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 1 . I n t r o d u c t i o n
Many Finite Element Method (FEM) solvers do not accurately predict stresses, particularly 

at interfaces of the elements due to the piecewise continuous nature of the displacement field 

assumed in FEM formulation. Moreover, the well known difficulties in adaptive analysis using 

FEM (especially in 3D problems) justify attempts to develop alternative numerical methods, e.g. 

Mesh Free Methods (MFree). This paper refers to the two versions of the MFree algorithms, namely 

Radial Point Interpolation Method (RPIM) and Moving Least Squares (MLS) method. The hitherto 

existing versions of 3D MFree suffer from the drawbacks like relatively small number of numerical 

examples of quantitative analysis (e.g. lack of comparisons of the numerical solutions with the exact 

3D solutions) and lack of the fast search procedures in constructing the influence (or support) 

domains with irregular and non-convex boundaries. The aim of the present paper is to put forward 

an improved version of the Element Free Galerkin (EFG) formulation for the numerical 

approximation of the 3D boundary value problems of linear elasticity. The monomial basis 

functions from the Pascal pyramid used with the radial basis functions in RPIM and with the non-

singular weight functions in MLS method are implemented in computing the shape functions and 

their derivatives. Well known properties, advantages and disadvantages of both the formulations are 

discussed in many papers and monographs (see e.g. [2], [4]) but most of the work related to the 

development of EFG has been focused on two-dimensional applications. On the other hand, the 

numerical results in three-dimensional EFG method (very often coupled with FEM) are rarely 

presented (see e.g. [1]). In the present paper, for benchmarking purposes, three various numerical 

solutions for a linear-elastic and isotropic cube subject to an  anti-symmetrical pressure loading are 

shown and compared. First and second numerical result are obtained by RPIM and MLS methods. 

The Kronecker delta function property in RPIM allows a direct imposition of essential boundary 

conditions, but the use of non-singular weight functions in MLS approximation does not allow for a 

direct imposition of essential boundary conditions, hence EFG formulation with Lagrange 

Multipliers is implemented. Third solution is shown in the analytical form found by G. Jemielita 

[3].    2 . N u m e r i c a l a n d a n a l y t i c a l s o l u t i o n
 

Consider a 3D elastic body 3Ω⊂ ℝ . In the meshfree method used, the global interpolation 

(in RPIM) and the global approximation (in MLS) ( ) [ ( ), ( ), ( )]h h h h h T

x y zu u u= =u u x x x x
 

( )[ , , ]Tx y z= ∈Ωx  of the displacement field are calculated from the formula ( ) ( )h

I I

I

=∑u x Φ x u  

where ( )I I=
Φ Φ x

 is the diagonal matrix of the shape functions corresponding ( )N N= x
 nodes in 

the support domain of the point 
x
 and I

u
 is the vector of the displacement parameters of the node I. 

The exact analytical formula for the displacement field ( ) [ ( ), ( ), ( )]Tx y zu u u= =u u x x x x
 of the 

elastic isotropic cube a b h× ×  subject to the loading anti-symmetrical with respect to the middle 
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plane z = 0 load ( ) [ ( ), ( ), ( )]Tx y zt t t= =
t t x x x x

 applied on the top and bottom free sides can be 

written as (see [3]) 

 

(1)  ( ) ( ) ( ) ( )1

1 1 1 1 2cosh sinh sin sin
2

xu A z p z B p z x y
π

α α α  = + +    
x  

(2)  ( ) ( ) ( ) ( )2

2 1 1 1 2cosh sinh sin sin
2

yu A z p z B p z x y
π

α α α  = + +    
x  

(3)  ( ) ( ) ( ) ( ) ( )3

1 1 1 2sinh cosh sin sinzu p A z p z B p z x yα α = + 
x

 

 

where 0x yt t= = , ( ) ( ) ( ) ( ), , / 2 , , / 2 0.5 sin / sin /z zt x y h t x y h q x a y bπ π= − = . In the above three 

expressions (1), (2), (3) all coefficients depend (in a rather complicated way) on the known 

components a, b, h defining the sizes of the cube, material constants E, v (Young modulus, Poisson 

ratio) and load parameter q. The cube is simply supported on the remaining (unloaded) four vertical 

boundary planes along z and x axes or z and y axes. The material parameters used in analysis are: 
6 23.0 10 [ / ]E N m= ⋅ , 0.3v = . A uniform nodal distribution with the total number of nodes equal to 

1241 and with the 8 × 8 × 8 = 512 background mesh of hexahedron cells for integration is 

employed. The basis functions of quadratic order from the Pascal pyramid are used. The original 

search procedure guarantees that exactly 15 from among at least 20 nodes are visible from each 

integration point. Dimensionless lengths of the sides of the support domain in all x,  

y and z directions are set as equal to 3 and the 6-point Gauss integration scheme is adopted. The 

value of the load parameter 6 21.0 10 [ / ]q N m= ⋅ . The length a, width b and height h of the cube are 

equal to 0.9 [m].  

 

Fig. 1. Shear stress distributions ,xy xzσ σ through a cross section z = 0.225 [m] of the square   

block – MLS (first and third figs) and exact analytical solution (second and fourth figs).

The proposed version of the EFG formulation clearly demonstrates robustness of the 

algorithm and its ability to produce accurate and numerically reliable results. A c k n o w l e d g e m e n t .
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