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It is of first importance for research-workers, in particular in the domain of con-
crete and cement-based materials, to relate the properties of materials with the
micro- or macro-structure. Of course, structural parameters can be obtain by
physical means like X-Rays, acoustic emission, porosimetry, for instance or by
mechanical tests. Nevertheless, these methods of investigation give global mea-
surements. Contrariwise, direct methods of observation (microscopy, macroscopy)
give further information and give access to more accurate and local details if
needed (but in 2D only, unless tomography or stereology model are used).
The natural extension of direct observations consists in the image analysis. It
undergoes a great development since more than twenty years in laboratories but
it also begins to have some applications for industrial purposes.
The paper deals with three aspects of image analysis:
e the first one, a bit mathematical, will show how images of fibre reinforced
mortars can be analyzed by different ways,
e the second lecture, more philosophical, will evoke some strategic questions
about investigation in microcracking of concrete,
o the third will cover a technological aspect and is related to a quality re-
quirement concerning the surface of concrete.
These topics have been covered or are actually in development in the “Laboratoire
Matériaux et Durabilité des Constructions” in Toulouse, France; the name of the
main contributors will appear in the head of each Section.

I. On Fibres in Concrete
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1. Introduction

Fibres are more and more frequently used in reinforced concrete for new
buildings or for pavements reparation.

They play a major role in the mechanical behaviour of concrete: they may
increase the elastic modulus, they decrease the brittleness of the material and
control the opening and the development of cracks.

To improve the properties of such mixed materials so as to understand in
a more precise way their mechanical behaviour, it is necessary to know how
fibres are distributed and oriented in the volume.

FIGURE 1. Cross section of a fibre reinforced concrete.

For example, the strength of a plane section depends not only on the
number of fibres that intercept this section, but also on their leaning.

The most common fibres are cylindrical. So, in this Section, the attention
will be turned to the characterisation of the numbering and the orientation
of cylinders intercepted by a plane (Fig.2). Of course, the intersection of a
cylinder by a plane gives an ellipse, therefore ellipses will be at the heart of
this subject.

The length of the major axis of an elliptic shape depends of the leaning of
the fibre but the length of the minor axis is theoretically always equal to the
diameter of the fibre. Obviously, if it is possible to find the orientation (6)
in the plane and the ratio of the two axes; consequently it is also possible to
determine the leaning ().

Note that the sign of a is undefined.

To analyse ellipse orientations, one has to proceed in two steps at least:

1. detection of the ellipses,

2. shape analysis.
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FIGURE 2. (a) Cylinder in the 3D space. (b) Cross-section of a fibre.

Images must be taken at a scale allowing for an accurate determination
of the particles. The authors claim that the narrow side of each particle must
count twenty pixels at least.

All the difficulty consists in finding a strong algorithm which makes pos-
sible the true shapes to be detected. It will be seen later that it can be
necessary to complete this step by an enhancement process.

Once the objects of interest are extracted from the background, the shape
analysis can be performed either by edge analysis or by particle analysis. At
first, this implies that a particle segmentation is carried up as shown in the
following Section.

2. Particle segmentation

2.1. Edge detection

The first method, edge detection needs derived images obtained by various
operators such as Sobel, Prewitt, gradient or Laplacian ones (Fig. 3). In most
cases, a preliminary filter is necessary to avoid artefacts.

A thresholding followed by a cleaning leads to the contour extraction (see
Fig. 4).

The drawback of such a technique is that the contours can be open.
Other techniques are available which leads to closed contours. Among them,
let us evoke the watershed operator [S. Beucher, 1990]. This method is more
complex to apply because it requires to regularise the gradient function and
to mark both the objects to extract and the background.
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Original grey level image

Morphologic gradient image Sobel image

FiGuRE 3. Basic edge detectors.

FIGURE 4. Filtered and binarized Sobel image.
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2.2. Particles detection by isodata technique

Among many techniques, let us focus on the isodata algorithm [E. Diday,
1982]. In such an algorithm, each pixel is associated with a set of properties,
for example the couple {grey level, local gradient} in grey level images, or
the triplet {R, G, B} in the case of colour images. Other combinations of
parameters are possible of course, depending on the purpose.

The pixels are projected into the space of their properties (or parameters)
and they are grouped into classes (the user have to choose the desired number
of classes). In each class, the parameter values are similar and the pixels are
found to be distributed around a ‘kernel’ (Fig. 5).
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FiGURE 5. Parameter space representation of pixels.

Let us define:
e N — the number of classes,
e P — the number of parameters,
e g; — the kernel of the class C;.
The inertia of the class C; is calculated by

Wi= ) d*(z,9),

zeC;

where d is the Euclidian distance in the parameter-space IRF of P dimen-
sions.
So, the total inertia is:
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Among all the possible sets of partitions, the optimal one minimises W.
This problem of minimisation can be solved in an iterative way. For this
purpose we need two functions:

1. One function h for the representation, which determines the kernel for
each class: in fact, g; is often the gravity centre of the class C;:

h:{C}—-{g}:3:i= % z Z; (there are P components).
A z€C;

2. One function f for the affectation which determines the unique parti-
tion associated with the kernels g;. The class C; if formed by all the
pixels that are nearer g; than any else kernel:

f:{g} — {C}: Ci = {x € Image, Vj #1i, d(z,9) < d(z,g;)}.

The initialisation of the algorithm is made by an initial evaluation of the
kernels (or by randomisation). The algorithm is given in Table 1. At each

FIGURE 6. Starting (a), intermediate (b,c), and final (d) stages of an isodata
process.
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step, it is possible to replace each pixel by the kernel of its class to visualise
the intermediate images (see Fig. 6, from (a) to (d)).

TaBLE 1. Isodata algorithm.

Initialize the N kernels {¢°}.

Build the set of classes {C**'} = f (g*) around the kernels.
Build the new set of kernels: {g**'} = h (C**}).

Determine the total inertia W*+! = W(C**!, g¥+).

If {g"*'} = {g"*} then stop (stationarity) else go to step 2.

AR

Then the class(es) concerning the particles is (are) extracted, filtered and
closed (see Fig.7).

(a) (b)
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FIGURE 7. Class corresponding to fibres (a), and after filling and morphologic
filtering (b).

2.3. Contour enhancement with snakes

The enhancement of the edges detected by the procedure of segmentation
is useful to obtain more convex shapes as expected by the researcher. It can
be also used to close edges, if necessary.

Kass [M. Kass, 1987] has proposed a model called “active contour” or
“snakes” with the aim of forming a contour the form of which is influenced
both by internal and external constraints.

A snake is a contour defined by a set of control points. The contour passes
through these points. In fact, it is not necessary closed but here only the case
of closed snakes will be evoked.

The position and the shape of the snake must comply with intrinsic prop-
erties that are imposed (smoothness or elasticity for example) and image-



72 E. RINGOT

related properties that are desired (for instance, accordance with the gradient
of the image g(z,y)).

Based on these properties, an energy functional, depending on the contour
9(s) is defined:

Ernates = f anake (7(5)) ds, (2.1)

where Egpaie represents the global energy and egnake the local one which can
be decomposed into two terms of energy €snake = €int + €ext, given by

eime = 3 (o(5) n ()% + B(s) oss(o)) (2:2)

eext = | grad(g)| = \/(%)2 + (%)2. (2.3)

In these expressions, vs(s) is a first order term which increases when the
distance between two control points becomes large and a(s) represents the
local elasticity.

vss(8) is a second order term which increases with the curvature of the
contour and [(s) represents the binding factor. The relative weights of a
and B depend on the chosen influence of the elasticity on the curvature.
Concerning the enhancement, it is pertinent to give a large value to 8 so
that the minimization of Fgake Occurs when the contour is very smooth.
Contrariwise, a small value for § (i.e. null) would enable sharp corners to
appear in the contour.

Theoretically, the problem must be solved by a variational calculus, but
it can be shown [A. Amini, 1988 | that in a discrete context, an iterative
process called ‘dynamic programming’ can be successfully applied.

The discrete formula for the snake energy becomes:

Eiiisks = Z o; V4B vi, + €l (2.4)

D.J. Wiliams and M. Shah [D.J. Williams, 1991] have proposed the following
estimators for each term:

1. The first term, also called ‘continuity term’, has not the usual expres-
sion v} = |#; — ;1| because it would contribute to minimize the dis-
tance between two consecutive points, thus leading to a shrinking of
the snake. It seems more pertinent to encourage even spacing to reflect
the desired regularity of the contour. Thus the final expression uses the
difference between the mean distance d and the local distance, so that,
the continuity term becomes v} = |7; — T;_;| — d.
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&,
&2

|Ui—1 — 20; + U;41|. Here it is assumed that the points are spaced at unit
interval, or at least that they are evenly spaced as they are supposed
to be, according to the previous ‘continuity term’.

3. The third term is the gradient magnitude derived from Sobel’s or Pre-
witt’s transformation applied to the original (filtered) image.

Finally the algorithm is almost simple, see Table 2 and Fig. 8.

~
~

2. The second term, or ‘curvature term’, is estimated by: vi, =

TaBLE 2. Snake algorithm.

do
flag down
E_min = BIG_VALUE
for each control point i
for each neighbour j
E_j = alpha * v_s8"j + beta * v_ss~j + gamma * e_ext”j
if (E_j < E_min) then
E_min = E_j
j-min = j
end if
end for j
move point i to location j_min
if (j_min not current location) then
flag up
end if
end for i
until flag

* -
Yo o
Neighborhood of v,

FiGuRE 8. Part of an active contour.

The algorithm has been implemented to enhance one contour at a time.
Images presented in Fig.9 show an example of the successive steps of such
a process. The control points are taken from the initial edge. Note that it
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cannot be asserted that the final shape, although smoother and more convex
than the initial one, is a perfect ellipse.

FiGure 9. Example of a snake process.

3. Shape analysis

3.1. Diametrical variation of elliptic shapes

This Section applies to particle after its detection.

It is necessary to introduce the concept of diametrical variation of a par-
ticle. Let us consider a network of parallely oriented straight lines drawn in
the plane. These lines go across a particle. If the distance between two lines is
denoted by dD3(a), the diametrical variation in the direction « is given by:

Do) = faL a(P) dDs, (3.1)

where the function 7,(P) indicates if a line gets out of the particle at point P
on the edge (L) (value 1) or not (value 0).

Note that, in the case of non-convex particle, the diametrical variation is
different from Ferret’s diameter in the same direction.

Of course, the diametrical variation Dy(a) depends on the orientation o
of the lines.

For instance, among other applications of Ds(a), the mathematician
Cauchy showed that the perimeter of a particle is given by:

a=m

p= f Dy(e)da. (3.2)

a=0

In the case of image analysis, and particularly in the case of square lattice
images, only some directions are available because of the discretisation of the
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FIGURE 10. Diametrical variation of a particle.

space. The expression Dy (a) = fa 1, e (P) dD2 must be replaced by a digitized

Dy(a) = Na(a) dDg, (3.3)

where N3(a) is the number of lines leaving the particles. In fact, no line is
drawn on the image, but Ns(a) is obtained from the detection of particular
configurations of pixels.
In a square lattice, height directions can be examined, as shown in Table 3.
Generally the width to height ratio of a pixel is equal to the unit because
square pixels are generated.

D)

FIGURE 11. Non-oblique (or “parallel”) ellipse.

The equation of the ellipse in its own system of axes is:

.’L'2 2
5 F ?;2— =1, (3.4)



76 E. RINGOT

TABLE 3. The height discrete directions of a rectangular lattice and their corre-
sponding neighbours.
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An ellipse is convex and its diametrical variation is equal to the projection
of its edge in the direction perpendicular to a.

Let K be the point belonging to the ellipse and the tangent whose lea.n_ing
is a. The diametrical projection is twice as long as the projection of OK:
Ds(a) = 2|5I? - 7], where ¥ = —sin(a) 7 + cos(a) .

Since OK = z7 + y J, therefore: Dy (@) = 2|—z sin(a) + y cos(a)|.

The coordinates of K comply with Eq. (3.4) and the local tangent can be
derived from the differential:

2zdr  2ydy
2 + = = 0. (3.5)
Consequently we get:
T dzx a’y
Finally, solving the system:
(22 2
S|
2TE="h
< dy bz (3.6)
t. = oee— = ———
ana = -~ Zy
| D2(@) = 2|-zsin(a) + ycos(a)|,

the following expression for the diametrical variation is obtained:

Ds(a) = 24/a?sin?(a) + b2 cos?(a). (3.7)

In the case of an oblique ellipse, with an angle of obliquity equal to ¢
(Fig. 12), the diametrical variation becomes:

Dy(a) = 24/a?sin? (a — @) + b2 cos? (a — ). (3.8)

It depends on the three parameters a, b, .

Now, assuming that the eight diametrical variations D;, ¢ = 0,...,7, of
an elliptic-shaped particle are known, the question is to find the parameters
characterising the investigated ellipse.

Five parameters are necessary to entirely determine an ellipse but if its
centre is not concerned, only three of them are enough to define its shape:
the two half-lengths of the axes and the orientation.

Here, the least-square method can be proposed to deduce those three
parameters from the eight data. Furthermore, the result must be tolerant to
some incertitude in the initial data.
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FIGURE 12. Oblique ellipse.

The square of the theoretical diametrical variation is:

[Da(@))? = 4 (a?sin? (& — ) + b% cos? (a — )
= 2[(&2 + %) — (a® — b%) cos (2(a — cp))]

This relation can be written as:

[Da())? = u — veos (2(a — ),
(3.9)
with: u=2(a®+b% and v=2(a’®-0b%.

The square difference between the theoretical and the eight effective mea-
sures to be minimised is:

Il
~

i
A=) (u—vcos2(a; — ) — JD,?)2 ; (3.10)

i

Il
(=]

where u, v, and  must comply with the following three derivatives:

¢ 8A
e

dA

_— 11
{55 =© (3.11)
adA

k%_o.
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Hence:

' Z(u—vcosﬂa,-—go)—Df) =0,

1 Z (u—vcos2(a; — ) — Df) cos2(a; — ) =0,

Z(u-— vecos2(a; — ) — D?)vsin2(a,- —-¢)=0.
i

We set C; = cos2(a; — ), Si =sin2(a; — ¢),

Su—vZC, Z
‘uZC—vE(Z‘z ZD2C‘,,
u) Si-vY SiCi=) DiS:.
\ i i i

Eliminating u and v from this system, it is found that ¢ must comply with
the following equation:

(20 -2 [T o - s T s o
- Ezi:cizi:s,-_gcisi] [;DEC"— %gasz] =0. (3.12)

Solving Eq. (3.12) (for example iteratively), ¢ is then found. Then u and
v are obtained from the following relations:

S oty T oy

(3.13)
%(ZC@)2 - ZC‘?
Y DI+v) G
u= ., (3.14)

8

Once v and v are known, it is easy to get a and b. Note that if u is found
to be lower than v, 7 must be added to ¢ as well as u and v have to be
permuted.
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. The advantage of this technique is that it is not necessary to extract each

point of the edge. The disadvantage is that it cannot yield more than eight
data for the calculation of the parameters. The centres of the ellipses are
assumed to be the geodesic centres of each particle.
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Ficure 13. Initial and final ellipses.

The ellipses on the right image of Fig. 13 are drawn by using Bresenham'’s
algorithm [J.E. Bresenham, 1977/1985| as described in [D. Eberly, 2000].
The quantitative results are summarized in Table 4.

TaBLE 4. Fibre analysis (example).

There are 10 fibres:

No. centre location axe lengths orientation
(in pixel) (in pixel) (in degree)

0 412 96 66 21 155

1 561 127 80 25 163

2 84 149 24 22 7

3 40 180 25 22 171

4 59 250 23 19 178

5 242 346 26 22 1

6 184 349 25 22 179

7 556 364 23 19 102

8 304 477 34 22 9

9 445 504 28 20 9

3.2. Specific Hough Transform for ellipses detection

The Hough Transform [P.V. Hough, 1959] was originally imagined to
isolate straight lines in images. Next, it was extensively developed and applied
in other situations, in particular for circles and ellipses detection.
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The Hough Transform (HT) requires the desired features to be specified
in a parametric form.

3.2.1. Straight line HT. The initial binary image is formed by a set of
pixels derived from an edge detector. The basic idea underlying Hough Trans-
formation is that each pixel belongs to a physical line.

A parametric representation of a straight line can be expressed by:

zcos(f) + ysin(f) = r,

where r is the distance between the line and the origin O(0,0) of the image
and 6 is the orientation of the line (Fig. 14(a)).

To each pixel {z,y}, corresponds a sinusoidal curve in the space of the
two parameters {r,0} describing all the lines that pass through this pixel
(Fig. 14(b)). When several pixels belong to the same straight line (Fig. 14(c)),
each Hough Transform goes through the same accumulation point (Fig. 14(d)).

(a) Initial pixel in the image space. (b) Hough Transform in parameter space.

. o 4

y r

i r=x.cosf+y.sin®

X -

(c) Three pixels on the same line. (d) Accumulation in the parameter space.

v
y

A Jr
y r r=x1.cos0+y1.sin@

x1,y1 /
/'\/\"rmcz‘cosewz.sine
o—:
© Xe.y2 \_/|\__.. r=x3.cos6+y3.sind

0o x3,y3 X 0

\ ! 8o i’

FiGURE 14. Straight line and its Hough Transformation.

In practice the transformation is implemented by discretising the Hough
parameter space into finite intervals (for example from half degree to half
degree for the angles and from one pixel to one pixel for the distances).
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In the parameter space, a value is incremented every time a curve goes
through a point so that a matrix of accumulator cells is built. Resulting peaks
in the accumulator array represent strong evidence that a corresponding
straight line exists in the image. An example is given in Fig. 15. The bright
intersection points characterise the straight lines of the original image. They
are extracted by detecting the maxima of grey levels in the parameter space
represented by an image in Fig. 15(b).

(a) Example of a bitmap (b) Hough Transform for (c) Height lines that have
with contours. line detection. been detected.

Fi1GURE 15. Schematic binary image and its Hough Transform.

3.2.2. Circle Hough Transformation. The same procedure can be used
in the case of circle detection. For instance, the parametric equation takes
the form: (z — z¢)? + (y — y¢)? = r?, so that three parameters are needed
(yc and zc are the co-ordinates of the centre of the circle). Obviously, the
computational complexity increases with the number of parameters. Finally,
the basic HT described above is only practical for simple curves. For more
complex shapes, another algorithm is required as it is shown for the ellipses.

3.2.3. Randomized Hough Transformation of ellipse. The problem
of recognizing ellipses of any size, position and orientation has been studied
by McLaughlin [R.A. McLaughlin, 1997).

The parametric equation of the ellipse of Fig. 16 is given by:

a(z —zc)? +2B(z — zc)(y —yo) + 1y —ye)* = 1, (3.15)

which is equivalent to:

(- xc)cosso:- - yc)sin‘P] e [‘(“’ - "’C)Sin"ob+ W= yC)COS“’]2= 1.
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Ficure 16. Oblique ellipse.

Such an equation involves five parameters so that the basic HT algorithm
is not applicable.

The algorithm proposed by McLaughlin is a stochastic process, the so-
called Randomized Hough Transform (RHT).

Once again, the original image must be pre-processed with an edge detec-
tion operator (Sobel, Canny [J.F. Canny, 1986], etc.) so that a binary image
is available.

The following geometric properties of the ellipse are exploited (see Fig. 17)
[W. Wu, 1993]:

e tangent property,

e centre.

Given two arbitrary tangents to the ellipse at points P, and P, and K
their point of intersection (Fig.17(a)), the line going from the centre of the
ellipse to the point K goes through the middle M of the segment [P, P;].

(a) Tangent property. (b) Finding the centre of an ellipse.
P
P1 P2
C
K
P2 P3

FiGURE 17. Geometric properties of the ellipse.
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Inversely, from three points P;, P», Ps, it is possible to find the centre
(Fig.17(b)).

The algorithm proposed by McLaughlin was described and implemented
by Schuler on a Matlab platform [A. Schuler, 2001]. The successive steps are
as follows:

1.
2,

Take any 3 points belonging to the edge from the binary image.
Estimate the location of the centre C of the ellipse. If the centre cannot
be found (because the three points do not belong to the same elliptic
edge), go back to (1). The tangent at points P; P, P; are estimated by
a least square method applied to neighbourhood of each point.

e

e

e \
N

/ Surroundings of P

FiGcure 18. Finding a local tangent.

. Translate the origin to the centre by modifying the coordinates of the

three points. So that the equation of the ellipse simplifies to:

az? + 2bzy + cy? = 1. (3.16)

. Compute the parameters a, 3, and <y by solving the system of equations

(P1, P, and P; belong to the same edge):

2z y% a 1
z3 2zay2 yi| [B| = |1]. (3.17)
z3 2z3ys 3| v 1

Check the inequality a8 — 42 > 0 which is always true for an ellipse.
If false, go back to (1).

. Compute the geometric parameters a, b, and 6 (z¢ and yc are already

known).
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6. Search the parameters {zc,yc,a,b, 8} among the list of already found
parameter sets. If there is a parameter set whose values match the ones
newly found (in the limits of the tolerance), increase the count of this
parameter set (accumulation). Each parameter set possesses a count
value which tells how many times these parameters have been found.
If the new parameters do not match any parameters in the list, simply
add them to the list and initialise their count to 1.

7. After a specified amount of parameter sets have been found, analyse
the list and keep the parameters for which the count is high (or above
some threshold).

The advantage of this algorithm is that it can detect several edges at a time.
Results will be discussed later on.

3.3. Straightforward computation by the least square method

Among all other methods, ellipse recognition can be performed by fitting
a primitive model to the image data. The typical way for that consists in
detecting the edges, then isolating each of them and finally fitting them to
an elliptic shape.

Recent works relate to the problem of fitting [W. Gander, 1994], [P.L. Ro-
sin, 1993]. Most of the methods are iterative, fitting data to general conic
and rejecting non elliptic shapes.

Most of these techniques work well when data belong precisely to an
elliptic arc; contrariwise most of them suffer of less ideal condition such as
noise, non-strictly elliptic data or moderate occlusion [P.D. Sampson, 1982],
[K. Kanatani, 1994], [J. Porril, 1990].

Let us enumerate the optimal conditions for an almost good ellipse-fitting
method [A. Fitzgibbon, 1999):

e ellipse-specificity,

inclusion and noise tolerance,
e invariance to linear transformation of the data,
e computational efficiency.

Least squares methods lead to finding the set of parameters that minimise the
distance measured between the N data points and the ellipse [R. Haralick,
1992].

Let an implicit second order polynomial be the equation of a conic curve:
f(@,%) =az’ + bzy+cy’ +dr+ey+ f =0, (3.18)

where @ = [a,b,¢,d, e, f]T and 7 = [22,zy,v% z,¥,1]T. f£(@,7;) is the alge-
braic distance between the point (z,y) and the conic f(@, ) = 0. Fitting the
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data to a general conic curve leads to the minimisation of the sum of the
squared distances:

5(a) = i F4@, %) (3.19)
i=1

The vector @ must be constrained in order to eliminate the multiples of
solution so as the trivial solution we have & = 0. These constraints are either
linear in the form € - @ = 1 [W. Gander, 1994], [P.L. Rosin, 1993], or in the
form @7C - @ = 1 [G. Taubin, 1991]. In the last expression, C represents a
6 % 6 constraint matrix.

When a quadratic constraint is imposed on the parameters @, Bookstein
showed that the minimisation of §(@) leads to a generalised eigenvalue prob-
lem:

DTDa=\Ca. (3.20)

Here D is the data (or design) matrix based on the n data points: D =
1B BB 0a g )
If the parameter vector is constrained so that the conic curve it represents
is forced to be an ellipse:
b —dac < 0, (3.21)

we may also write
dac—-b% = 1. (3.22)

In the matrix form, this quadratic constraint @7 Ca@ = 1 is written as
follows:

0 0 20 0 0] e
0 -1 00 0 O0f|b
2 0 000 0|]|c

e bcdefllyg o 000 ollal=t (3.23)
0 0 000 0| e
0 0 00 0 0f [f]

Note that the distance §(@) can be also expressed by §(@) = ||D - a|>.
Consequently, the minimisation of §(&) is equivalent to:

Minimize 6(a@) =||D-a||=a-D-&@, subjectto &’ -C-d=1. (3.24)

As @ does not constitute a set of independent parameters, it is necessary to
introduce the Lagrange multiplier A before differentiating, so that we obtain
the following system:

(3.25)
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The first equation of the system is solved by considering the generalised
eigenvectors of DT-D-@ = \-C-@. If the couple eigenvalue );, eigenvector ;
is a solution, then it is also the case for the couple {\;, u x 4;} for any p
which satisfies @7 - C - @ = 1. Therefore:

1

p=——
N

Finally, the solutions of the simultaneous equations are: &; = py; - iU;. There
are six eigenvalue-eigenvector pairs, each of them corresponding to a local
minimum.

In fact, it has been proved [M. Pilu, 1996], [A. Fitzgibbon, 1999], that
the minimisation of |D - @||* subject to 4ac — b* = 1 admits one and only
one solution which corresponds, of course, to an ellipse.

The algorithm is very simple:

1. Let {z;,y:} be the coordinates of the n data points to be fitted.

2. Generate the design matrix:

(3.26)

7 i1 Y1 1 W
T3 Toy2 Y3 T2 Y2 1

T oThy Yp T oy 1

ITn ZInYn Yp Tn Yn
3. Generate the combined matrix: DT - D.

4. Generate the constraint matrix:

0
|

0
0
2
0
0

cococo

OO O OOoON

coocooo
coocoo

0

[e=)
S o oCc o oo

5. Solve the generalized eigenvalue problem: DT.D.@=\-C-a, finding
the only positive value: A.

6. Find the corresponding eigenvector @ whose coordinates are the searched
parameters of the ellipse.

Once a is determined, it is easy to obtain the geometric parameters of the
ellipse.
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Digital image containing elliptic shape

Q%
_  Particle
Edgedetection + — — ..  Edge _ - segmentation
= operator
-
Edge enhancing
(snakes)
1Y
Q —
~
Randomized Fitting by least Diametral
Hough square method variation
Transform analysis
FIGURE 19.
TABLE 5.
Technique ] Advantage Disadvantage
Randomized | e Gives the parameters of the | ¢ Due to the randomisation,
Hough ellipses. outcome can give different re-
Transform e Can detect several elliptic sults if the .number of .set of
edge at a time. parameters is not sufficient.
e Works well even in case of | ® Iterative.
(light) overlapping. e Somewhat slow.
e Ellipses do not need to be | ® It is necessary to define a
adood. lot of parameters that have an
o bt o s nd impact on the performance:
siiad] usf tsar - A the number of sets of parame-
m acts. ters, the count threshold, the
surrounding size, and so on.
Fitting by e Gives the parameters of the | ¢ One edge at a time.
leas;sguare ellipses. e Needs a great amount of
metho e Ellipse does not need to be | memory due to the design ma-
closed. trix storage.
e Robust towards noise and
small artefacts.
e Non-iterative.
Diametrical | e Gives the parameters of the | ¢ One particle at a time.
variahlf)n ellipses but not the centre. o Soitiewhat sensitive tooies
analysis e Somewhat fast. (requires a good segmentation
of particles).
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4, Conclusion

We have presented several techniques for detecting and characterising
ellipses in images. The processes can be summarised in the way depicted in
Fig. 19.

Depending on the context (contrast, noise, number of particles), the three
techniques that have been presented can be applied more or less successfully.

Table 5 can be a useful guide in choosing either of them.

II. On Concrete Microcracking!

A. BascouL, M. Cyr, E. RINGOT
LMDC INSA/UPS, 135 avenue de Rangueil, 31077 Toulouse, France.

5. Introduction

Even though many works about cracks and microcracks in cement based
materials were published in the last years, some difficulties remain and this
part of our paper aims at pointing them out and suggesting some direc-
tions for future research. For this purpose, we deal either with the relation-
ship between the microcracked state of concrete (or mortar) and its physical
properties or the characterisation of the microcracking induced under various
conditions such as thermal action, shrinkage, creep or mechanical loading.

6. Means of observation

Different methods of observation are recorded in Fig. 20 according to the
accuracy of the observation (indirect techniques such as acoustic emission or
pulse velocity are not considered).

These means of observation are subjected to important constraints which
are: artifact avoiding, nature of the material, place of measurement (in situ
or experimental cores for example), easy implementation of the method, etc.

Two techniques which gives images are available: scanning electronic mi-
croscopy coupled with the replica technique and optical microscopy which
are complementary according to their resolution. Both methods give bi-
dimensional images avoiding bias. They can be applied to mortar or concrete.
They do not require special shapes or dimensions of specimens and, finally,
they can be easily carried up.

YSome part of this Section has been published already in Concrete and Cement Com-
posite journal (2001).
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FIGURE 20. Scales covered by different methods of observation.

The replica technique as a tool for investigating microcracks in concrete
was introduced by Ollivier [J.-P. Ollivier, 1985] and used extensively by sev-
eral authors, cf. [E. Ringot, 1987, 1988|, [V. Sicard, 1992] [A. Turatsinze,
1996]. It complies with the constraint recorded above since it allows the ob-
server to take crack prints on surfaces of concrete without disturbing the
place and the material.

Concerning optical microscopy, the reader is referred to [L.-I1. Knab, 1984]
[H. Hornain, 1996] who developed and enhanced methods for microcracks
study in concrete. Preliminary to the observation, a dye impregnation is
necessary but no drying is required thus avoiding any bias. The dye which
can be in excess must be often eliminated by a slight polishing. The dye fills
not only cracks but also macro-pores and porous interfacial zones.

7. Scale of observation

Most often there is a disproportion between the size of the core-test (or
further more the building) and the dimensions of the images (or fields).

For example, when testing a single section of ¢ 11 x 32 cm cylinder, 24 im-
ages are required in optical microscopy at Gx 10 magnification. Each field has
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a side of 2cm which is also the dimension of one replica. If such a replica is
observed within a SEM at Gx 100, it will be divided in 100 fields. Hence, even
with low magnification, analysis of cracking requires a lot of data. Finally,
image based techniques deliver data which are abundant and partial at an
instant of time because of the relationship between the resolution and the
studied surfaces (as shown in Fig.21), so that one has to be careful when
analysing these data.

Sample @ 11 = 1003

Réplica 2cn¥f

x100  x1o Magnification

FIGURE 21. The area covered by each field increases as the square of the resolu-
tion.

8. Image analysis and crack segmentation

In the past, cracks were recognised by hand from photograph. However,
attempts were performed to use image analysis in the goal of automating the
process [M. Salomon, 1994], [Y. Alhassani, 1994], [A. Ammouche, 2000]. The
successive steps of such a process are listed below:

1. combination of the Red-Green-Blue components into one image in the
case of colour acquisition,

2. filtering: for avoiding over-segmentation,
3. binarisation,
4. shape analysis and elimination of objects which are not cracks (this

stage requires the individual analysis of each component in the image
and is time consuming),

5. skeletonisation.
Some remarks can be made about crack segmentation:

e Generally, most of noise filters introduce blur outlines and therefore
affect boundaries of cracks.

e Most binarisation methods are based on radiometric histogram (for
instance, the maximisation of entropy) More sophisticated algorithms
could be applied for extracting cracks with more accuracy; among them,



92 E. RINGOT

for instance, classification algorithms, growing form algorithms, water-
shed. The employed techniques always give a positive result whatever
cracks are present or not on the images so that the algorithm must be
completed by a decision stage.

e Objects different from cracks can be also extracted like granulates,
hydrates, fibres an so one which makes possible to reconstitute the
context of cracking.

e Systematic skeletonisation forbids crack aperture analysis. In fact, most
of the techniques of preparation of samples do not give accurate image
of the aperture.

9. 2D crack network parameters

Connectivity ?

[ - -\x— —
£ Granulometry by opening / ]
g f
2 Relation aperuredength /
=
specific length ? § Roughness ?
. . ] Pl g g Ay
specific surface ? 7
at what scalke ?

FIGURE 22. Some parameters in the plane of observation.

The specific length L 4, the intercepts Np,(8) — or the diametrical variation
— and the degree of orientation w are often used to characterise microcrack
networks.

These stereological parameters must be in accordance with the Adwiger
laws [M. Coster, 1989]. For example, the parameter L4, most often named
“crack density” by the authors, depends on the magnification at which the
observations have been made. As W (ALz) # A2 W(L3), the quantity Lo (from
which L 4 is derived) is not scale homogeneous. This phenomenon is reported
by Ammouche et al. in [A. Ammouche, 2000, but the authors minimise it
(the magnifications they use varies only between Gx25 and Gx80). Small
details of cracks disappear when magnification decreases since a sufficient
resolution is needed to visualise the thinnest cracks. The full exploitation of
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this simple statement could lead to information on the aperture of cracks.
Magnification plays the role of sieve and thus it could be possible to generate
something like a kind of “granulometry” of cracks.

Another point must be underlined concerning how the microcrack network
covers the observed surface. For instance, it can be distributed in a non-
uniform manner, so that “holes” appear at all scales. Figure 23 schematically
shows such a pattern like a Sierpinski carpet. A fractal dimension can be
computed from measurements at different scales as described by Mandelbrot
in [B. Mandelbrot, 1983].

what is the distribution of cracks
in the plane ?

The * density " (specific length)
depends of the size of the sample

log A (measure)

1.9 mm

2.8 mm

Ficure 24. SEM replica area.
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FiGuRE 25. Different field sizes.

As an illustration of this point, let us have a look at a study performed
with SEM. The same area of concrete (Fig. 24) has been analysed at different
magnifications, thus different resolutions have been used (Fig. 25).

(a) Reconstitued crack map from 16 fields. (b) Results from intercept analysis.
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FiGURE 26. Example of analysis ‘_for G x200 magnification.

The specific length is scale dependent. Figure 27 shows how the specific
length L4 varies with the field size ) in a log-log diagram. Every change in
scale (in the range Gx48 to Gx400) verifies the equation: L4(A\) oo A™9,
where a = 1 —dy, and dy is the homothetic dimension (or fractal dimension)
of the microcracking. Here, it has been found that dy = 1.184.
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TABLE 6. Results for all the scales.
: : . Degree of
Cx Ref;olu- Fl‘eld Analysed | Total Specific | Specific i
tion height area length length area i
fy n A L La Sy w
pm pm mm? mm mm/mm? | mm/mm? %o
x48 3.99 2043 5.859 15.714 2.682 3.413 18
%100 1.92 983 5.399 17.728 3.283 4.178 17
%200 0.96 492 5.399 19.556 3.622 4.609 15
x400 | 0.48 246 5.399 23.433 4.340 5.523 13
A — loglog «— Ly

Specific length
[mm/mm?]

FicURE 27. Specific length versus scale.

dimens ion de champ [mioon |

Attention must be paid to the roughness of the crack pattern. Several
techniques based on image analysis were proposed to determine another as-
pect of the fractal dimension due to the roughness. Among them, Richard-
son’s method of compass, Minkowski’s method of dilation, the method of
the boxes and the method of density-correlation are reported in the follow-
ing references [M. Coster, 1989], [B. Mandelbrot, 1983], [K. Sandau, 1996],
[J. Teixeira, 1985], and summarised in [Y. Al Hasanni, 1998].

Finally it has to be noticed that efforts must be made to characterise aper-
ture and other parameters in relation to transport properties of the material.
For example, B. Gerard and J. Marchand [A. Ammouch, 2000] proposed a
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predictive model of the diffusion properties of concrete based on two parame-
ters: the crack density and the mean effective crack aperture Ls. However, it
appears that their model needs also a tortuosity parameter (7) and is based
on the hypothesis of the continuity of the crack pattern. This interesting work
shows clearly the direction for future researches on crack pattern: roughness,
aperture, spacing and connectivity must be accurately quantified.

10. 3D crack network parameters

Plane observation gives a partial characterisation of the state of micro-
cracking of concrete. So, it is necessary to extend the results to the three-
dimensional space. The alternative ways are described in Fig. 28.

o g
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Spatial orientation ? Percolation (continuity) ?

FiGure 28. How to obtain quantitative parameters in 3D space.

Reconstruction of the spatial crack pattern from observations made in dif-
ferent planes would be the most accurate way for obtaining three-dimensional
data. This technique is similar to tomography used in medical science, pro-
vided that the planes are parallel. Unfortunately, this approach is not real-
istic in materials science because it requires an enormous collection of data
[J.-P. Tricart].

In fact, in most of actual situations, 2D results are extended to 3D-space
by applying stereological laws restricted to the crack density. For example,
assuming the isotropy of the crack pattern in all the 3D directions, the specific
surface of cracks is derived from its density by the formula Sy = %L A- This
last hypothesis is not always checked because of lack of study on various
oriented planes. In fact, when there is a privileged direction due to geometry
of the sample and the direction of the loading, this stereological relation is
not adequate.

3D simulation could be a consistent way enabling to give accurate results
and realistic geometries with a reasonable amount of data. Boolean mod-
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els, introduced by Jeulin [D. Jeulin, 1979], have been successfully used by
Quenec’h et al. [J.-L. Quenec’h, 1993] or Ringot and Cros [E. Ringot, 1996]
for describing the structure of materials.

11. Conclusion

Characterisation of cracking and microcracking in relation with the mate-
rial properties still poses problem. However, image analysis and recent tech-
nological improvements in acquisition and processing, encourage more sys-
tematic and more accurate measurements. Additionally further works have to
be done, particularly in order to develop methods for determining objective
aperture distribution of cracks, to make multi-scale studies for determining
how cracks occupy the space and finally to establish statistical models of the
crack pattern. This is the price to be paid to reach quantitative correlation
between the spatial crack pattern and the mechanical and physical properties
of concrete.

III. On Surface of Concrete

G. LEMAIRE!? | G. EscabeiLLas?, E. RiNncoT!

)LMDC INSA/UPS, 135 avenue de Rangueil, 31077 Toulouse, France
2) GTM-Construction, 61 avenue Jules Quentin, 92000 Nanterre, France

12. Introduction

In construction field, architects and building owners often request about
the quality of the concrete surface [Ménard, 1999]. These requests mainly con-
cern flatness, tint and presence of surface bubbles. In France, specifications
are given with reference to an AFNOR standard [AFNOR, 1989]. Although
the examination of flatness generally will not pose a problem at the building
site, this is not the case for the tint and the quantity of bubbles. These last
two issues often constitute a subject of conflict between owners, architects
and building firm. Here we present an evaluation tool based on image analy-
sis. The images are preliminarily corrected to ta.ke into account the light and
the nature of the camera.

The analysis enables professionals to use the standard in a more objective
way and it gives laboratories new qualification possibilities for evaluation of
concrete surface. The originality of the method lies more in the industrial
application than the complexity of the image analysis procedures.
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In this Section two aspects of qualifying concrete surfaces are discussed:
the colour factor and the surface bubble parameter.

13. Colour analysis

13.1. Imaging and correction

The images of concrete surfaces are produced by a digital camera under
natural ambient light. Of course, the colour distribution in the raw image
depends on the type of camera as well as on the incident light intensity. So,
a comparison of images of the same surface but taken under various light
intensities or with different cameras is not accurate. Images require an ad-
justment to take into account ambient conditions and camera characteristics.
A process was developed to allow it [Lemaire and al., 2001]. The first step
transforms the own colour camera code in a universal system as CIELab.
The second step modifies the image to simulate the condition of a standard
illuminate (D65) defined by the CIE [colorimetry, 1986].

The corrections require additional measurements on the site such as re-
flectance curves of concrete surface and the colour temperature of ambient
light [Lemaire et al., 2001]. For these purposes, a colorimeter which gives re-
flectance properties and a light meter which gives illuminate characteristics
[Minolta, 1994] are used.

concrete reflectance

% R

40
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400 500 600 700

FiGURE 29. Typical curves of reflectance of a same concrete surface but at dif-
ferent places.
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After deduction of the light spectral curve, three images, corresponding
to the three colour components, i.e. luminance (L*), tint (h*) and saturation
(C*) [Trouvé, 1991], are computed from each photograph. It is important
to note that the tint and the saturation are in a narrow range for the same
concrete surface (Fig.29). Only the luminance appears to be a significant
signal.

13.2. Exploitation of luminance levels images

Architects are interested in the conformity of the surfaces with reference
to their initial specifications. If needed, defaults can be analysed by a char-
acterisation in terms of area, shape and luminance.

Obviously, the pertinent size of the smallest defaults that must be taken
into account, in this evaluating work depends on the observation distance of
the concrete surface. So, it is useful to introduce the notion of elementary
area that can regroup several pixels on the digital image. As an example, it
is not relevant to analyse details smaller than one square centimetre for a
surface distant of more than fifty metres.

Among all quantitative parameters, the luminance histogram is the first
tool in the evaluation of the surface quality. It gives with the medium lumi-
nance, the extreme values like an indication of the surface homogeneity. For
example, the presence of several modes in the histogram or a strong spreading
of the curve can reveal heterogeneity (Fig. 30).
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FiGURE 30. Unimodal histograms computed with two different sizes of the ele-
mentary tile.

A computer program has been created for the needs of this project. The
user can choose the luminance level range that suits to him concerning the
building contract requirements.
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The program focuses on the areas belonging to the defined range. Every
area out of the range, a surface defect, can be analysed to obtain its size,
its average luminance and every other statistics parameters. As example, an
image of the surface of the bridge wall is selected (Fig.31).

(b)

Ficure 31. (a) Studied bridge. (b) Photograph of the surface (part).

The histogram analyses (Fig. 30) claims that 98% of the surface is located
between the 62 and 72 luminance levels.

The French NF P18-503 standard [AFNOR, 1989 specifies the concrete
tint classes and gives a reference of seven grey levels equivalent to a luminance
scale (Fig. 32). In our example, the surface could be automatically classified
in the 3" and 4 classes by our program.

100 7
901
8017
701
60
L‘ SU-
40
307
201

1 2 3 4 5 6 7
French NF P18-503 standard - table of grey levels

Fi1GURE 32. Grey classes of the standard NFP 18-503 and corresponding lumi-
nances.

The localisation of each “default” can be visualised in a false colour image
(Fig. 33). Here the global default areas cover 19% of the surface.

http://rcin.org.pl
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FIGURE 33. False colour image of the defaults.

Table 7 summarises luminance and area of each default larger than three
square centimetres for a given surface of concrete.

TABLE 7. Statistic analysis of defaults of a surface (only the areas larger than
3cm? were taken into account); elementary tile = 1cm?, L* < 65.

No. | 3] | Laverses | Luin | Lmax | No- | o) | Laversge | Lain | Lumas
1|44 | 63 |61 | a [[16] 4 | 64 |64 |64
2| 4| 6 |6 [64 [ 17| 5| 63 | 63|64
3|5 | 6 |6 |64 |18 5| 62 |56]|6s
4| s | 6 |63 |64 [ 19|8 | 62 |5 |6
5| 4 | 62 |62 63 |20]8 | 62 | 60| 64
6| 22| 62 |59 |64 [|20| 7 | 64 | 64|64
7|15 | 6 |62 | 6a 22| 5 | 63 | 63| 64
8| 6 | 63 |63 |64 [|23|105| 62 | 59 |64
9| 6 | 64 |64 |6afl2a| 5| 62 | 60|65
10 1200| 63 | 57 | 66 || 25| 26 | 63 | 61 | 64
11|13 | 62 |61 |64 [[26] 8 | 63 |61 | 64
12| 5 | 6 |63 |64 [ 27| 16| 62 | 60| 6s
13| 8 | 63 |63 |64 28] 7| 63 | 63|64
4| 7 | 64 |64 |64 20| a| 63 |63]6a
15 8 | 63 |62 |64 [30] 16| 63 |62] 64
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14. Surface bubbles analysis

French standard gives a reference scale to analyse surface bubbles (see
Fig. 34). A classification of the surface is roughly obtained by comparing the
bubbles on the surface with the bubbles of the reference scale. In fact, one
surface can regroup several types of bubbles, so the use of the standard is
difficult and subjective. A better and a more objective evaluation can be
obtained with image analysis.

D8 + l'.

—— bubbles per cm2
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FIGURE 34. Bubbles distribution (NF P18-305) and its characteristics measured
by image analysis.

The picture used to analyse surface bubbles must be taken close enough
to distinguish details about one square millimetre. A ruler put on the surface
analysed can give the ratio pixel/cm? is known and thus the bubbles size.

TaBLE 8. Algorithm of segmentation and analysis of bubbles.

1. Median threshold: the image is filtered by a median filter in order
to eliminate the noise.

2. Binary process by maximum entropy: this method detects rare
objects on the image; thus it is suitable to extract bubbles from
the surface images.

3. Morphologic “opening” allowing to eliminate the objects of irrel-
evant size.

4. Convex filter: this filter allows to complete the global geometry of
the biggest bubbles which couldn’t be entirely detected because
of the incident light.

5. Counting and granolometry of bubbles.
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The digital image is processed in the way presented in Table 8. The
method is illustrated by the next example (Fig. 35). The global area covered
by bubbles is 3.0%. There are 300 bubbles per square metre.
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FIGURE 35. (a) Filtered image. (b) Binarisation. (¢) Convex hull.

The bubble granulometry is realised by successive morphological open-
ings (Fig. 36).
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FIGURE 36. Granulometric curve of bubbles.

The method of analysis can be applied to the reference bubbles scale
given by the AFNOR Table to classify concrete surfaces according to this
standard. In this way, the given surface will be represented at the border of
the 4* and 5% classes.
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15. Discussion

Civil engineers expect tools for the characterisation of concrete surfaces
with respect to their properties in terms of tint and bubbles. The standards,
when they exist, propose references in term of levels of grey and bubbles
quantity, but their effective use is subjective and too rudimentary. Very few
documents on this subject are available for the experts.

In this context, a method for a quantitative evaluation of concrete surfaces
based on image analysis has been presented. In reference to the normative
texts, the developed tool allows an objective evaluation of grey levels of the
surface and an accurate measurement of the area covered by bubbles. Of
course, a richer information is available.

The method presented opens new perspective for civil engineering re-
search: study of the evolution of surfaces at various ages, constitution of data
bases, correlation with the influencing parameters such as the formulation,
conditions of molding, climatic factors, etc.

Today the technique is already used on some building site for expertise
and in laboratory with an aim of improving the control of quality of the
surfaces of concrete [GTM, 2001].
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