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This paper consists of an introduction to smart structures and their applications in the area 
of vibration control. The first part addresses important issues in the modelling of smart 
piezoelectric structures. It is followed by a review of control strategies for active damping 
using collocated actuator /sensor configurations, including the active tendon control of cable 
structures and a generic active damping interface based on a Stewart platform. Finally, the 
active vibration isolation is addressed for a single axis and six degrees of freedom 

1. Introduction 

In order to motivate the use of active vibration control, consider the future inter­
ferometric missions planned by NASA or ESA (one such a mission, called "Terrestrial 
Planet Finder" aims at detecting earth-sized planets outside the solar system; other 
missions include the mapping of the sky with an accuracy one order better than that 
achieved by Hypparcos). 

The purpose is to use a number of smaller telescopes as an interferometer to achieve a 
resolution which could only be achieved with a much larger monolythic telescope. One 
possible spacecraft architecture for such an interferometric mission is represented in 
Fig. 1; it consists of a main truss supporting a set of independently pointing telescopes. 

FIGURE 1. Schematic view of a future interferometric mission. 

The relative position of the telescopes is monitored by a sophisticated metrology and 
the optical paths between the individual telescopes and the beam combiner are accu­
rately controlled with optical delay lines, based on the information coming from a wave 
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front sensor. Typically, the distance between the telescopes could be 50 m or more, an.d 
the order of magnitude of the error allowed on the optical path length is a few nanome­
ters; the pointing error of the individual telescopes is as low as a few nanoradians (i.e . 
one order of magnitude better than the Rubble space telescope). Clearly, such stringent 
geometrical requirements cannot be achieved with a precision monolithic structure, but 
rather by active means as suggested in Fig. 1. Let us first consider the supporting truss : 
given its size and environment, the main requirement on the supporting truss is not 
precision but stability, the accuracy of the optical path being taken care of by the wide­
band vibration isolation/steering control system of individual telescopes and the optical 
delay lines (described below). Geometric stability includes thermal stability, vibration 
damping and prestressing the gaps in deployable structures (this is a critical issue for 
deployable trusses). In addition to the geometric requirements mentioned above, this 
spacecraft would be sent in deep space (perhaps as far as the orbit of Jupiter) to ensure 
maximum sensitivity; this makes the weight issue particularly important. 

Another interesting subsystem necessary to achieve the stringent specifications is 
the six d.o.f. vibration isolator at the interface between the attitude control module 
and the supporting truss; this isolator allows the low frequency attitude control torque 
to be transmitted while filtering out the high frequency disturbances generated by 
the unbalanced centrifugal forces in the reaction wheels. The same general purpose 
vibration isolator may be used at the interface between the truss and the independent 
telescopes; in this case however, its vibration isolation capability is combined with the 
steering (pointing) of the telescopes. The third component relevant of active control is 
the optical delay line; it consists of a high precision single degree of freedom translational 
mechanism supporting a mirror, whose function is to control the path length between 
every telescope and the beam combiner, so that these distances are kept identical to a 
fraction of the wavelength (e.g. >./20). 

Performance and weight savings are the prime motivations of the foregoing example. 
However, as technology develops and with the availability of low cost electronic com­
ponents, it is likely that there will be a growing number of applications where active 
solutions will become cheaper than passive ones, for the same level of performance. 

The reader should not conclude that active will always be better and that a control 
system can compensate for a bad design. In most cases , a bad design will remain bad, 
active or not, and an active solution should normally be considered only after all other 
passive means have been exhausted . One should always bear in mind that feedback 
control can compensate external disturbances only in a limited frequency band that is 
called the bandwidth of the control system. One should never forget that outside the 
bandwidth, the disturbance is actually amplified by the control system. 

In recent years, there has been a growing interest for semi-active control, particularly 
for vehicle suspensions; this has been driven by the reduced cost as compared to act ive 
control, due mainly to the absence of a large power actuator. A semi-active device can 
be broadly defined as a passive device in which the properties (stiffness, damping, . .. ) 
can be varied in real time with a low power input. Although they behave in a strongly 
nonlinear way, semi-active devices are inherently passive and, unlike active devices , 
cannot destabilize the system; they are also less vulnerable to power failure. Semi­
active suspension devices may be based on classical viscous dampers with a variable 
orifice, or on magneto-rheological (MR) fluids . 
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2. Smart materials and structures 

An active structure consists of a structure provided with a set of actuators and sen­
sors coupled by a controller; if the bandwidth of the controller includes some vibration 
modes of the structure, its dynamic response must be considered. If the set of actu­
ators and sensors are located at discrete points of the structure, they can be treated 
separately. The distinctive feature of smart structures is that the actuators and sensors 
are often distributed and have a high degree of integration inside the structure, which 
makes a separate modelling impossible (Fig. 2). Moreover, in some applications like vi­
broacoustics, the behaviour of the structure itself is highly coupled with the surrounding 
medium; this also requires a coupled modelling. 

high degree of integration 
~--------------------------------------------, 

I I 
I I 
I I 
I I 
I I Sensors ....... Structure ....... Actuators ~ ._ 
I I 

: ~ ~: 
~-- --~ 

~~ 
---~-------------------------------- ---

PZT 
TDF p 

Fiber o '}Jtics 
... 

... Control .... system 

FIGURE 2. Smart structure. 
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From a mechanical point of view, classical structural materials are entirely described 
by their elastic constants relating stress and strain, and their thermal expansion coeffi­
cient relating the strain to the temperature. Smart materials are materials where strain 
can also be generated by different mechanisms involving temperature, electric field or 
magnetic field, etc ... as a result of some coupling in their constitutive equations. The 
most celebrated smart materials are briefly described below: 

• Shape Memory Alloys (SMA) allow one to recover up to 5% strain from the phase 
change induced by temperature. Although two-way applications are possible after 
education, SMAs are best suited for one-way tasks such as deployment. In any 
case, they can be used only at low frequency and for low precision applications , 
mainly because of the difficulty of cooling. Fatigue under thermal cycling is also a 
problem. The best known SMA is the NITINOL; SMAs are little used in vibration 
control and will not be discussed in this book. 

• Piezoelectric materials have a recoverable strain of 0.1% under electric field; they 
can be used as actuators as well as sensors. There are two broad classes of piezo­
electric materials used in vibration control: ceramics and polymers. The piezopoly­
mers are used mostly as sensors , because they require extremely high voltages and 
they have a limited control authority; the best known is the polyvinylidene flu­
oride (PV DF or PV F2 ). Piezoceramics are used extensively as actuators and 
sensors, for a wide range of frequency including ultrasonic applications; they are 
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well suited for high precision in the nanometer range (1 nm = 10-9 m). The bes t 
known piezoceramic is the Lead Zirconate Titanate (PZT}. 

• Magnetostrictive materials have a recoverable strain of 0.15% under magnetic 
field; the maximum response is obtained when the material is subjected to com­
pressive loads. Magnetostrictive actuators can be used as load carrying elements 
(in compression alone) and they have a long lifetime. They can also be used in 
high precision applications. The best known is the TERFENOL-D. 

• Magneto-rheological (MR) fluids consists of viscous fluids containing micron-sized 
particles of magnetic material. 'Vhen the fluid is subjected to a magnetic field, the 
particles create columnar structures requiring a minimum shear stress to initiate 
the flow. This effect is reversible and very fast (response time of the order of 
millisecond). Some fluids exhibit the same behaviour under electrical field; they 
are called electro-rheological (ER) fluids; however, their performances (limited by 
the electric field breakdown) are significantly inferior to MR fluids. MR and ER 
fluids are used in semi-active devices. 

This brief list of commercially available smart materials is just a flavor of what is to 
come: phase change materials are currently under development and are likely to become 
available in a few years time; they will offer a recoverable strain of the order of 1% under 
an electric field, one order of magnitude more than the piezoceramics. 

The range of available devices to measure position, velocity, acceleration and strain 
is extremely wide, and there are more to come, particularly in optomechanics. Dis­
placements can be measured with inductive, capacitive and optical means (laser in­
terferometer); the latter two have a resolution in the nanometer range. Piezoelectric 
accelerometers are very popular but they cannot measure a d.c. component. Strain can 
be measured with strain gages, piezoceramics, piezopolymers and fiber optics. The latter 
can be embedded in a structure and give a global average measure of the deformation; 
they offer a great potential for health monitoring as well. We will see that piezopolymers 
can be shaped to react only to a limited set of vibration modes (modal filters). 

3. Control strategies 

There are two radically different approaches to disturbance rejection: feedback and 
feedforward. Although this text is entirely devoted to feedback control, it is important 
to point out the salient features of both approaches, in order to enable the user to select 
the most appropriate one for a given application. 

3.1. Feedback 

The principle of feedback is represented in Fig. 3; the output y of the system is 
compared to the reference input r and the error signal, e = r - y, is passed into a 
compensator H(s) and applied to the system G(s). The design problem consists of 
finding the appropriate compensator H ( s) such that the closed-loop system is stable 
and behaves in the appropriate manner. 

In the control of lightly damped structures, feedback control is used for two distinct 
and somewhat complementary purposes: active damping and model based feedback. 
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FIGURE 3. Principle of feedback control. 

The objective of active damping is to reduce the resonant peaks of the closed-loop 
transfer function 

y(s) GH 
F(s) = r(s) = 1+GH. (1) 

In this case F(s) is very close to G(s), except near the resonance peaks where the 
amplitude is reduced. Active damping can generally be achieved with moderate gains; 
another nice property is that it can be achieved without a model of the structure and 
with guaranteed stability, provided that the actuator and sensor are collocated and have 
perfect dynamics. Of course actuators and sensors always have finite dynamics and any 
active damping system has a finite bandwidth. 

The control objectives can be more ambitious and we may wish to keep a control 
variable (a position, or the pointing of an antenna) to a desired value in spite of external 
disturbances d in some frequency range. From · 

y(s) 
d(s) 

1 
=---

1+GH 
(2) 

we readily see that reducing the effect of external disturbances requires large values of 
GH in the frequency range where the disturbance is significant. From Eq. (1), we see 
that GH >> 1 implies that the closed-loop transfer function F(s) is close to 1, which 
means that the output y tracks the input r accurately. In general, to achieve that, we 
need a more elaborate strategy involving a mathematical model of the system which, at 
best, can only be a low-dimensional approximation of the actual system G(s). There are 
many techniques available to find the appropriate compensator and only the simplest 
and the best established will be reviewed in this text. They all have a number of common 
features: 

• The bandwidth We of the control system is limited by the accuracy of the model; 
there is always some destabilization of the flexible modes outside We (residual 
modes). The phenomenon whereby the net damping of the residual modes actually 
decreases when the bandwidth increases is known as spillover (Fig. 4). 

• The disturbance rejection within the bandwidth of the control system is always 
compensated by an amplification of the disturbances outside the bandwidth. 

• When implemented digitally, the sampling frequency W 8 must always be two orders 
of magnitude larger than We to preserve reasonably the behaviour of the continuous 
system. This puts some hardware restrictions on the bandwidth of the control 
system. 
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FIGURE 4. Effect of the control bandwidth on the net damping of the residual modes. 

3.2. Feedforward 

When a signal correlated to the disturbance is available, feedforward adaptive fil­
tering constitutes an attractive alternative to feedback for disturbance rejection; it was 
originally developed for noise control (21], but it is very efficient for vibration control 
too [12]. Its principle is explained in Fig. 5. The method relies on the availability of a 
reference signal correlated to the primary disturbance; this signal is passed through an 
adaptive filter, the output of which is applied to the system by secondary sources. The 
filter coefficients are adapted in such a way that the error signal at one or several critical 
points is minimized. The idea is to produce a secondary disturbance such that it cancels 
the effect of the primary disturbance at the location of the error sensor. Of course, there 
is no guarantee that the global response is also reduced at other locations and, unless 
the response is dominated by a single mode, there are places where the response can be 
amplified; the method can therefore be considered as a local one, in contrast to feed­
back which is global. Unlike active damping which can only attenuate the disturbances 
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FIGURE 5. Principle of feedforward control. 
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near the resonances, feedforward works for any frequency and attempts to cancel the 
disturbance completely by generating a secondary signal of opposite phase. 

The method does not need a model of the system, but the adaption procedure 
relies on the measured impulse response. The approach works better for narrow-band 
disturbances, but wide-band applications have also been reported. Because it is less 
sensitive to phase lag than feedback, feedforward control can be used at higher frequency 
(a good rule of thumb is We ~ w8 /10); this is why it has been so successful in acoustics. 

The main limitation of feedforward adaptive filtering is the availability of a reference 
signal correlated to the disturbance. There are many applications where such a signal can 
be readily available from a sensor located on the propagation path of the perturbation. 
For disturbances induced by rotating machinery, an impulse train generated by the 
rotation of the main shaft can be used as reference. Table 1 summarizes the main 
features of the two approaches. 

TABLE 1. Comparison of control strategies. 

Type of control Advantages Disadvantages 

Feedback 

Active damping • no model needed • effective only near 
• guaranteed stability resonances 

when collocated 

Model based • global method • limited bandwidth (we << w 8 ) 

(LQG, H00 ••• ) • attenuates all • disturbances outside We 

disturbances within We are amplified 
• spillover 

Feedforward 

Adaptive filtering • no model necessary • reference needed 
of reference • wider bandwidth • local method 

(x-filtered LMS) (we ~ W 8 /10) (response may be amplified 
in some part of the system) 

• works better for • large amount of real time 
narrow-band disturb. computations 
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4. Open-loop frequency response 

Consider a lightly damped flexible structure provided with a point force actuator 
and a displacement sensor. The open-loop frequency response function (FRF) can be 
expanded in modal coordinates as 

G( ) = ~ c/>i(a)c/>i(s) 
w L.....t 11. · (w~- w2 + 2J·~ · w·w)' 

i=l r-t t ~t t 

(3) 

where Wi is the natural frequency of mode i, J.Li its modal mass, fi its modal damping, 
and c/>i(a) and c/>i(s) are the modal amplitudes at the actuator and sensor locations, 
respectively; in principle, the sum extends to all the modes of the structure. If one 
wish to truncate the modal expansion above the frequency range of interest, it is very 
important to keep the static contribution of the high frequency modes: 

(4) 

The second sum is often called residual mode; it is independent of w and introduces a 
feedthrough component in the FRF. It can be shown that this term plays an important 
role in the location of the open-loop zeros of the system. Upon writing Eq. ( 4) for w = 0, 
it is readily obtained that the residual mode can be written alternatively 

(5) 

4.1. Collocated syst.ems 

Consider an undamped system with collocated actuator and sensor. Since c/>i(a) = 
c/>i(s), Eq. (4) becomes 

~ ~ c/>;{a) 
G(w)- ~ J.Li(w'f- w2) + R. 

t=l t 

(6) 

We note that the residues are all positive. 
The behaviour of G(w) is represented in Fig. 6; the amplitude of G(w) goes to ±oo at 

the resonance frequencies Wi (corresponding to a pair of imaginary poles in the system). 
Besides, as G(w) is an increasing function of w2 , in every interval between consecutive 
resonance frequencies, there is a frequency Woi where the amplitude of the FRF vanishes; 
these frequencies are known in structural dynamics as anti-resonance; they correspond 
to purely imaginary zeros. Thus an undamped structure with collocated actuator and 
sensor has alternating poles and zeros on the imaginary axis (Fig. 7a). 

The transfer function can be written alternatively 

G(s) = k Tizeros(s: + W~i). 
Tipoles(s + Wi) 

(7) 

If some damping is added, the poles and zeros are slightly moved into the left half 
plane as indicated in Fig. 7b, without changing the dominant feature of interlacing. 
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FIGURE 6. FRF of an undamped structure with collocated actuator and sensor. 
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F I GURE 7. Pole/ zero pattern of a structure with collocated actuator and sensor. (a) Undamped. 
(b) Lightly damped. (Only the upper half of the complex plane is shown, the diagram is symmetrical 

with respect to the real axis) . 

A collocated system always exhibits Bode and Nyquist plots similar to those represented 
in Fig. 8. Each flexible mode introduces a circle in the Nyquist diagram; it is more or 
less centered on the imaginary axis which is intersected at w = wi and w = w0 i; the 
radius of each circle is proportional to the inverse of the modal damping, ~i 1 . In the 
Bode plots, a 180° phase lag occurs at every natural frequency, and is compensated by 
a 180° phase lead at every imaginary zero; the phase always oscillates between 0 and 
-1r, as a result of the interlacing property of the poles and zeros. It is worth pointing 
out that the zeros (anti-resonance) of a collocated system are identical to the resonance 
frequencies of the system with an additional restraint at the actuator/ sensor location. 
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FIGURE 8. Nyquist diagram and Bode plots of a lightly damped structure with collocated actuator 
and sensor. 

5. Laminar piezoelectric actuator 

5.1. Smart piezoelectric shell 

Consider a two-dimensional piezoelectric lamina in a plane ( x, y); the poling direc­
tion is z (normal to the lamina) and the electric field is also applied along z. In the 
piezoelectric principal axes, the constitutive equations read 

where 

{

e31} 
{T} = [C]{ S} - e~2 E, 

D={ e31 e32 O}{S}+cE, 

{ 

Cfx } 
{T} = CJy , 

Cfxy 

{S} = 

fJu 
Ex=-ox 

fJv 
Ey =--

fJy 
au fJv 

rxy =-+­ay ax 

(8) 

(9) 

(10) 

are the stress and strain vector, respectively, [C] is the matrix of elastic constant, E is the 
component of the electric field along z, D is the z-component of the electric displacement 
and E the dielectric constant and e31 and e32 are the piezoelectric constants. 

Next, consider a piezoelectric lamina bounded on a shell structure (Fig. 9). If the 
global axes coincide with the piezoelectric axes of the lamina, the constitutive equations 
can be integrated over the thickness of the shell in the form (e.g. (17]) 
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FIGURE 9. Piezoelectric shell. 

(11) 

D = { e31 e32 0}[/3 Zml3] { ~}- :.v• (12) 

where { N} is the vector of in-plane resultant forces and {M} the vector of bending 
moments: 

h/2 h/2 

{N} = I {T} dz, {M}= I {T} zdz. (13) 

-h/2 -h/2 

{So} is the deformation vector of the mid-plane and {~}is the vector of curvatures: 

8uo 82w 

ax 8x2 

{So}= 
8vo 

{~} = 
82w 

(14) 
8y 8y2 

8uo 8vo 82w -+-
8y ax 8x8y 

The matrices A, B, D are the classical stiffness matrices of the shell theory (e.g. (3]); 
hp is the thickness of the piezoelectric lamina and Zm is the distance between its mid­
plane and the mid-plane of the shell. 

If the piezoelectric lamina is connected to a charge amplifier, the voltage between 
the electrodes is set to V = 0 and the sensor equation (12) can be integrated over the 
electrode to produce the sensor output 

(15) 

where the integral extends over the surface of the electrode (the part of the piezo not 
covered by the electrode does not contribute to the signal). The first part of the integral 
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FIGURE 10. Sensor equation for an isotropic piezo. 
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FIGURE 11 . Equivalent piezoelectric forces for an isotropic piezo. 
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is the contribution of the membrane strain while the second one is due to bending. If 
the piezoelectric properties are isotropic (e31 = e32), the surface integral can be further 
transformed into a contour integral using one of the Green integrals: 

(16) 

This integral extends over the contour of the electrode (Fig. 10); the first contribution 
is the component of the mid-plane in-plane displacement normal to the contour and the 
second one is associated with the slope along the contour. 

Similarly, for a piezoelectric actuator made of isotropic material, the equivalent 
piezoelectric loads consist of a in-plane force, normal to the contour of the electrode, 
and a constant moment, acting along the contour of the electrode (Fig. 11): 

(17) 

5.2. Smart piezoelectric beam 

Figure 12 considers the particular case where the piezo patch is mounted on a 
beam. Of all the piezoelectric forces defined by Eq. (17) and represented in Fig. 12b, 
only the bending moment Mp normal to the beam axis will contribute significantly to 
the transverse displacements of the beam (Fig. 12a); this is the corresponding equivalent 
load of the beam theory. 

(b) 

(a) 

FIGURE 12. Equivalent piezoelectric loads of a rectangular piezoceramic patch on a beam. 
(a) Beam theory. (b) Shell theory. 

In a more general configuration where a beam is covered with a piezoelectric layer 
with an electrode of width bp(x), the equivalent piezoelectric load consists of a dis­
tributed load proportional to the second derivative of the widt.h of the electrode (e.g. [23]): 

(18) 
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Similarly, if the piezo layer is used as a sensor, the amount of electric charge generated 
by the beam deformation is given by 

(19) 

a 

where a and bare the limit of the electrode along the beam. Eq. (19) is a particular case 
of Eq. (15), with the assumptions of the beam theory. 

5.3. Spatial modal filters 

Equation (18) allows to tailor an actuator to produce a single mode excitation (18). 
Indeed, it can be shown that the electrode profile 

(20) 

(where m is the mass per unit length) excites only mode l; this is a consequence of the 
orthogonality condition of the mode shapes. 

Conversely, a sensor with an electrode profile 

(21) 

will be sensitive only to model. Note that for an uniform beam, the modal actuator and 
the modal sensor have the same shape, because 4>{v (x) ,...., 4>i(x). Figure 13 illustrates the 
modal filters used for a uniform beam with various boundary conditions; the change of 
sign indicates a change in the polarity of the strip , which is equivalent to negative values 
of bp(x). As an alternative, the part of the sensor with negative polarity can be bonded 
on the opposite side of the beam. The reader will notice that the electrode shape of the 
simply supported beam is the same as the mode shape, while for the cantilever beam, 
the electrode shape is that of the mode shape of a beam supported at the opposite end. 

~ 
--------------------------~~ 

~ 

?\lode 2 

FIGURE 13. Modal filters for the first two modes of a beam for various boundary conditions: 
(a) cantilever; (b) simply supported. 
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6. Active truss 

Consider the active truss of Fig. 14; when a voltage V is applied to an unconstrained 
linear piezoelectric actuator, it produces an expansion 8. 

(22) 

where d33 is the piezoelectric coefficient, n is the number of piezoelectric ceramic ele­
ments in the actuator; 9a is the actuator gain. This equation neglects the hysteresis of 
the piezoelectric expansion. If the actuator is placed in a truss, its effect on the structure 
can be represented by equivalent piezoelectric loads acting on the passive structure. As 
for thermal loads, the pair of self equilibrating piezoelectric loads applied axially to both 
ends of the active strut (Fig. 14) has a magnitude equal to the product of the stiffness 
of the active strut, Ka, by the unconstrained piezoelectric expansion 8: 

y_. Active member 
I 

., . 4 6 8 10 12 14 ' 16 18 20 

-~ 

Detail of an 
active member 

7 9 I I 13 <--> I 5 17 19 

P2 

8 
.__~ 

11111111111 

Force Piezoelectric 
transducer linear actuator 

(23) 

FIGURE 14. Active truss. The active struts consist of a piezoelectric linear actuator colinear with a 
force transducer. 

Assuming no damping, the equation governing the motion of the structure excited 
by a single actuator is 

Mx+Kx =bp= bKa8, (24) 

where b is the influence vector of the active strut in the global coordinate system. The 
non-zero components of b are the direction cosines of the active bar. As for the output 
signal of the force transducer, it is given by 

(25) 

where 8e is the elastic extension of the active strut, equal to the difference between 
the total extension of the strut and its piezoelectric component 8. The total extension 
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is the projection of the displacements of the end nodes on the active strut, .6. = bT x. 
Introducing this into Eq. (25), we get 

Y = T = Ka(bT X- b). (26) 

Note that, because the sensor is located in the same strut as the actuator, the same 
influence vector b appears in the sensor equation (26) and the equation of motion (24). 
If the force sensor is connected to a charge amplifier of gain g8 , the output voltage Vo 

is given by 
(27) 

Note the presence of a feedthrough component from the piezoelectric extension b. Upon 
transforming into modal coordinates, the frequency response function (FRF) G(w) be­
tween the voltage V applied to the piezo and the output voltage of the charge amplifier 
can be written [23]: 

{ 
n } ~ ~ 

V = G(w) = 9s9aKa ?= 1 _ w2/0~- 1 ' 
t=l t 

(28) 

where ni are the natural frequencies , and we define 

(29) 

The numerator and the denominator of this expression represent respectively twice 
the strain energy in the active strut and twice the total strain energy when the structure 
vibrates according to mode i; vi ( 2: 0) is therefore called the modal fraction of strain 
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FIGURE 15. Open-loop FRF G(w) of the active truss (a small damping is assumed) . 
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energy in the active strut. From Eq. (28), we see that Vi determines the residue of mode i, 
that is the amplitude of the contribution of mode i in the transfer function between the 
piezo actuator and the force sensor; it can therefore be regarded as a compound index 
of controllability and observability of mode i . Vi is readily available from commercial 
finite element programs; it can be used to select the proper location of the active strut 
in the structure: the best location is that with the highest vi for the modes that we 
wish to control (27]. The FRF (28) has alternating poles and zeros on the imaginary 
axis (or near, if the structural damping is taken into account) (Fig. 15). 

7. Active damping with collocated pairs 

7.1. Introduction 

The role of damping is to reduce the settling time of the transient response to 
impulsive loads, and the resonant response to broad band stationary excitations. In 
this section, we examine various ways of achieving active damping augmentation with 
collocated actuator/sensor pairs. As we have seen in Sec. 4, this special configuration 

TABLE 2. Collocated active damping compensators for various actuator/sensor pairs. The column 
indicates the type of actuator, and the row the type of sensor. 

gD(s) Force 
Strain Linear 

(d31 piezo) (d33 piezo) 

Lead 
Displacement s 

g s +a 

Velocity 
Direct Velocity F. 

g 

DVF: gfs 

Acceleration g 

s2 + 2~JWJS + WJ 

Positive Position F. 
Strain 

-gWJ 
(d31 piezo) 

s2 + 2~JWJS + w] 

Force 
Integral Force F. 

-gfs 
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leads to alternating poles and zeros near the imaginary axis; thanks to this property, a 
number of active damping schemes with guaranteed stability have been developed and 
tested with various types of actuators and sensors (Table 2); they can be implemented 
in a decentralized manner, each actuator interacting only with its collocated sensor. 

7.2. Direct velocity feedback [5, 6) 

Consider an undamped structure controlled with a set of point force actua ors u 
collocated with a set of velocity sensors y; the governing equations are 

structure: 

Mx + J(x = f + Bu, (30) 

sensor: 
y = BT ±, (31) 

control: 
u = -Gy, (32) 

where B is the control influence matrix and G is the positive definite matrix of control 
gains. The fact that BT appears in the sensor equation is due to collocation. Corn ining 
the three equations, we find the closed-loop equation 

Mx+BGBT±+Kx=f. (33) 

Therefore, the control forces appear as a viscous damping (electrodynamic damping). 
The damping matrix C = BC BT is positive semi definite, because the actuato s and 
sensors are collocated. 

7.2.1. Lead compensator. Let us examine the SISO case a little closer. In this case, 
the matrix B degenerates into a control influence vector B. The open-loop transfer 
function between the control force u and the collocated displacement y is 

(34) 

where the sum extends to all the modes. We know that the corresponding pol s and 
zeros alternate on the imaginary axis. 

Because the amplitude of the derivative compensation increases linearly with the 
frequency, which would lead to noise amplification at high frequency, it is not desirable 
to implement the compensator as in Eq. (32) , but rather to supplement it by a low-pass 
filter to produce: 

s 
D(s) =g-. 

s+a 
(35) 

A pole has been added at some distance a along the negative real axis. This compensator 
behaves like a derivator at low frequency (w << a). The block diagram of the control 
system is shown in Fig. 16; a displacement sensor is now assumed and the str ctural 
damping is again omitted for simplicity. 
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g D(s) 

u y 

FIGURE 16. Block diagram of the modified direct velocity feedback. 

lm(s) lm(s) 

Structure 

a= -10 -- Re(s) 

\ I 
Compensator 

FIGURE 17. Root locus plots for two values of the low-pass filter corner frequency a (only the upper 
half is shown). 

Typical root locus plots are shown in Fig. 17 for two values of the low-pass filter 
corner frequency a. The closed-loop pole trajectories go from the open-loop poles to 
the open-loop zeros following branches which are entirely contained in the left half 
plane. Since there are two poles more than zeros, there are two asymptotes at ±90°. 
The system is always stable, and this property is not sensitive to parameter variations, 
because the alternating pole-zero pattern is preserved under parameter variations. 

7 .3. Acceleration feedback [28, 29] 

The easiest way to use the acceleration is to integrate it to obtain the absolute 
velocity; the direct velocity feedback can then be used. In practice, however, piezoelectric 
accelerometers use charge amplifiers which behave as high-pass filters; this does not 
affect significantly the results if the corner frequency of the charge amplifier is well 
below the vibration mode of the structure. Next, we consider an alternative controller 
which also enjoys guaranteed stability and exhibits a larger roll-off at high frequency. 
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FIGURE 18. Acceleration feedback for a SISO collocated system. 
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FIGURE 19. Root locus of the acceleration feedback for a m.d.o.f. structure. (a) The control is 
targeted at mode 2. (b) The control is targeted at mode 1. (Different scales are used for the real and 

. imaginary parts) 
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FIGURE 20. Targeting several modes with a SISO acceleration feedback. 
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7.3.1. Second order filter. The block diagram of the second order filter applied to a 
SISO collocated system with acceleration sensor is shown in Fig. 18; the corresponding 
root locus is shown in Fig. 19 for two values of the filter frequency w 1; in both cases, 
~! = 0.5 is used. In Fig. 19a, w f is selected close to the natural frequency of mode 2 while 
in Fig. 19b, it is selected close to mode 1. Comparing the two figures, we see that all the 
modes are positively damped, but the mode with the natural frequency close to WJ is 
more heavily damped. Thus, the performance of the compensator relies on the tuning 
of the filter on the mode that we wish to damp (this aspect may become problematic if 
the system is subject to changes in the parameters). The maximum achievable damping 
ratio increases with~!; a value of f.J between 0.5 and 0.7 is recommended. for closely 
spaced modes, stability is still guaranteed, but a large damping ratio cannot be achieved 
simultaneously for the two modes; besides, small variations of the filter frequency may 
significantly change the root locus and the modal damping. 

If several modes must be damped, several compensators may be used in parallel as 
represented in Fig. 20, where the Wfi are tuned on the targeted modes. 

As compared to the Direct Velocity Feedback, gD(s) = gjs, the new compensator 
has a larger roll-off at high frequency ( -40 dB/ decade instead of-20 dB/ decade), which 
may decrease the risk of destabilizing high frequency modes. The need for tuning the 
filter frequency Wf may be a drawback if the natural frequency is not known accurately, 
or is subject to changes. 

7.4. Positive position feedback [14, 10) 

The Positive Position Feedback (PPF) is appropriate for a structure equipped with 
strain actuators and sensors; the objective is, once again, to use a second order filter 
to improve the roll-off of the control system, allowing high frequency gain stabilization. 
The block diagram is represented in Fig. 21. As compared to Fig. 18, the output y is 
now proportional to the displacements (e.g. strain sensor) and a minus sign appears in 
the controller block (together with the minus sign in the feedback loop, this produces a 
positive feedback.). Figure 22a and b show the root locus when the controller is tuned 
on mode 1 and mode 2, respectively. We see that the tuning property of the controller 
is very similar to that of Fig. 18 and, even in presence of a feedthrough component, the 
open-loop transfer function has a roll-off of -40 dB/decade. However, there is a stability 
limit which is reached when the open-loop static gain is equal to 1. 

g IJ(s) 

-g u L 
bTo·6!b y~ 

~ 
' l ' l 

·) . ) .. ( ·) )) s-+~~f ~·! s+~·j 
,... 

JL i ~· ;+s ~ ,... 

-"~ I 

FIGURE 21. Positive Position Feedback for a SISO collocated system. 
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FIGURE 22. Root locus of the PPF. (a) The control is targeted at mode 1. 
(b) The control is targeted at mode 2. 
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FIGURE 23 . Block diagram of the integral force feedback . 
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FIGURE 24. Root locus of the integral force feedback. 
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7.5. Integral force feedback (27] 

Consider the active truss of Fig. 14; the open-loop FRF of Eq. (28) has alternating 
poles and zeros and has no roll-off at high frequencies. This system can be actively 
damped by a positive Integral Force Feedback (Fig. 23); the corresponding root locus is 
shown in Fig. 24. 

7.5.1. Modal damping. Combining the structure equation (24), the sensor equation 
(26) and the control law 

c5 = _g_y 
Kas 

the closed-loop characteristic equation reads 

(36) 

(37) 

From this equation, we can deduce the open-loop transmission zeros, which coincide 
with the asymptotic values of the closed-loop poles as g ~ oo. Taking the limit, we get 

(38) 

which states that the zeros (i .e. the anti-resonance frequencies) coincide with the poles 
(resonance frequencies) of the structure where the active strut has been removed (cor­
responding to the stiffness matrix I{- bKabT). 

To evaluate the modal damping, Eq. (37) must be transformed in modal coordinates 
with the change of variables x = <l>z . Assuming that the mode shapes have been normal­
ized according to <PT M<l> = I and taking into account that <PT K<l> = diag(on = 0 2

, 

we have 

[I s
2 + 0 2 - _g_<l>T (bKabT)<l>l Z = 0. 

s+g 
(39) 

The matrix <PT (bi{abT)<l> is, in general, fully populated; if we assume that it is diagonally 
dominant , and if we neglect the off-diagonal terms, it can be rewritten 

(40) 

where v i is the fraction of modal strain energy in the active member when the structure 
vibrates according to mode i; vi is defined by Eq. (29). Substituting Eq. ( 40) into (39), 
we find a set of decoupled equations 

(41) 

and, after introducing 

(42) 

it can be rewritten 
s2 + 0 2 - _g_(O~- w~) = 0. 

t s+g t t 
(43) 
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FIGURE 25. Root locus of the closed-loop pole for the IFF. 

By comparison with Eq. (37), we see that the transmission zeros (the limit of the closed­
loop poles as g -too) are ±jwi. The characteristic equation can be rewritten 

1 
(s2 + Wi2) 0 

+g = . 
s(s2 + ni2

) 
(44) 

The corresponding root locus is shown in Fig. 25. The depth of the loop in the 
left half plane depends On the frequency difference fli - Wi, and the maximum modal 
damping is given by 

~ . max _ fli- Wi 
t - 2wi (45) 

it is obtained for g = ni JOd wi. For small gains, it can be shown (27] that 

~ · _ gvi 
t - 2fli. (46) 

This interesting result tells us that, for small gains, the active damping ratio in a given 
mode is proportional to the fraction of modal strain energy in the active element. This 
result is very useful for the design of active trusses; the active struts should be located 
in order to maximize the fraction of modal strain energy vi in the active members for 
the critical vibration modes. The preceding results have been established for a single 
active member; if there are several active members operating with the same control law 
and the same gain g, this result can be generalized under similar assumptions. It can 
be shown that each closed-loop pole follows a root locus governed by Eq. ( 44) where 
the pole fli is the natural frequency of the Open-loop Structure and the zero Wi is the 
natural frequency of the structure where the active members have been removed. 

7.5.2. Experimental results The test structure is shown in Fig. 26. Figures 27 and 28 
illustrate typical results. The modal damping ratio of the first two modes is larger than 
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FIGURE 26. Active truss with piezoelectric struts (ULB). 
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FIGURE 27. Force signal from the two active struts during the free response after impulsive load . 
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FIGURE 28. FRF between a force in A and an accelerometer in B, with and without control. 

10%. Note that, in addition to being simple and robust, the control law can be imple­
mented in a analog controller which performs better in microvibrations. 

8. Active tendon control 

The use of cables to achieve lightweight structures is not new; it can be found in 
Herman Oberth's early books on astronautics. The use of guy cables is probably the 
most efficient way to stiffen a structure, in terms of weight. They can also be used to 
prestress a deployable structure and eliminate the geometric uncertainty due to the 
gaps. Cables structures are also extensively used in civil engineering. One further step 
consists of providing the cables with active tendons to achieve active damping in the 
structure. This approach has been developed in (23, 1, 2, 24, 25, 26]. 

Active 
tendon -/ , 

: ... ~················ ! · T 
l ~----1 I' 

I ' 1 I 
LJ _ ~ 

~ 

Cable Structure 

FIGURE 29. Control strategy for active damping of cable structures. 
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8.1. Active damping of cable structures 

When using a displacement actuator (e.g. a piezo) and a force sensor, the (positive) 
Integral Force Feedback (36) belongs to the class of "energy absorbing" control: indeed, 
if 

b "-' J Tdt (47) 

the power flow from the control system is W = -TJ"' -T2 ~ 0. This means that the 
control can only extract energy from the system, and this applies to nonlinear structures 
as well; all the states which are controllable and observable are asymptotically stable for 
all positive gains (infinite gain margin). The control concept is represented schematically 
in Fig. 29 where the spring-mass system represents an arbitrary structure. Note that 
the damping introduced in the cable is usually very low, but experimental results have 
confirmed that it remains always stable, even at the parametric resonance (when the 
natural frequency of the structure is twice that of the cables). 

max 
~-l 

natural frequency 
with the active cables 

----------------------~~-----· Re(s) 

active cables reivej' 

Q . 
1 

FIGURE 30. Cable structure: root locus of the closed-loop poles. 
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8.2. Modal damping 

If we assume that the dynamics of the cables can be neglected, that their interaction 
with the structure is restricted to the tension in the cables, and that the global mode 
shapes are identical with and without the cables, one can develop an approximate linear 
theory for the closed-loop system; the following results can be established, which follow 
closely those obtained for active trusses in the foregoing section (we assume no structural 
damping): 

• The open-loop poles are ±jOi, where Oi are the natural frequencies of the struc­
ture including the active cables; the open-loop zeros are ±jwi where wi are the 
natural frequencies of the structure where the active cables have been removed. 

• If the same control gain is used for every local control loop, as g goes from 0 
to oo, the closed-loop poles follow the root locus defined by Eq. ( 44) (Fig. 30). 
Equation ( 45) and ( 46) also apply in this case. 

8.3. Active tendon design 

Figure 31 shows two possible designs of the active tendon: the first one (bottom 
left) is based on a linear piezoactuator from PI and a force sensor from B&K; a lever 

PI 840.30 
451-'m 
l500N 

l"f.!${;11 ~-~-~,~. ~£ 
..,..~\··~=--.,•-- ·~·: - -~ , 1141 \ .......,_~ _, 

~ . I 

APA 50 S APA 100 M 
551-'m llOf-Jm 
45 N 117 N 

FI GU R E 31. Various designs of active tendon or active strut (ULB). 
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mechanism (top view) is used to transform the tension in the cable into a compression 
in the piezo stack, and amplifies the translational motion to achieve about 100 J.Lm. 
This active element is identical to that in an active strut. In the second design (bottom 
center and right), the linear actuator is replaced by an amplified actuator from CEDRAT 
Research, also connected to a B&K force sensor and flexible tips. In addition to being 
more compact, this design does not require an amplification mechanism, and a tension 
of the flexible tips produces a compression in the piezo stack, which expands in the 
transverse direction, at the center of the elliptical structure. 

8.4. Experimental results 

Figure 32 shows the test structure; it is representative of a scale model of the JPL­
Micro-Precision-Interferometer [20] which consists of a large trihedral passive truss of 
about 9 m. The free-floating condition during the test is simulated by hanging the 
structure from the ceiling of the lab with soft springs. In this study, two different 
types of cables have been used: a fairly soft cable of 1 mm diameter of polyethylene 
(EA ~ 4000 N) and a stiffer one of synthetic fiber "Dynema" (EA ~ 18000 N) ; in 
both cases, the tension in the cables was chosen in order to set the first cable mode at 
400 radjsec or more, far above the first five flexible modes for which active damping is 
sought. The table inset into Fig. 32 gives the measured natural frequencies wi (without 
cables) and Oi (with cables), for the two sets of cables. 

Figure 33 compares the experimental closed-loop poles obtained for increasing gain 
g of the control with the root locus prediction of Eq. (44). The results are consistent 
with the analytical predictions, although a larger scatter is observed with stiffer cables. 
Note, however, that the experimental results tend to exceed the root locus predictions. 
Figure 34 compares typical FRF with and without control. An analytical study was 
conducted in [25] to investigate the possibility of using three Kevlar cables of 2 mm 
diameter connecting the tips of the three trusses of the JPL-MPI. Using the root locus 
technique of Fig. 30, a damping ratio between 14% and 21% was predicted in the first 
three flexible modes. 

2 4 
...------1 (I) I 95.6 1()43 12D 1J7_J 149 

EA=.!IJOON ni 107 114 .7 1.26.5 146.4 162.9 
EA=1~oo 11 n i 112 .4 118.6 131.1 163 179 

FIGURE 32. Free floating truss with active tendons . 
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FIGURE 33: Experimental poles vs. root-locus prediction for the flexible modes of the free floating 
truss. (a) EA= 4000 N. (b) EA= 18000 N. 
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FIGURE 34. Typical FRF with and without control (EA= 4000 N). 

9. Active damping generic interface 

The active strut discussed in Sec. 6 can be developed into a generic 6 d.o.f. interface 
which can be used to connect arbitrary substructures. 

Such an interface is shown in Fig. 35; it consists of a Stewart platform with cubic 
architecture [13]. Each leg consists of an active strut similar to that shown at the 
center of Fig. 31: piezotranslator of the amplified design collocated with a force sensor, 
and connected to the base plates by flexible tips acting like spherical joints. The cubic 
architecture provides a uniform control capability in all directions, a uniform stiffness in 
all directions, and minimizes the cross-coupling amongst actuators (which are mutually 
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F I GU R E 35. Stewart platform wit h piezoelectric legs as generic active damping interface. (a) General 
view . (b) Wi th t he upper base plate removed . (c) Interface acting as a support of a truss. 
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orthogonal). The control is decentralized with the same gain for all loops. Figure 35c 
shows the generic interface mounted between a truss and the supporting structure. 
Figure 36 shows the evolution of the first two closed-loop poles of this system when 
we increase the gain of the decentralized controller; the continuous line shows the root 
locus prediction of Eq. (44); ni are the open-loop natural frequencies while Wi are the 
high-gain asymptotes of the closed-loop poles. 
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FIGURE 36. Experimental poles and root locus prediction from Eq. ( 44) for the structure of Fig. 35c. 

10. Active vibration isolation 

Many operating equipments (e.g. a car engine or an attitude control reaction wheel 
assembly in a spacecraft) generate oscillatory forces which can propagate in the sup­
porting structure. Conversely, sensitive equipments may be supported by a structure 
which vibrates appreciably (e.g. a telescope in a spacecraft). In both cases, a vibration 
isolation is necessary and it turns out that the two problems have the same solution. 

10.1. Passive isolation 

Let us consider the dirty body /clean body isolation problem (Fig. 37), where the 
dirty body motion xd constitutes the disturbance and the clean body displacement Xc 

is the system output; the passive isolation system consists of a spring and damper. The 
transmissibility of the isolation system is defined as 
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Passive isolator transmissibility FRF for various values of the damping ~. 

1 + 2~sfwn 
(48) 

The amplitude diagram is represented in Fig. 37 for various values of the damping 
ratio. We observe that 

• All the curves are larger than 1 for w < .../2 Wn and become smaller than 1 for w > 
.../2 Wn· Thus the critical frequency ...tiwn separates the domains of amplification 
and attenuation of the isolator. 

• When ~ = 0, the high frequency decay rate is 1/ s2 , that is -40 dB/ decade, while 
very large amplitudes occur near the corner frequency Wn (the natural frequency 
of the spring-mass system). 

• The damping reduces the amplitude at resonance, but also tends to reduce the ef­
fectiveness at high frequency; the high frequency decay rate becomes 1/ s 
( -20 dB/decade). 

The design of a passive isolator involves a trade-off between the resonance amplifi­
cation and the high frequency attenuation; the ideal isolator should have a frequency 
dependent damping, with high damping below the critical frequency .../2 Wn to reduce 
the amplification peak, and low damping above .../2 Wn to improve the decay rate. The 
objective in designing an active isolation system is to achieve no amplification below 
Wn and a decay rate of -40dB/decade at high frequency, as represented in Fig. 37. 
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10.2. The "sky-hook" damper 

Consider the single axis isolator of Fig. 38a; it consists of a soft spring k acting in 
parallel with a force actuator Fa (note that there is no damping in the isolator). An 
accelerometer measures the absolute acceleration of the clean body, Xc and an integral 
controller is used, in such a way that 

Fa= -gsXc. 

clean body 

M 

(b) 

clean body 
M 

FIGURE 38. (a) Soft isolator with acceleration feedback. (b) Equivalent "sky-hook" damper. 

(49) 

We observe that the resulting control force is proportional to the clean body absolute 
velocity; this is why this control is called "sky-hook damper" (Fig. 38b). It is easy to 
establish that the closed-loop transmissibility reads 

(50) 

It has a corner frequency at Wn = /k(M, its high frequency decay rate is 1/ s2 , that 
is -40 dB/ decade, and the control gain g can be chosen in such a way that the isolator 
is critically damped (~ = 1); the corresponding value of the gain is g = 2vfkM. In this 

!m 

H(s) G(s) 
m s2 s.zxc 

mM s2+ k (m +M) 

~ 
(2 zeros + 1 pole) 

FIGURE 39. Root locus of the sky-hook damper. 
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way, we achieve a low-pass filter without overshoot with a roll-off of -40dB/decade. This 
transmissibility follows exactly the objective represented in Fig. 37. On the other hand, 
the open-loop transfer function of the isolator {between the control force Fa and the 
clean body acceleration Xc) can be written 

s2 )(c(s) ~s2 

G ( s) - - -----,-------:-
- Fa(s) - M~s2 + k(M + ~r (51) 

The open-loop poles are the natural frequencies of the system without control. The rigid 
body modes do not appear in the transfer function (51) because they are not controllable 
from Fa. The root locus of the closed-loop poles as the gain g of the controller increases 
is shown in Fig. 39. 

10.3. Force feedback 

If the clean body is rigid, its acceleration is proportional to the total force transmit­
ted by the interface, F = Fa + Fk. As a result, the sky-hook damper can be obtained 
alternatively with the control configuration of Fig. 40, where a force sensor has been 
substituted to the acceleration sensor. 

FIGURE 40. Force feedback isolator. 

clean body 
M 

The control strategies based on acceleration feedback and on force feedback appear 
as totally equivalent for the isolation of rigid bodies. However, the force feedback has 
two advantages. The first one is related to sensitivity: force sensors with a sensitivity 
of 10-3 N are commonplace and commercially available; if we consider a clean body 
with a mass of 1000kg (e.g. a telescope), the corresponding acceleration is 10-6 m/s2 . 

Accelerometers with such a sensitivity are more difficult to find; for example, the most 
sensitive accelerometer available in the Bruel & Kjaer catalogue is 2.10-5 mjs2 (model 
8318). The second advantage is stability when the clean body is flexible. In this case, 
the sky-hook damper appears to be only conditionally stable (for small gain) when the 
clean body becomes very flexible, so that the corner frequency of the isolator overlaps 
with the natural frequencies of the clean body. On the contrary, the stability of the 
force feedback re mains guaranteed. 

10.4. 6 d.o.f. isolator 

The foregoing section describes a single axis active isolator which combines a 
-40 dB/ decade attenuation rate in the roll-off region with no overshoot at the cor-
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ner frequency. To fully isolate two rigid bodies with respect to each other, we need six 
such isolators, judiciously placed, that could be controlled either in a centralized or 
(more likely) in a decentralized manner. For a number of space applications, generic 
multi-purpose 6 d.o.f. isolators have been developed with a standard Stewart platform 
architecture (Fig. 41) [30, 19]. The Stewart platform uses 6 identical active struts ar­
ranged in a mutually orthogonal configuration connecting the corner of a cube (same 
cubic architecture than in Sec. 9). In addition to the properties discussed in the fore­
going section, this cubic architecture also tends to minimize the spread of the modal 
frequencies of the isolator. 

FIGURE 41. Multi-purpose soft isolator based on a Stewart platform (JPL) . 

10.5. Decentralized control of the 6 d.o.f. isolator 

Assuming that the base is fixed and that the payload attached to the upper part of 
the isolator is a rigid body, the dynamic equation (for small rotations) of the isolator is 

Mx+Kx=Bu, (52) 

where x = (xr, Yr, Zr, Bx, By, Bz)T is the vector describing the small displacements and 
rotations in the payload frame, u = ( u 1 , ... , u6 ) T is the vector of active control forces 
in strut 1 to 6, and B is their influence matrix in the payload frame. M is the mass 
matrix and K = kB BT is the stiffness matrix. 

If each leg is equipped with a force sensor as in Fig. 40, the output equation reads 

y = -kBT X+ u. (53) 

This equation expresses the fact that the total force is the sum of the spring force 
and the control force. Once again, we note that the same matrix B appears in Eqs. (52) 



http://rcin.org.pl

ACTIVE VIBRATION CONTROL 49 

and (53) because the sensors and actuators are collocated. Using a decentralized integral 
force feedback with constant gain, the controller equation reads 

g 
u = --y. 

s 

Combining Eqs. (52), (53) and (54), the closed-loop equation reads 

Ms2x + Kx = - 9-kBBT x 
s+g 

and, taking into account that K = kBBT, 

[Ms2 + K-
8
-] x = 0 

s+g 

(54) 

(55) 

If we transform into modal coordinates, x = <I> z, and take into account the orthogonality 
relationships of the mode shapes, the characteristic equation is reduced to a set of 
uncoupled equations 

(s 2 + n;-8 -)zi = 0 
s+g 

Thus, every mode follows the characteristic equation 

or 
s 

I+ g 2 n2 = o. 
s + i 

(56) 

(57) 

The corresponding root locus is shown in Fig. 42. It is identical to Fig. 39 for a single­
axis isolator; however, unless the 6 natural frequencies are identical, a given value of 
the gain g will lead to different pole locations for the various modes and it will not be 
possible to achieve the same damping for all modes. This is why it is recommended to 
locate the payload in such a way that the spread of the modal frequencies is minimized. 

Re 

FIGURE 42. Root locus of the modes of the six-axis isolator with integral force feedback. 
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10.6. Vehicle suspension 

Figure 43 shows a quarter-car model of a vehicle. Although this 2 d.o.f. model is too 
simple for performing a comprehensive analysis of the ride motion, it is sufficient to gain 
some insight in the behaviour of passive and active suspensions in terms of vibration 
isolation (represented by the body acceleration x), suspension travel (x- x0 ) and road 
holding (represented by the tyre deflexion x0 - d). Typical numerical values used in the 
simulation reported later are also given in the figure (taken from (7}). The stiffness kt 

body 

Nominal values: 
kt = 160 000 N/m (tyre) 
k= 16 OOON/m } . 
c.: = 980 N sec/m suspension 
m body = 240 kg 
mwheel = 36 kg 

FIGURE 43. Quarter-car model and sky-hook damper. 

····· ··· c = 200 Ns/m 
-- c = 980 Ns/m 
---- c = 4000 Ns/m 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

10~~~~~~~~~~~~~~~~~~~~~~~~~ 

10"1 101 

Frequency (rad/sec) 

FIGURE 44. FRF of the passive suspension (xjd) for various values of the damping coefficient . 
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g = 0 
g = 1000 
g ~ 2000 
g ~ 4000 
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10"1 

10
1 

Frequency (rad/sec) 

FIGURE 45. FRF of the active suspension (xj d) for various values of the gain g of the sky-hook 
damper (all the other parameters have the nominal values listed in Fig. 43). 

10-SL-~--~~~~--~~~~~--~~~~~--~~~~~ 
10"1 

101 

Frequency (rad/sec) 

FIGURE 46. Comparison of lxfdi and l(x- i:o)/di. 
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corresponds to the tyre; the suspension consists of a passive part (spring k +damper c) 
and an active one, assumed to be a perfect force actuator acting as a sky-hook damper 
in this case (the active control force is applied on both sides of the active device, to the 
body and to the wheel of the vehicle). 

Figure 44 shows the FRF from the roadway vertical velocity d to the car body 
acceleration x for the passive suspension alone; several values of the damping coefficient c 
are considered. The first peak corresponds to the body resonance (also called sprung 
mass resonance) and the second one to the wheel resonance (unsprung mass resonance). 
The passive damping cannot control the body resonance without reducing the isolation 
at higher frequency. Next, a sky-hook damper (f = -gx) is added. Figure 45 shows the 
corresponding FRF from d to x for various values of the control gain. Note that the 
body resonance can be damped without reducing the isolation at higher frequency but 
the peak in the FRF corresponding to the wheel resonance cannot be changed by the 
active control. Figure 46 compares the amplitude of the FRF xjd and (x- x0 )/d for 
two values of the gain. This figure shows that the absolute velocity of the body x rolls­
off much faster (i.e. has much lower fr equency components) than the relative velocity 
(x- x0 ). This point is important in the design of semi-active suspension devices which 
try to emulate the sky-hook damper by acting on the flow parameters of the damper 
acting on the relative velocity. 
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