (g;;), called the Cauchy stress tensor, such that

(a) for each unit vector n,
6(n,x) = o(y)n(y), (B.14)
where o is independent of n,
(b) the tensor o is symmetric, i.e.,
ol =0, (B.15)
(c¢) o satisfies the equation of motion
pa = divyo + pb. (B.16)

B.3. Energy Balance Equation

This equation has the following form
d
E.(Ry) = EK(Rt_) + Pin(Ry). (B.17)

Here P.(R;) denotes the rate of working, or power, of the forces acting on Ry
defined by

PE(Rt)zfpb-erll/t+/t-vdAg. (B.18)
Ry IR
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The kinetic energy K(R;) of the material occupying Ry is defined as fol-

lows i
K{R) = 5//)\/ v dV (B.19)
R
and
Pun(Ry) = / ir(oD) dVi. (B.20)
R

From (B.17) we conclude that the power of forces acting on Ry is con-
verted into kinetic energy and P, (R;). The latter may consist of stored (or
potential) energy or be a measure of the amount of work dissipated in the
form of heat or be a mixture of the two.

C. Conjugate Pairs of Stress and Strain Tensors

Using Nanson’s formula (A.15) the traction on an area element ndA4, in
the current configuration can be written as follows

t d4; = on dA; = JoF 'm dA = Pm dA, (C.1)
wherein the first (unsymmetric) Piola-Kirchoff stress tensor is defined by
P=JoF T (C.2)

The first Piola-Kirchoff stress tensor measures the force per unit reference
area while o measures the force per unit deformed area.
The symmetry of o gives

PF' = Fp'. 0053
The equaton of motion (B.16) can be written in terms of P
divyP + p°b = p%v. (C.4)

Alternatively, the identity divy(J~!F) = 0, obtained from (A.14)4 by
setting T = I, can be used to give

divyo = J Hdiv,P.

In the reference configuration the integral for P, becomes

/ Jte(eD) dV. (C.5)
R
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The last integrand presents the rate of working of the stresses per unat refer-
ence volume, i.e., the stress power density. Using the symmetry of o together

with (A.32), (A.33) and (C.2) we obtain

Jtr(eD) = Jtr(oL) = tr(FP'L) = tr(PTLF) = tr(P'F) = tr(SF).
(C.6)
Hence we conclude that the stress power is also given by tr(SF). We say
that & and F consistute a pair of conjugate stress and deformation tensors.
Furthermore, by setting E = E?) we write

E® = %(FTF =T},
Hence, by using (A.33) we get
E® = %(FTF + 1) = FYDF., (C.7)
The stress power is written as

tr(PTF) = tr(SF) = tr(SFTFTF) = tr(SF TE®) = tr(T®E®)

(C.8)
where
T® =8 =8F T=JF logF T (C.9)
is the second (symmetric) Piola-Kirchoff stress tensor, i.e. S = ST. The first
and second Piola-Kirchoff stress tensors are related by
P =F§5. (C.10)

The stress and strain pair (T E®) or (S,E) is a pair of conjugate
stress and strain tensors.
The Kurchoff stress tensor, being the “weighted” Cauchy stress, is denoted
by
= Je. (C.11)

We already know that FTF = U?, cf. (A.24);. Hence we also have
- 1 ..
EQ = 5(UU +UU).
Using the symmetry of T(?) and of U we obtain

tr(T('z)E@)) . tr(T(2)UU) = tr %(T(Q)U+ UT('.?))U _
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Thus we may introduce the definition of the Biot stress tensor T | conjugate
to the strain tensor

EN=U=1, (C:12)

as

T = %(T(Q)U +UT®). (C.13)

Indeed, E(!) = U and consequently the stress and strain pair (T}, E(}))
constitute a pair of conjugate stress and strain tensors.
By using the polar decomposition (A.18), the Biot stress tensor takes the
form
) = é(SR +RTST) = %(PTR +RP). (C.14)

Summarizing, we have the connections
Jtr(eD) = tr(SF) = tr(TPE®) = tr(TWEW), (C.15)

Moreover, § = PT, T(2) = 8§ and P and S denote the first and second
Piola-Kirchoff stress tensor, respectively. The strain measure E(2) is usually
denoted by E.

More generally, the symmetric stress tensor T conjugate to the strain
tensor E™ = (U™ —1)/m may be defined via the identity

tr(TMEM) = tr(TWED) = tr(TMU). (C.16)

The limit case m — 0 is much more complex and we will not discuss it

here.

D. General Constitutive Relationships for Elastic Materials

This section presents an introduction to constitutive modeling of nonli-
near elastic materials. We shall discuss isotropic, transversally isotropic and
orthotropic materials. Inelastic materials will not be discussed, though con-
tact problems with friction for finitely deformed plastic materials are of great
practical interest.

Revival of interest in nonlinear elasticity is due to the development of
rubber-like materials (see Dorfmann and Muhr, [15]) and constitutive mod-
eling of soft tissues, cf. Holzapfel and Ogden [46], Jemiolo and Telega [36].
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D.1. General Relations

Let us first introduce the notion of Cauchy elasticity. A material is said to
be elastic in the sense of Cauchy if it is described by the constitutive equation
in the form, cf. Ciarlet [11], Ogden [45, 46],

o = g(F). (D.1)

Here g is a symmetric tensor valued function, defined on the space of defor-
mation gradients F. We recall that o = o7, Equation (D.1) states that the
stress in €2 at a point x depends only on the deformation gradient at x and
not on the history of deformation. In particular, it is independent of the path
of deformation taken to reach the point F. The function g is referred to as
the Cauchy stress response function.

The elastic material is called homogeneous if g does not depend explicitly
on x € Q. If it does, the material is mmhomogeneous. For instance, g may
depend on x if

o = g/ (x), F). (D:2)

As previously, pU denotes the mass density in the reference configuration.
Soft tissues as well as bone tissue are inhomogeneous biological material.
When the stress is removed the deformation vanishes, so that

g(I) = 0. (D.3)

It means that the underformed configuration is free of stress.
Condition (D.3) is not satisfied in the presence of residual stresses, like
in soft tissues.

Suppose now that a rigid-body motion

y = Q(t)y +c(t) (D.4)

is superimposed on the motion y = y(x,t). Then the deformation gradient,
F say, is given
F=1QF, (D.5)
Indeed, since
Yi = Qikyk + G

we obtain

0y, O1
21 = Qimﬂ = Qim‘smk = Qik':
Yk Ak

http://rcin.org.pl



388 J.J. TELEGA and M. STANCZYK

and thus
= dyi 0y Oy
= — = —— — = .~F‘ ;.
K Ox; Oy Oxj QikFij

For an elastic material with response function g, the stress tensor, o say,

associated with the deformation gradient F is
o=g(F).

Under the rotation Q the unit normal to dR; becomes n = Qn and the

traction vector t becomes t = Qt. Since t = on, t = on we obtain

Qon = aQn.
This holds for arbitrary n and hence
o =QoQ".
The response function g must therefore satisfy the wnvariance requirement
T e I :
g(F) = g(QF) = Qg(F)Q (D.6)
for each F and all rotations Q. The last relation expresses the fact the
constitutive equation (D.1) (and similarly (D.2)) is objective. For a deeper
discussion, the reader is referred to Ciarlet [11], Ogden [45], [46, p. 47].
Let ¢, u, T be scalar, vector and second-order tensor fields defined on €,
i.e. they are Eulerian in character. Let ¢, U, T be the corresponding fields on

€, where §; is obtained from € by the rigid-body motion (D.4). The fields
are said to be objective if, for all such motions,

¢=¢, @=Qu, T=qQTQ"l (D.7)

It can easily be verified that if ¢ is an objective scalar field then V¢ is

an objective vector field, i.e.
Vg,d) = QV,¢.

We note that neither the velocity nor acceleration are objective vectors.
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D.2. Material Symmetry

Let G be a subgroup of the full orthogonal group O(3). G is called the
symmetry group of the material relative to  if

g(FQ) = g(F) (D.8)

for all Q € G. In the particular case, if G is the proper orthogonal group then
the material is said to be isotropic relative to €2, and (D.8) holds for all proper
orthogonal Q (for every deformation gradient F'). Physically, this means that
the response of a “small” specimen of material cut from € is independent of
its orientation in 2.

To find the general form of isotropic constitutive equation for a nonli-
near isotropic material one may use the theory of representation of isotropic
second-order symmetric tensor functions, cf. Jemioto and Telega [35], Zheng
[81].

Let us apply this theory to isotropic elastic materials. From (D.8) we have

o =g(F) =g(FQ) (D.9)

for all proper orthogonal Q and each deformation gradient F.
The choice Q = RT and use of the polar decomposition F = VR in (D.9)
yield
o=g(V).

We have
Qe(V)Q" = Qg(F)Q" = g(QF).
Replacing F by QF and Q by RTQ" and knowing that F = VR we get

Qg(V)Q" =g(QvQ™) (D.10)

for all proper orthogonal Q. However, since Q occurs twice on each side of
(D.10), allowing Q to be improper orthogonal does not affect (D.10), which
then states that g(V) is an isotropic, second-order tensor function of V, cf.
Jemioto and Telega [35], Zheng [81].

Note that for an isotropic elastic material, & = g(V) is coazial with V,
i.e. with the Eulerian principal axes. According to the representation theory
of isotropic tensor functions we have, cf. Jemioto and Telega [35|, Zhang [81]

o =g(V)=¢ol+ o1V + ¢2 Vo, (D.11)
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where ¢g, ¢1, ¢o are scalar (invariant) functions of V, i.e. functions of

L =M+ X+ A3 = tr'V, Io = M Ao+ Aodg + A A,
I3 = AMjA2As.

We may also write
3
o= Zoiv(i) @ v(i),
i=1

where
oy = ¢o + 1A + P27, 1=1,2,3.

D.3. Hyperelastic Materials

The energy balance equation can be written in the form

d [1
/pb-vth+/t-vdAL=E/va-vdl/}+/tr(ch)th. (D.12)

Ry OR: Ry R
If there is no dissipation then the work done by the body and surface forces is
converted into kinetic energy and stored elastic energy. Thus a natural need
for an interpretation of the second term on the right-hand side of (D.12)
arises. We have
f tr(oeD) dV; = /Jtr(aD) dv.
Ry R
Recall that tr(eD) = tr(eL); then, the integrand J tr(eL) is interpreted as
the rate of increase of elastic energy per unit volume in £.
Thus it is natural to introduce the elastic stored energy W(F) per unit
volume in €2 such that

J ,
EM/(F) = Jtx{eoL): (D.13)
We observe that W (F) is also referred to as the strain energy or potential
energy per unit volume in €2. Then, we get

/ tr(oD) dV; = f %W(F) dV=% W (F) dV.

Ry R R

The integral

/ W (F) dV

R
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is the total elastic strain energy in the region R. The right-hand side of (D.12)
can now be written as follows

d . . )
a(klnetlc energy + strain energy).

Since F = LF and W depends only on F (and on x for inhomogeneous
materials), we have

70 = g = (") = gy per = [ (Gg) 1]

Comparison of this with (D.13) yields

OWNT
Recalling that o = g(F) we get
OWNT
_ 71
g(F) = J F(aF) . (D.15)

Taking into account the relation (C.2) between the Cauchy stress o and the
first Piola-Kirchhoff stress P we readily obtain

oW

P=—.
oF

(D.16)

An elastic material which possesses a stored energy function W is said to
be hyperelastic or Green elastic material.

Note that the strain-energy function W may be isotropic or anisotropic,
depending on material.

D.4. Objectivity of W

The stored energy function W is a scalar function. In this case objectivity
requires that it is unaffected by a superimposed rigid-body rotation after
deformation, i.e.,

W(QF) =W(F) (D.17)
for all rotations @Q for each deformation gradient F. In other words, W is
indifferent to observer transformation.

RSN SR—
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