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l\ lass transport a nd diffusion proces es of a substance dissolved iu t he blood are 
studied. A linearization procedure over Lhe steady stale solution is carried ou t 
and an a<;ymptotic a nalysis is used to study the influence of a small curvat ure 

with respect lo t he straight, t ube. Numerical resull · show the characteristics of 
the long wave propagat ion a nd the role played by Lhe curvature on l he solute 
cl istri but ion . 
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1. Introduction 

1\ Jass transfer and diffusiou phenomena inside the arterial lumen and 

through the vascula r wall arc of greaL importance for physiological func­

tions, such as oxygenation . nomishment of t issues and metaboli c drainage 

processes. Some mathemat ical models coupling 3D flow and solute dynamics 

have been developed in recent years [l 1] . They a re defin ed in a finite arterial 

segment of arbitrary shape, where an inflow solute distribution is provided 

[L 2[. Some of them consider a lso absorption and exchange through the vas­

cul ar tissues [3[ . All these models provide the local concentrat ion pattern 

and are useful to understand the relationship betweeu the local flow pattern, 

the nourishing of arterial tissues and possible pathologies derived when such 

a process is altered [4]. 
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lt is known that gemnclrical di'C'ct~. such as cun·ature. will strong!)· affect 

the flo\\' pattern and c·onsc•quent h· tire cmtc·c•ntral ion of gases and substances 

dissohwl in the blood j:JJ. It is wort h to im·c'stigate how. and to w hat extent. 

the geomel r~· and the haemodynamic factors arc responsible for anomalous 

accmnulation and altered absorption of substances 0 11 the arterial wall. lead­

ing to at!IC'rosclcrolic IC'sions and cl<'gcncrati\'e processes JGJ. 
In the present paper. a perturbation approach is used to model the mass 

transport and dif!'w;ion process inside a st might or moderatc·l.Y cmvcd a rtn.v. 

si milarlY to the \\'or k in J7J. 1 t is desni bed by the ad wet ion-cl i ffusion equation 

and a Robin interface condition is imposed at the boundary to mode'! n solut e 

exchattgc l hrough l he \\'all. with the' flu,,· field given. For most su bs tances such 

a process is con\'ection dominated. due to a low diffusion coefficient Jr>]. Dcing 

i ntC'l'esl <'d in propar,a l i vc phenouJc•na. we' consider the solute dvna111 ics inside 

t lw vascu lar tissne negligible. and the so called .frC'C'-wall model is used Jlj. 
Induced by the periodicity of respiratory. hormonal ami feeding acts. the 

concentration of a substance in blood is subject both to a n oscillation in lime 

and to a spatial variation a long the \'esse!. s ust ainccl b,v l be fluid motion J5. GJ. 
For example. the pulsatik insul in release in the blood stream is induced by 

l he oscillation in gl.\·<·olysis and gcncratcs a wave of pcriod 5 10 min. [8J. 
ln gcncral. the wa\'c' period is ::;trongly dcpcJl(lcnt on the substance consi­

dered. As a <·onscqm'nce. for aJl\' substance. we' look for the propagation 

characteristics. in relation with l he medium diffusi\·ity and wall pt'l'lllcability 

prop ell i('S. The aim of tit is sltld\' is to characterize the solu t <' prop<lgat ion 

i 11 t hc' blood flow and to ])l'm·idc the local di~l ri but ion of conccnt rat ion that 

can !)(' affected 1>.'· gconwt rical factors. sncl! a:-. the C'lll'\'alt irc . 

The layout of this paper is as follows: in Sec. 2 the mathematical problem 

is stated in its general fonnulation as a con\·cct ion-diff'us ion equation a nd its 

coupling with fluid d.ynamics is shm,·n. For simplicity. the diffusi\'ity and the 

\mll pcrmeahility coefficients are assumed constants. llencc. a linearization 

procedure' owr a steady state sohllion is accontplis ll('d and a spli tting of the 

concentration variablc from thc fluid d.nw.mical field is achicwd. A wave type 

solution in a torus is sought for the uustc·ady component (Sec. 3) and a per­

lmlmtiou method is used to sepHratc the d01ninant component in a st raight 

tube from the part due to a possible s111all cur\'ature (Sec. J). Finally. in Sec . . ) 

some uutnc•rinll expcri lll('llts show the charnel erist ics oft he waH' propagation 

in a straight and in a IH'nded artery and the influcnce of gcomctrical factors 

on the soln le d isl ri but ion. 
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2. The Advection-diffusion Problem 

The I not ion of blood in a wss<'l is mode' I led by the flo,,- of a 11ewt on iau 

viscou:-. fluid in an clastic tube. Different substances arc dissolved in blood. 

transportC'd through the' strean1 and possibly exchanged through the' arterial 

\\·all 1->. Gl. For simplicit .v. the prcscilC"<' of om' solute ou]_,. is considered and 

let us dc•not<' b_v c its conccnt rat io11. f3ccmtsc of both diffusive and convective 

piH•notnc•na, c satisfies the' follo\\'ing advc'ction-diffusion cquatiou Ill: 
i.k - + v · \1 c - ft6.c = 0 ut (2.1) 

\\'it II v t he• fluid n'locity. I' > 0 a diffusivit~· coefficient. A po:-,siblc C'xchang<' 

of solute through the wall is c'X[W<'ssC'd b_v: 

(/i\?c) · n + ac· = aCext (:2.2) 

\\'here a 2: 0 is th<' \\'all [Wrmc•a hi I it _v and Cext is a con cent rat ion ext crnal 

to the vcssd (if the \\·all is illlpnmeablc. a = 0). Jn the fol lowing. we' will 

IH' intc'rcsted in t h<' c·oiiC'C'IIt rat io11 d_vnaiiiics in the lumen oul)·. Therefore 

the pn'S<'IIt Illodcl does 11ot account for any possible exlNnal variations of 

couc·c•nt rat ion. and c,,x1 is considcn'd coustaut. Strictly speaking. I' and a do 

depend ou the flo"· field and on the temper at 11 re 11. 21 but. for si 111 pi ici t y. let 

u:-. assume them as con:-.tant . Du<' to the• small value of /C for most substances 

l he prohlc·m is highly con,·cctiou dominated in large arteries. 

Ju principle'. fiuid and :-.olute d .vnan1ics arc c·ouplecl processes and influenc-e 

n•ci proC'allv. JJo\\'C\'C'r in t hi:-. mode· I the sol ut c is regarded as a pas:-.i \'C' :-.calar: 

it is simpl)· ad\·c•cted by the blood flow in t h<' lunH' Il. Hll)' feedback cfl'eC't 011 

the Uuid viscosity and density bcinp, neglected. As a consequC'IH'C\ we' split the 

flow fro111 t lie solul<' clynmnics: the fluid V<'loc·it~· v is computed hdorchaucl. 

a nd F:qs. (2.1) (2.2) ar<' subsequent l.v solved. 

J>rohi<'III (2.1 ) (2.2) is usuall.v defined in an arterial segment with proxi­

IIIal aud di:-.tal boundar_v condil ions assign<'d. together with an initial condi­

tion. 13,. standard arg uJnPnts for parabolic problems. it eau ])(' prO\nl that. 

und<'r appropriate reg ular it)' assumptions on the coefficients and 011 the vc­

locit .v fi(•ld. the a h ow boundary mluc problem i:-. mathcmat icall_,. ,,.<'11 posed 

I 1. Dl. IJo\\'c'vcr. :-.inn· a :-.pecial ('H:-.<' \\'ill be st udiccl hC'rc . t ]](' dc•fi.nit io11 of 

proxin1al distal boundar~· conditious will he again addressed in Sec. 3. 

Let us d ecompose the variahks v a11d c as sum of a steady state part 

(denol<'d by a bar) aucl an unstC'ad.v compon<'nt (clcllotcd by a cit'C'tllllflcx 
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<'I,('('C'Ilt ) : 

v = v + v. c=c+c (2 .3) 

a nd let us assume the unsteady part s v a nd c (and 'Vv a nd \7;. as we ll ) arc 

small enough with respect to th0 s lcacly ones such tha t the non linear term 

v ·\le in Eqs. (2.1) can be lincarized as: 

(v + v ) . ('Vc + 'V c)~ v. \le+ v. \le+ v. \7r· (2.4) 

neglecting t he higher orde r terms. ln o ther words, small Huctuft tions of velo­

c ity and concent ra tion a rc superimposed to a ·teady ·olution . 

It is easy to verify tha t: 

c-
{ 

Ccxl 

cons t 

if a:I O. 

if a= 0 

satisfies the following boundary value problem: 

v · 'Vc- ~tf1c = 0 

lt'Vc · n +at = a cext ftt t he wall 

(2.5) 

(2 .6) 

where c equa ls the con. t a nt value as in Eq . (2.5) at any bounda ry other tha n 

the wall. This corresponds to the fact tha t , fo r a time interval long enough. 

the solut e pervades the whole tube and , in t he limit. it reaches a uniform 

con cent ra t ion . 

3. Wave Solution 

By Eqs. (2 . .J ) a nd (2.6), the uns teady solution satisfi es the followinp; cqua-

t ion : 
De A , A 

Dt + v ·\le+ v ·'Vi·- fLl1c = 0 (3.1) 

wit l1 a hon10geneous bounda ry condition a t the wa ll: 

fl'Vc· n +ac= O. (:3.2) 

DecatlS(' of Eq. (2 .5), t he h01 nogencous boundary value problem (3.1 ) 

(3. 2) depends only on t he steady fluid velocity v and is inclepcndcnt o f t he 

uns teady flow fie ld v. This proves t hat t he small wa ll deforma tion , wh ich is 

demonstrated of much importance in vascular dyna mics I?J, is irrelevant in 

the solute nio tion. 
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Vve are going now to defi ne a precise domain and a specific form for t he 

solution of the problem (3 .1) (3 .2 ). Let us consider a long tube of circular 

cro s section of radius a, having the shape of a torus with smal l curvature 

l / R. 
For the following analy:is, it is convenient to work out the equations 

in a toroiclal coordinate system (r. (} , 7/J) . The axial coordinate z = RB is 

introduced to avoid degeneracy when R ---+ oo (st raight tube) . 

The problem is now rewritten in nondimcnsional form by the following 

substitutions : 
1' z Vt V 

T' ---+ -, Z---+ - , t---+- V ---+-
a a a ' V 

where V is a characteristic velocity. Without loss of generality, the concen-

tration is considered cl imensionless. 

Denoting by : 

Pc= aV (Pcclct number), 
~L 

a a 
Sh = - (Sherwood number) 

~ 

two characteristic numbers. t he governing Eqs. (3.1)- (3.2) become: 

De _ ~ , 1 ~2 , 
0 -+ v· vC--vc= Dt Pc ' 

\le · n + Sh f = 0. (3.3) 

The physiological and metabolic functions of living beings are typically 

periodic a nd a n interlllil tent release of substances (i.e. oxygen, hormones, 

nutrients, wa.slc products) in the blood is carried out by severa l organs and 

glands. For example. respiratory and digestive acts have a period ranging, 

according to the species . from seconds to hour.. It i realistic lo assume tha t , 

for each subslaucc. there exists a pulsatile source of solute concentration 

that, aclvected by the fluid. propagates downstream. As the blood flow is 

essenti ally unidirectionaL Lllc unsteady component c i ·sought in the form of 

an harmonic longitudinal travelli ng wave: 

c = c(r. 7/J)ei(wt - kz) (3.4) 

with w a nonclimensional circular frequency (w---+ wa/V ) and k the nondi­

mcnsiona l wave number (k ---+ ka). Consequently. the nondimensional wave 

speed is w/Rc(k) and t he nondimensional wavelength is 1/ Re(k) . Because of 

the explicit dependence on z a nd t in the waveform Eq. (3 .4), neither prox­

imal and distal boundary conditions , nor an initial condition are required. 
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For the folio\\' ill?, analysis. it is \\'ort h to express the amplit udc of I hC' \\'avc 

(:3 .--1 ) in I cr~ns of a mass ]i('T 11111/ h ngth defined b.\·: 

I 

Q :=.I d l' )n/1' 
() 

( :3.G) 

C'onc<'lltrat ion wave (3. 1) has no d irect rdatio n with the prcssmc wave 

g<'ncrat('d b\· the heart lwat and transmitted by the fluid t ltn>11p,h the vessel 

distensibility. Jn physiological cases . ...u is p,cucrall_\- n'r.\· lo\\' (...u « I). 

4 . Asympto tic A n a lysis 

All arteries arc afl'cctcd b.v a slllall or moderate degree of cmntt 11n' . . \ IWr­

lnrbation 111c thod is us<'d to stud)· tiH' inHuencc of a small cun·atun' witli 

n 's lwct to the straight case. As the nuYature parameter E = o/ R is assun1ed 

to lH' small ( « 1). the ampli tude in Eq. (:3. J) is expanded as a power series 

o f P m·<' r an axis\'ll1nlcl ric solt 1l ion ('o(r): 

( l.l ) 

Tlw fluid stead_\· n ' locity v 1llHh'rgo<'S a similar expansion O\'Cr vo: 

( 1.2) 

\\'it h vo is the Poise uill<' \'('locity and v1 is the first order velocity for a nwd­

cr;ltcl.r ClliT<'cl I uhe [I l j. Thcrcfon' 011<' has: 

Exprcssiou (:3. J) awl expans ions ( l.l ) ( U ) are sul>st it utcd in Eqs. (:3.:3). and 

l<'rllls of the sil nH' pm\'(' r of ~ - 11p to lh<' firs t o rd t'r. an' equ a ted. 

0-th onh r .~olutwn 

The amplitude of com·elltratioll 111 a straight tube 1s gon'r ll<'d by the 

following lin<'ar equation: 

. - l ~ 
lu.iCo + v o · \(·o - - \7-co- 0. 

P<' 
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Lett ing wf' = ... .1 Pc (s('(J/erl frrqurnry) and kp = kPc (scaled wavcnumber), 

Eq. (.-l...J ) is rewrit ICII in scalar notations as: 

<P co 1 dco . --. + -- + 1 (k 1,wo- w1,) eo= 0 
(11· 2 ,. dr 

\\"hen' al l t ern1s coni a in in?, k2 have !wen neglected . s ince large wavelengths 

arc considered in t lw present application . aucl 

zT•o( r ) = 1 - r 2 

is th<· Poiscui lle axial \"(•locit.v profile. noncl inicnsioua lizcd by scaling with V. 

The boundary conditions associated with the Eq. ( 4.5) arc: 

dc0 
- = 0 <1! ,. = 0 (sy nl!Hetrv condition ). (-1 .6) 
dr 

dco , 
-+Shco=O atr=l. (L1.7) 
dr 

For a given frequency wp . the Stunu-Liou villc cigcnvaluc problem (4.5) 

(-1 .7) is soh·ccl to ohtHin the wave number kp which corresponds loan ad­

Iuissiblc c-wavc solution in a stn"light tu be. 

Through a \'ariabk trausformat iou. we obtain the general integral of 

Eq. ( .J. 5) wr it te n in t crms of two constants A and B: 

c0 (r ) = exp ( - ~ r2
) [.A£ (n - ~- Cr2

) + BU (~ - II.l. Cr2
) ] r (4.8) 

with L t he Lagu<' JT<' fun ction and U t he T r icom i con fluent hypcrgc01netric 

funct ion with complex argument [lOJ and with : 
I 

(ikp. )2 ( ·. Wp ) TJ = L-- . 
4 kl' 

J\ bouudcduess conclitiou at,.= 0 implies B = 0. and through the bound­

ary c-ondition ( 1.7). \\'<'obtain the frequency cqnation: 

where £ 9 is t he generalized Lag uciTl' fun et ion . It gives the set of wavenumbers 

kt' correspondent to a gin'n freqm'nc~· w e. Finally. replacing in Eq. (cl. ). one 

has: 

( 

I ) ( I ) 
( i ft f> )2 ·) ( i k p p W p j I . 

('o(r) = Aexp - , ,.- L (1-- ) - ;-. (ikp )'l r-2 
1·. 

2 ·i /.:j> 2 

( -1 .10) 

T lw l"onstant A is dctNmin<'d by using Eq. (3.5) . 
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1st order solu tion 

The correc-t ion due to a 1:lltl<:d l c urvature is clcscri bcd by t he firs t order 

linear proble m: 

1 2 -iwc 1 + vo · \7c1 - - \7 c1 = - v1 · \i'ro . 
P c 

l3y lc tti ng: 

( 4. J ] ) 

we obtain the non homogeneous problem: 

dco 
= ikp (nPo- wd) eo+ (Pe lld - 1) -d (4.12) 

r 

with the boundary con cl it io ns : 

c1 = 0 at ,. = 0. 

dc1 - + Sh c1 = 0 at r = 1. 
dr 

where lld a nd U'cf a rc respecti vely t he nondimensional ra dia l a nd t he axia l 

component of til e steady flow in a curved t ube jl 1 I Due to the a ntisynuuctry 

of the firs t order solution c1 (1:>ee Eq. ( 4. 11 )) . t he overa ll m ass flux conservation 

of eo +.:c1 in the ha lf-sec tion (r. v) E [0.1] x [-n/2, 7!"/2] is guaranteed . 

·o t e tha t the P ccle t uutnbcr a ppears a t the right ha nd s ide of Eq . ( 1.1 2) 

as coefficient of uc~. T he solution t urns out to bc st rong ly dcp cndcnt on it. 

because it ttHtgn ifies the role o f secondary flow. Such cf!"cc t exis ts as lo ng as 

a tra nsverse fl ow induced by the curvature i1:> present, and grows with P c . 

5. N umerical R esults and Discussion 

The frcq uency Eq . ( 1. 9) is soh ·ed mt mcrically with a Ncwton type me t hod 

by searching the complex roots kp corresponding to a given wp. Becausc of 

t he la rge w;welcng th. only t he s ma llest root is selected . HC'sul t1> 1:>how t hat 

both wavC'lc ngth a nd a ttenua tio n reduce with inc reasing wp a nd the effect of 

wa ll permcability i1> present onl)' for sm a ll frequcuc ies. 

The curve connecting the pairs (wp,wp j Rc(k p)) fo r v.Jp E [10 :1.10'>] a t 

vary ing Sh is shown in Fig. 1 (dis pcr ion curw) . It turns out tha t t he wave 



http://rcin.org.pl

SOLUTE \\'AVE IN A CURVED V ESSEL 

~,_ 

-"' 

0.9 

OB- - - -·- - · - · -·-·-·- · -· 

~ 0.7 

0.. 

8 

0.6 - - - - - - - - - - - - -- -

0.51------------

-- Sh=O 

- - - Sh=l 

- - - Sh=IOO 

FJCt'RE I. Dispersion curves for three d if!"eren l. mas t.rausfer coeffici euts Sh. The 
wave speed tends to the same asymptot ic value for relatively hig h frequencies and 
exhibits a variat.iou wit h Sh only a t very low frequencies. In a range of typical 

frequencies (10 :::; wp :::; l OO) t he speed uudcrgoes a sudden rai ·e . 
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speed Lends to t he value 1 (indepeudent of Sh), for relat ively large values of 

the frequency. On the other hand. at very small freq uencies the wave speed 

is ra pidly decreasing lending to a finite limit as wp---+ 0 Such limit is 1/ 2 for 

Sh = 0 a nd increa ·cs with Sh. A critical frequency separates two regime · for 

each value of Sh: a layer where the velocity undergoei:l a sudden raise from 

a larger range where t he velocity stays almos t constant (Fig. 1). 
The exact i:>o lution eo of t he Eqs. (4.5) (4.7) ii:l given by Eq. (4 .10). The 

boundary value problem (4. 12) (L1.14) is then solved numerically with a col­

location method us ing a cubic spli ne approximating fu nction ]12]. 

Once the analytical 0-th order solution is evaluated and the 1-st or­

der problem solved numerically, the full wave solution is reassembled (see 

Eqs. (2.3). (3 .4) a nd (4 .1 )) a·: 

C = C + cei(wt - kz) = C +(eo+ E Cl sin 'lfl)et (wt - kz ) . 

The p hysical problem depends on a number of parameter ·. each of them may 

,-ary in a q ui te wide ra nge, and there is a variety of different limiLing case . In 
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t he present work we wi ll foc us t he attentio n on tit<· in flttc nc<· o f the solution 

c on th e di ffusivity pa ra metrizecl b_,. Pc and on t he wall permeability 

paramet rizcd b:· Sh. These t \\·o pa ra meters arc var ied in a co ttvcnicrtt int<•rva l 

to descri be a number of s ubs! a.uccs dissoh ·cd in blood a nd different medium 

properties. Othe r panuncters arc fi xed as : 

o = O. S cm. V = 2-l cn1 s Q = ().()1. 

Concentrat io n amplitudes ("O for t hree ty p ical vallt<'s of w,, a rc shown 

m F ig. 2 . Approximately fiat concentra tion profiles at low W J>. arc replaced 

b~- more oscillat ing fronts. with a poss ible unders hooting. at higher W f '· At 

rc la li vch· higher W J>. the concentra tio n flux occm s in t he core o f the vessel 

and is imlcpcudcut o f Sh. The influe nce of curntttm' is small a t Jov.: Pe. bu t 

becomes reJe,·ant a t hig her Pc . w it!J a more p ronounced oscilla t ing profile 

(Fig. :3). At t be high P cclct numbers under conside ration ( ~ Hl'') . a not iceable 

difference with respec t Loa s tra ight tttbe appea rs even for a c m vature ratio 

small as E = w-4 . T he fi rs t o rdc r solu t ion r-1 is of few ordcrs o f magnit I!(]C 

higher tha n c0 . a mi t heir rat io grows \\·ith Pc . A significant res tdt is t he 

1 _4 .... 

1 2 

08 

06 

0.4 I 

' ~ 

I ' ' 
0.2 I 

w = I 
I' 

.1 
<up= IO 

<up= !Cl"' 

Sh= IOO 

0 ~ - ::. = ·-----..,_ - ---- - -·-
- 0.2 c_ _ __._ _ ___._ __ ..__ _ __._ _ ____._ __ ..__ _ __.__ _ ____._ __ ..__ _ __, 

0 01 02 03 0.4 os 06 07 08 0.9 

Ft <:t l!E '2. C'onn•n tra t ion prori lt•s a lo n p, tlu• horizontal half-dicll llC'lPr (t· n/"2) 
of the noss section ;; = 0 a t I = 0. for thrC't' n1 lues of v.IJ•. DiffC'rcnt·t•s \\"it h Sh an' 

shown l0ss prOIJOuncl'd a nd a core flu x is (' \ ·ident at h igher u.:r. 
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0.15 i 
, 

' I ' olf I ' I ' 
0 05 1 

0.02 o, 
-0.05 1 ', I 

I wp= I 
- 0 1 l ' 

, 

0015 1 
Sh= 100 

- 1 ·0.5 0.5 -1 -0.5 05 

1\ 1\ 
I I I I 

I 

I 
0.5 0.5 

, ' , ' 

- 0 :l I 

J 
0 \ I 

- 1 - 1 (J)p= 10' 
- 05 

(J)p = 10' 
\ Sh = 100 \ 

I Sh = 0 --' 
- 1 -0.5 0 0.5 - 1 - 0 5 0.5 

Ft<:t. l lE :3. Co11n•ntratio11 profiles alo11g the horizontal dimncler (4 1 = ±1rj'2.) of 

the cross section:: = 0 at I = 0 for 1'0 = 10'' . Plots highlight thP combi nPd l'frects 

or t h(' wa 11 pl'rmpa bi lit.\· Sh (l<•ft -right ) and of l he wave frcqu0ncy w" (lop-bot tom) 

i11 the C'asc of a straight lulH· (1'o11ti11uous li11c) a 11d of a slightly curved tube with 

E = 10 1 (dash<•d line). For surh value of Pl'. tlw sol utio 11 is extrl'mely Sl'IISil ivt' 

to tll<' c urvatur<' and. at low rn•qttl'ueil's. <'ven to Sh. 

skcwness of the c· profiles: the maximunt peak of COJlccutratiou flnx is shifted 

towards l IH' ott!er hell< I a nd ittcreas<'S in tnag uitudc. Consequently a wall flux 

red ucliou at the itmC'r wall of the cmvat m C' is report cd. This is in correlation 

with clinical observations of atherosclerotic lesions at tltC' innN wall of arterial 

bends. ThC' C'ffcct oft lH' wall perttlcability on the coucC'ut ratiou waveform is 

sltmYH to be frcqueuc~· dependent. 
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