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Phase transitions (PT) play an important role in different problems of continuum mechanics. 

Equilibrium conditions of elastic thin-walled structures (plates and shells) undergoing PT of 

martensitic type were formulated in [1, 2] within the dynamically and kinematically exact theory of 

shells presented in books [3, 4]. From experimental data we know that PT depending on strain rates 

and inelastic effects may considerably influence the stress state of the solid. 

The aim of this contribution is to extend the results of [1, 2] by taking into account thermal and 

viscoelastic effects of the shell material phases under quasistatic loading. 

1. Basic relations of nonlinear shell thermostatics 

The 2D local equilibrium equations as well as the energy balance and the Clausius-Duhem 

inequality satisfied at any part of the undeformed base surface M  of the shell are [1, 2]  
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Here  and  are the internal surface stress resultant and couple stress tensors of the nominal 

type,  is the surface gradient of shell deformation 

N
F  

M
ysGrad ( )  �y x x uF ,  denotes the 

axial vector associated with the skew tensor , while  and  are the surface gradient and 

divergence operators on M, respectively. Additionally, 
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H  is the surface internal energy density, K  is 

the surface entropy density,  is the surface influx vector,  are the heat influxes through the 

upper  and lower (-) shell faces,  is the internal surface heat supply, while by  and  

we denote temperatures of the external media surrounding the shell from above and below.  
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2. Constitutive equations of thermoviscoelastic shells 

 The surface stress measures  depend only on prehistories of the surface natural strain and 

bending tensors , [4], as well as on the temperature 

,N M
,E K T . We split the surface stress measures 

and their constitutive equations into elastic (equilibrium) and inelastic (dissipative) parts,  
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Here � , ,T T �\ H K \ �  E K
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 is the surface free energy density, and  
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3. Continuity conditions and kinetic equation 

The phase interface in the shell may be modelled by a smooth surface curve . Then 

along C  the 1D local equilibrium and thermodynamic continuity conditions are [5]  
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Here the expression [  means the jump at , ...] (...) (...)� � � C  v u�  is the translational velocity 

vector,  is the normal velocity tangent to  of the phase curve  with the unit 

outward normal  and  the velocity of C  kinematically independent on , 
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ax  is the 

angular velocity vector, and  represents creation of entropy at the interface . 2G

Transforming (3) it can be shown that the surface Eshelby tensor  introduced in [1] satisfies 

the thermodynamic continuity condition 

C
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 in the case of equilibrium. For the coherent 

interface, when the independent translation u  and rotation  fields are supposed to be continuous 

at , we obtain C C . For the interface incoherent in rotations, when only 

 is continuous at C  and continuity of Q  may be violated, we have . From 

the thermodynamic point of view the expression 
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> @ /d CQ Q ds�  is the configurational force acting on 

the phase interface, with s  the length along C . 

Thermodynamically consistent kinetic equation along  is given by the relation  C

(4) > @� �/ ,V K d ds �CQ Q  

where K  is a non-negative definite kinetic function. The equation (4) describes motion of the phase 

interface  under quasistatic deformations of the shell. It generalizes the balance equations on the 

equilibrium phase interface obtained in [1, 2]. 

C

During Solmech2008 we present solutions of some model problems for two-phase 

viscoelastic shells under quasistatic loading. 
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