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The high reliability associated with civil engineering systems requirf'.s us to model 
carefully the tails of the probability distributions associated with various system 
uncertainties. Unlike other areas of engineering statistics, reliability-based design 
and optimisation is concerned with very small probability events. Typically, we 
have little interest in the central behaviour of random variables, but we do want 
to make sure that we model correctly whatever goes on in the lower tails and / or 
the upper tails. Dealing with this problem of extrapolating into the unknown, as 
we may irreverently call this challenge, requires the use of a number of specific 
techniques based largely on extreme value statistics, risk-based optimisation, and 
tail-sensitivity analysis. We emphasize how tails of random variables should be 
scaled depending on the type of decision we wish to make. Basic extreme value 
results are given and extended to illustrate the use of weighted tail models. This 
leads to the definition and the application of the tail heaviness index. An appropri­
ate modelling of tails in limit state random variables is shown to be related to tail 
sensitivity measures. We also discuss bounded variables, both from the viewpoint 
of suspected upper or lower bounds, as well a.'i confirmed but unknown upper or 
lower bounds. Finally the important problem of extreme ratios, and extremes of 
random variables subjected to one or more constraints is briefly discussed. 

Key words: tails, extremes, decision-based extrapolation, tail identification, tail 
heaviness, bounds. 

1. Introduction 

1.1. Scope 

Risk analysis and reliability-based decision making in structural engineer­
ing revolves fundamentally around the simultaneous consideration of (very) 
small probabilities and (very) large consequences. The former is related to 
the problem of modelling tails, while the latter is related to the problem of 
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178 M.A. MAES 

extremes. Both are in fact different faces of the same coin, as small probabil­
ities usually involve extreme events and vice versa. There is fundamentally 
no difference between the study of extremes values and the analysis of tails 
of distributions. 

Figure 1 shows a univariate probability density function (pdf) with its tail 
areas and a large central portion. Clearly, our efforts should focus on the very 
left and the very right-hand side of this pdf. Unfortunately, a large majority of 
statistical modeling techniques is applicable to the central portions of random 
variables, and hence we often find ourselves poorly equipped to deal with tails 
and extremes. The objective of this paper is to identify the important issues 
and techniques that can be used in tail modeling, so as to be consistent with 
the basic principles of decision analysis and reliability-based design. 
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FIGURE 1. Central and tail portions of a random variable. 

1.2. Tails in risk analysis and decision making 

Although recent worldwide tragic events, ranging from environmental 
catastrophes and accidents caused by inadequate engineering to politically 
and socially motivated acts of violence, gave a new and grim rneaning to the 
phrase "extreme events", its study is not new in risk and decision analysis. 
The occurrence of extreme events in financial risk management has become a 
major focus of study in relevant years as financial instruments have becorne 
increasingly complex and volatile. What is relevant today is not only financial 
shocks but also events from other sources such as political, social and envi­
ronmental events. Political leaders warn us of more terrorist attacks that can 
affect economic stability. Climatologists predict more turbulent weather con­
ditions as a result of global warning that can affect agricultural production. 
Health experts predict different forms of diseases that can affect productiv-
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ity and industrial output. These events manifest into a series of shocks that 
affect the economy continuously. 

No industry has been more affected than the insurance industry that 
not only witness an increase in frequency of losses but also in magnitude. 
The claim amounts for recent catastrophic events have been huge and are 
indeed staggering. Tentative assessments of the damage from the attacks on 
September 11th range from $30 billion to $70 billion, approximately half the 
record damage claims from the Kobe earthquake in 1995 (Flynn, 2002). 

Similarly, shocks to the financial sector appear to also increase in fre­
quency and size. There is sufficient evidence to indicate that inadequate risk 
management tools can be blamed partially in the high incidence of frauds and 
the inability to forecast catastrophic mishaps. The calls for sophisticated risk 
management tools to counter the increasingly complex financial instruments 
appear not to be in place, resulting in such extreme events. 

Several obstacles hamper the proper inclusion of extreme events in risk 
management tools. Risk management tools often involve a trade-off between 
the quality of the 'central' versus the 'tail' properties. It is not surprising 
that in the early phases, more emphasis was placed on the former rather 
than on the latter. Inferences about the tail of a distribution are usually 
much harder to make, since only a few observations enter the tail region. 
Moreover, the inferences are very sensitive to the largest observed losses and 
the introduction of new extreme losses to a dataset may have a substantial 
impact. 

Further, since extreme events are rare by definition, most managers will 
not be confronted with them during their time on a specific job. Few organi­
zations have incentives to stimulate the performance of future managers at 
the expense of the current generation. Finally, for many users the psycholog­
ical perception of the risk of an extreme event is more determined by how 
vividly they remember the last instance than by the statistical probability of 
re-occurrence. 

1.3. Structural design 

It goes without saying that structural design is very sensitive to design 
specifications extracted both from the upper tail areas of load effect vari­
ables, as well as from the lower tail portions of resistance variables. Rather 
than discussing this fact at length, let us illustrate the background thinking 
used by industry to specify or select extreme design criteria. Consider the 
following example, reported in Maes and Gu (1994). In 1994, five high level 
joint industry participants using the same NESS (Grant et al., 1993; Giin­
ther and Rosenthal, 1983) offshore database, independently, were asked to 
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provide their best estimate of the 100 year return significant wave height at 
a given grid point in the North Sea. All of the participants had expertise in 
statistics; engineering, and met-ocean modeling. The selection of this design 
wave height, HS-1 00, is of critical importance to the design, construction and 
operation of an offshore platform. 

We could not help being pleasantly surprised with the astonishing array 
of techniques and approaches used by the participants: all submissions attest 
to the fact that the contributors had an expert understanding of the NESS 
statistics and the extreme value methods needed to formulate engineering de­
sign criteria. Our second impression was equally compelling: notwithstand­
ing the diversity of selected EV methods and the variety of subsequently 
applied "adjustment/corrections," it was interesting to observe that the rec­
ommended HS-100 values ended up lying very close to one another. The 
process involved therefore several steps: data base interpretation, selection 
of a "company-standard" tail model, a statistical uncertainty analysis, and, 
last but not least, negotiation at the engineering as well as at the manager's 
level. 

Table 1 summarizes the final results. The first row lists the HS-1 00 ob­
tained from the companies own EV analysis of the NESS data: all values 
submitted can essentially be rounded off to the same number: 11.0 m. But 
the second row reflects the inclusion of statistical uncertainty, as well as a 
number of corrections, some applied with, some applied without further jus­
tification. The last row lists the final numbers, as they emerged from the final 
meeting with the decision makers. 

TABLE 1. Summary of recommended HS-100 lmJ. 

A B c D E 

Value based exclusively on NESS data 10.8 11.0 11.3 11.0 10.5 

Recommended value including all correc-
12.6 12.4 12.2 12.0 12.0 

tions / uncertainties 

Final recommendation 14.3 12.4 12.0 12.0 13.6 

Each submission contained a fair number of steps that require the use of 
good judgement and subjective reasoning. Clearly, several issues were simply 
not amenable to quantitative evaluation. For instance, the reason for selecting 
a particular approach may have been that it is a given group's standard way 
of dealing with extreme value problems, or it may have been an approach 
strongly favoured by one or more people, or it may be a series of procedures 
developed over the years, which enjoyed a history of frequent and successful 
use. At the same time, each group was attempting to derive a result that 
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would in all likelihood be acceptable to the outside world (management, 
designers, regulatory agencies, etc.) 

Consequently, there were several aspects of the submissions that were 
difficult to interpret. Keeping these limitations in mind, it seemed reasonable 
to identify the following basic criteria to assess the quality of a particular 
approach: 

1. How practical and clear is the suggested approach? A convincing tail 
model/analysis procedure must be logical and simple to use. 

2. Is the method theoretically sound and does it lead to accurate results? 
Is it based on recognized statistical techniques and proven results from 
extreme value theory? 

3. Can the method be generalized easily to other gridpoints and locations 
or is it very dependent on a particular data structure? How wide is its 
range of applicability? 

4. How sensitive is the method to assumptions regarding data, distribu­
tion types? Is the method robust? Can confidence intervals easily be 
constructed? Is parameter/statistical uncertainty taken into account? 

5. How explicit is any non-analytical input? To which extent is it justi­
fied and how streamlined is the process by which this information is 
implemented? 

2. Tails: reality or fiction? 

It is common practice in the fields of risk analysis and reliability-based 
design, to devote very little time and effort to checking whether an assumed 
distribution of an input variable X is indeed a fair and risk-consistent rep­
resentation of reality. This is typically the case for variables of which little is 
known, particularly model uncertainties or other non-physical uncertainties. 

But the choice of the type of pdf of a random variable based only on 
central data can have an enormous impact on the tails (Ditlevsen, 1993; 
Maes and Breitung, 1993). This is illustrated in Fig. 2 where two random 
variables are contrasted. Both have mean 1 and standard deviation 0.1, but 
one is normal and one is lognormal. The central portions of these two random 
variables are nearly identical but there are huge differences in the tail, as 
shown by some of the very small and very large quantiles in Fig. 2. 

In a typical reliability analysis, risk is often critically dependent on the 
upper and/or lower tail behaviour of one or a few basic uncertainties. If, 
for instance, the tail model of one of these variables is altered slightly, it 
may very well be that the risk level associated with the model changes by 
an order of magnitude, even though the uncertainty modeling itself may be 
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FIGURE 2. Illustration of the difference in tails between two random variables 
having nearly the same central portion. 

satisfactory from a statistical point of view. This situation is in sharp contrast 
with the advertised high level of accuracy now associated with (commercial) 
analysis tools available to solve risk analysis problems given probabilistic 
assumptions regarding its basic uncertainties. This situation is, of course, 
highly undesirable. Professionals involved in quantitative risk analysis ( QRA) 
are not well served by it , because it undermines their claim to "correctness" 
or usability of their risk calculations. We are aware of quite a few cases in 
industry (even in a regulatory context) where consultants, unhappy with the 
results provided by their analysis , simple decided to replace some lognormal­
type by normal-type uncertainties (without any measurable and certainly 
not alarming loss of statistical goodness of fit) until the risk level became 
acceptable. 

There is then a major difference between "central models" for which the 
use of classical statistical inference tools is appropriate, and "tail models" 
which are applicable to risk and reliability problems where the interest lies 
in the occurrence of rather exceptional events. 

A fundamental issue must first be addressed: how can we compare tails 
or distinguish tails from one another? What are the characteristics of tails 
that make them into what they are? 

3. Tail equivalence 

A key concept in characterizing tail behaviour is that of tail equivalence 
(Maes, 1995). It provides a basic principle for deciding if two random variables 
X and Y with cumulative distribution functions ( cdf) Fx and Fy have the 
same ultimate tail behaviour; for the upper tail (in what follows right tails 
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will be assumed), Fx and Fy, are tail equivalent if 

lim 1 - F x ( t) = 1 
t-+w 1- Fy(t) 

183 

(3.1) 

where w is the maximum value attained by both random variables, that is, 

w(F) =sup { tiF(t) < 1} (3.2) 

for both distributions Fx and Fy. The value of w can be infinite. 
Equation (3.1) provides a criterion for the quality of approximation of a 

distribution function Fx by another distribution Fy in the upper tail region. 
In the remainder of this section we will preview some of the results that 

will be derived in later sections. This will improve assimilation of the subse­
quent flow of information. 

In extreme value theory one typically looks for probability distributions 
which arise under general conditions imposed on the maximum of a data 
set. An example is the generalized extreme value distribution (GEV). When 
a random sample of size n from a distribution F is considered, and if the 
following condition on the maximum or highest order statistic of the ordered 
data Xi ~ X2 ~ ... ~ X~ is imposed: 

exists as n ----+ oo, (3.3) 

then for some sequence of constants an and bn and for all x, the limiting 
distribution is the GEV (Fisher, and Tippet, 1928) which can be written as 

{
exp( -1 + 1x)-1I'Y), if 1 =f. 0, 

FcEv(x) = 
exp(- exp( -x)), if 1 = 0. 

(3.4) 

This result will be discussed further in Secs. 4-6. In engineering, it is also com­
mon to work with excesses over thresholds rather than maxima, in which case 
the generalized Pareto distribution (GPD) arises as the limiting distribution, 
as shown in Sec. 9: 

Fcpo(x) = 1- (1 + 1(x- u))- 11'Y, 
a 

U <X< W, (3.5) 

where 
a 

w = oo, 1 ~ 0 or w = u- -, 1 ~ 0. 

' 
(3.6) 

Here u is a high threshold, a is a positive scaling factor and 1 is the so­
called extreme value index which links the GEV with the GPD. As shown by 
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Pickands (1975), the GPD arises as the limiting distribution of the excesses 
X - u of a random variable X over a high threshold u. 

Thanks to the tail equivalence principle (3.1), all we need to do is to 
examine if the conditional distribution of Y = X - u, given that X ex­
ceeds the threshold u, is tail equivalent with the GPD with a specific set 
of parameters 1, a and u. Moreover, if one considers the scaled random 
variable Y = (X - u) /a, tail equivalence can be established with the stan­
dardized GPD: 

Fcpo(y) = 1- (1 + !Y)- 1h, 

1 
0 < y < --, '< 0, 

' 0 < y < oo, 1 ~ 0. 

(3.7) 

As can be seen in equations (3.4), (3.5) and (3.7), the extreme value 
index (EVI) 1 plays a key role in assessing the weight of the tail. This will 
lead to the definition of the tail heaviness index (THI) in Sec. 7. 

4. Tails of the exponential type 

Consider the tail of an arbitrary unbounded pdf f x ( x) in Fig. 3. The 
shaded area under the tail is equal to 1- Fx(x), and it becomes smaller and 
smaller as x grows. At the satne time, however, the ordinate fx(x) decreases. 
Generally speaking, the ratio fx(x)j (1- Fx(x)) can be determinate or in­
determinate, and it can increase, decrease, or remain constant as x grows. 
Gumbel (1958) refers to this ratio as the "extremal intensity". It corresponds 

pdf 

l-Fx (x} 

X 

FIGURE 3. Study of the tail of an arbitrary pdf. 
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in fact to the following conditional probability, 

Pr(x <X< x+dxlx <X)= fx~)~x) 
1- X X 

185 

= -d(fn(1- Fx(x))) = d (Lx(x)). (4.1) 

It can also be seen that this ratio is equal to d(L(x)) where Lx(x) is the minus 
log-exceedance function Lx(x) = -fn(1- Fx(x)) which will be discussed in 
detail in Sec. 8. 

The exponential tail-type (ETT) family of distributions includes all the 
pdfs for which the preceding ratio is indeterminate, i.e. 0/0, as x--+ oo. If this 
is the case, de l'Hopital's rule (H) may be applied repeatedly as follows: 

. ( f )H. (-f')H H. ( j(i-1)) l1m -F = hm -
1 

= ... = hm --(-.)- , 
X-+00 1 - X-+00 X-+00 f t 

i = 1, 2, .... 

(4.2) 
This results in an alternative, but more commonly used definition of ETT 

distributions: random variables X belong to the ETT family, if and only if, 
the so-called extren1al quotient Q(x) given by: 

- !'i(x) 
Q(x) = f'x(x) (1- Fx(x)] 

X-+00 
1 ----t ' (4.3) 

approaches 1 in the limit as x --+ oo. This equation follows from the first 
identity appearing in (4.2). 

Just prior to reaching the value of 1 at x --+ oo, the value of Q ( x) must 
either be larger than, equal to, or smaller than one; this fact distinguishes 

Q(x) 

Q = (1-F)f' 

E2 

0 ~----------------------------------------. X 

FIGURE 4. Definition of the three classes of ETT distributions. 
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three classes among the ETT family of distributions, as shown 1n Fig. 4, 
namely: 

{ 

El : Q(x) = 1 + E(x), 

E2: Q(x) = 1, 

E3: Q(x) = 1- E(x). 

With c(x) ~ 0 and lim E(x) = 0. 
X--+00 

( 4.4) 

The generic name of the ETT family originates from the fact that the tail 
of the pdf declines in almost the same way as the tail of a simple exponential 
pdf. Indeed, a pdf of the type fx(x) = Ae->.x has Q(x) = 1 for all x, 
and it belongs, therefore, to the class E2 of ETT distributions. It can be 
checked that all of the unbounded pdfs used in engineering practice are of 
the exponential tail type, by expanding the expression Q(x) in (4.3) and 
checking that its limit is equal to one. ETT includes the normal, lognormal, 
Weibull, gamma distributions as well as all valid distribution functions based 
on F(x) = 1- e-h(x) where h(x) is a positive increasing function, as well as 
their mixtures. 

As mentioned in the previous paragraph, there are a few distributions 
that are not a member of the ETT family. First, there is the Pareto type 
Fx(x) = 1- x-k (1 ~ x ~ oo), for which Q(x) is a constant and equal to 
k!l =1- 1. This pdf has no mode and no moments of order~ k and it is marked 
by a tail with a very slow, non-exponential decline. Secondly, distributions of 
the Cauchy type which have no moments at all, Fx(x) = 1/2 + arctanx/rr, 
or f x ( x) = ( 1f ( 1 + x2)) -l are not of the exponential tail-type since the ratio 
of the shaded area to ordinate in Fig. 3 does not become indeterminate, but 
actually grows with increasing x. 

Suppose now that a sample of size n is generated from an ETT parent 
distribution. In order to have a quantity that grows with n at approximately 
the same rate as the maximum value in the sample, the characteristic ex­
treme an of size n can be defined as the value of the random quantity X 
corresponding to a mean recurrence interval equal to n: 

1 
Fx(an) = 1- -, 

n 
1 

or n = F ( ) , 1- x an 
n = 2,3, .... (4.5) 

This definition follows directly from the notion of the return period. In 
fact, if Xi were random quantities occurring during a unit of time, for example 
1 year, then the return period of the value an would be equal to n. In general, 
however, the definition of the characteristic extreme is not linked to the 
concept of time scaling; it merely states that in a sample of size n, the 
expected number of values that exceed an is exactly equal to one. As an 
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example, an for the simple exponential pdf fx = .xe->.x is equal to In>.n, 

using (4.5). 
A second extremal parameter, namely the dispersion factor bn, can now be 

defined as the value of the area-ordinate ratio in Fig. 3, evaluated at x =an, 

or as the inverse of Gumbel's "extremal intensity" ( 4.1): 

bn = (1- Fx) , 
fx x=an 

or, substituting 1- Fx by the value indicated in ( 4.5), 

1 
bn=--­

nfx(an) 

(4.6) 

(4.7) 

Note that bn is always positive and that it has the same dimension as x 
and an. It is also referred to as the extremal scale factor. The following 
identity can also be established by differentiating ( 4.6) with respect to n, 
assumed to be a continuous variable: 

dan dFx/ dFx 1 1 bn 
dn = dn dan = n 2 fx(an) = -:;;: · (

4
·8) 

In a sample of size n, we can also determine the "most probable largest" 
sample value, z as the mode of the maximum Z of the random sample 

z = max xi. 
i=l, ... ,n 

This random variable has a cdf given by 

Fz(z) = Pr(Z < z) = Pr (=o...n Xi< z) = [Fx(z)t, 

and a pdf, shown in Fig. 5, which is equal to 

fz(z) = nFx(z)n-l fx(z), 

(4.9) 

(4.10) 

( 4.11) 

which has a mode z that can be found by setting the derivative function 
equal to zero (Fig. 5): 

f~(z) = n(n- 1)Fx(z)n-2 fl(z) + nFx(z)n-l f~(z) = 0. (4.12) 

This results in the following expression for the most probable largest z in a 
sample of size n: 

-( 1~;x) =n-1. 
fx x=z 

( 4.13) 

So far, three extremal parameters have been defined: the most proba­
ble largest z (4.13), the characteristic extreme an (4.6) and the dispersion 
factor bn (4.7). How do they interrelate and what is their behaviour with 
increasing n? Equivalently, what is the importance of the three ETT classes? 
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pelf 

Extreme value f z ( z ) 

x;<x;< ...... < z =x: x, z 

FIGURE 5. Most probable largest zin a random sample size n from an arbitrary 
parent pdf f x . 

(a) Relation between an, Zn and class: By substitution of the expres­
sion ( 4.4) into the constitutive equation ( 4.13) for the most probable largest 
value, we obtain: 

Fx(Z) = 1- Q(Z)(n ~ 1) + 1 ' (4.14) 

and, with Q(z) = 1 ± c(z) as in (4.5), the following expression is obtained: 

Fx(Z) = 1- n ± (n ~ 1)£(Z) ' (4.15) 

and must be compared with the corresponding equation for the characteristic 
extreme, i.e. ( 4.5). Clearly, since Fx is always a non-decreasing function and 
since, by the definition of ETT, E ---. 0 for large values of the x, we may 
conclude that: 

z 

E3 

El: i >a, 

E2: i =a, 

E3: i <a, 

Inn 

FIGURE 6. Comparison of the most probable largest z with the characteristic 
extreme an. 
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1. The most probable largest z11 converges to the characteristic extreme 
an as x ---+ oo. 

2. Prior to reaching n, the class of the parent pdf determines whether z is 
larger than, equal to, or srnaller than a11 • This is represented in Fig. 6. 

(b) Behaviour of b11 with increasing n: Assuming for large samples n to 
be continuous, the derivative of bn (4.7) with respect ton may be studied: 

dbn d ( 1 ) 1 ( f' ) dan 
dn = dn nfx(an) =- n 2 fx(an) - nf2 an dn 

( 4.16) 

Introducing (4.5) and (4.8), and introducing the expression (4.3) for Q(x), 
results in: 

dbn 

dn 

The first ratio and an in ( 4.17) are always positive, but the expression in 
brackets is zero, positive or negative, for ETT class El, E2, E3 respectively. 
Therefore, the tails of distributions belonging to class El, E2 and E3 parent 
pdfs are characterized by dispersion factors that decrease, remain constant, 
and increase, respectively, with growing sample size. In the lirnit (n---+ oo), 
the dispersion becomes constant (i.e., ~; = 0). This behaviour is shown 
in Fig. 7. 

b, 
E3 

E2 

El 

Inn 

FIGURE 7. The dispersion factor bn as a function of sample size n. 

(c) Behaviour of an with ln n: We noted earlier that the characteristic 
extreme fur a simple exponential pdf, is equal to ln n; consequently, ln n can 
serve as an appropriate benchmark for the growth of an: 

dan dan ) 
d (ln n) = n dn = bn > 0, ( 4.18 
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which implies, as expected, that an is always increasing. But more relevantly 
the second derivative of an with respect to ln n is equal to n ~ in ( 4.17), 
resulting in a concave, convex or linear growth of an with ln n, depending on 
the ETT class of the tail of the random variable. Figure 8 also shows that 
the absolute value of an increases slower (El), faster (E3) , or at the same rate 
as ln n (E2). 

Inn 

FIGURE 8. Increase of the characteristic extreme an as a function of In n. 

At this point, the most famous result in extreme value theory may be 
introduced. We owe the original derivation to von Mises in 1936, almost a 
decade after the double exponential distribution A3 was obtained as a lim­
iting distribution by Fisher and Tipett. Gnedenko (1943) proved that the 
conditions were necessary and sufficient, and Gumbel (1958) simplified the 
proof considerably. The theorem states that all probability distributions of 
the ETT family have A3 (zlan, bn) as their extreme value limiting distribu­
tion, where A3 is the double exponential distribution, an is the characteristic 
extreme and bn is the dispersion factor, both parameters being related to the 
tail properties of the parent distribution. 

This result can easily be derived from the fact that the condition ( 4.3) 
that Q(x) ~ 1, is equivalent with imposing lim £(i)(x) = 0 for the deriva-

x-+oo 
tives of order 2 and higher, where L(x) is the minus-log-exceedance function 
L = -ln(1 -F). It will also be seen in Sec. 8 that this amounts to a linear 
asymptote in an (L, x) plot. Based on the definitions of an and bn, we have 

L(an) = ln n, 

1 
bn = L'(an) . 

As a result, the tail of the parent distribution can be written as 

1 
F ( x) = 1 - exp (-L ( x)) = 1 - - exp ( - ( L ( x) - L (an)) ) . 

n 

( 4.19) 

( 4.20) 

( 4.21) 
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The Taylor expansion of L(x) around L(an) results in a simple linear 
relationship because of the above condition that all derivations of L(x) of 
order 2 and higher must be zero for the ETT classes: 

L(x)- L(an) = (x- an)L'(an) + 0 

= (x~nan). 
(4.22) 

Introducing this result in ( 4.21) and raising it to the power n in order to 
obtain the cdf of the maximum Z = max Xi shows that, for larger n, 

or 

n 

ln Fz(z) = n ln Fx(z) = n ln (1- (1- Fx(z))) 

~ -n(1- Fx(z)) 

~ _ exp ( _ c ~nan)) , 
Fz(z) ---> A3(zlan, bn) = exp (- exp (- ( z ~nan))) . 

(4.23) 

(4.24) 

It can also be seen that for exceedances of a high threshold u, all members 
of the ETT class converge towards the linear £-expression ( 4.22) (except 
for a linear shift), in other words, tails exceeding a high threshold have an 
exponential distribution for X > u. We will refer to this fact when examining 
the role of the Generalized Pareto Distribution (GPD) in Sec. 10. 

5. Tails of the Pareto Type (PT) 

As discussed in the previous section, ETT tails are characterized by the 
condition that Q(x) ~ 1 as x increases. This was seen to result in tails that 
become nearly exponential for a large enough threshold, since for the expo­
nential distribution Q(x) ~ 1 for all x. Consider now the case that these 
excesses Y, when properly scaled, have a Pareto-type polynomial distribu­
tion: 

Fy(y) = 1- (1 + ~y)- 11~, ~ > 0, 0 < y < 00. (5.1) 

It can easily be seen that for ally, the extremal quotient Q(y) given by (4.3) 
is positive and equal to 

1 
Qy(y) = 1 + ~. (5.2) 

When~ approaches 0, Q approaches 1 as for the ETT tails, but otherwise the 
extremal quotient takes on small values between 0 and 1. Frechet and Gne­
denko showed that the, properly scaled, corresponding asymptotic extreme 
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value distribution for Z = n1ax Xi is equal to the so-called Frechet extreme 
n 

value distribution: 

~ > 0, 0 < z < 00. (5.3) 

As can be seen from the expression for Q(y) in (4.3) the PT tails are long and 
heavy. They include the tails of the Pareto, Cauchy and Frechet distributions. 

6. Beta-type tails: bounded distributions 

Short tails or the suspicion of short tails usually denote the existence of 
a finite upper bound (for simplicity we will focus on right-hand tails). One 
would expect the extremal quotient Q given by ( 4.3) to be (very) large for 
such tails as the density close to the upper bound is still large when 1-F(x) 
approaches 0 close to the upper bound w. If we consider a threshold u close 
to the upper bound w , then the following right-leaning beta distribution with 
positive exponent - ~ (hence ~ < 0) can be used to model the scaled excesses 

y = (x~u) on the tail between u and w: 

Fy(y) = 1- (1 + ~y)- 11~, 
1 

0 < y < -~, ~ < 0. (6.1) 

Clearly, in this case the value of ~ is directly related to the nature of the 
upper bound w. It can be seen that the upper bound w is equal to -~, so 
that we can rewrite the distribution and its associated pdf as: 

( 
y)-1/{ 

Fy(y) = 1- 1- ~ , O<y<w, (6.2) 

( y) -1/{-1 
fy(y) = 1- ~ ' O<y<w. (6.3) 

These equations show that as Y attains its upper bound w, the value of~ 
controls in which way w is approached. This is illustrated in Fig. 9. The larger 
values of ~ (those close to zero) generate distributions where the bound is 
reached very slowly: at w, at least the first [int (1/1~1) - 2] derivatives of the 
pdf are zero. When ~ = - ~ the slope of the density function at w is nonzero 
but finite, whereas ~ = -1 corresponds to the case of truncation. Even more 
negative values of ~ lead to infinite densities at the end-point w as shown 
in Fig. 9. 

The classification of tails according to the ~ is useful for a variety of 
reasons. For instance, it allows one to investigate if a data set has been 
truncated, by testing whether the conditional empirical distribution is tail 
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pdf 

X 

(a) no upper bound; Q = 1, 0 ~ ~ (ETT) 

pdf 

{J) 

X 

(c) zero density at w, 
first (k- 2) derivatives of pdf are zero; 
~ = -1/k (k integer, k ~ 3), Q = (k + 1)/k 

pdf 

{J) 

X 

(e) zero density at end-point w, infinite first 
derivative; 2 < Q < oo, -1 < ~ < -1/2 

pdf 

pdf 

X 

(b) finite end-point w, zero density; 
1 < Q < oo, -1 < ~ < 0 

pdf 

X 

(d) zero density, finite first derivative at w; 
~ = -1/2, Q = 2 

pdf 

{J) {J) 

X 

(f) non-zero finite density at w; 
Q = oo, ~ = -1, and Q < 0, ~ < -1 

X 

(g) non-zero finite density at w; -oo < Q < 0, ~ < -1 

FIGURE 9. Different types of tails and upper bounds. 
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equivalent with (6.2) having~= -1. Or, one can examine if a data set possess 
a tail behaviour which is significantly different from that of the central part 
of the distribution. And, as will be seen later, general results in safety and 
reliability analysis can be expressed as a function of ~ (Maes and Huyse, 
1995; Maes, 1995). 

Since the tails close to upper bound w are in this case modeled by the 
beta distribution ( 6.1), we refer to this type of tail as the beta type (BT). 
Similar to (5.2) the extremal quotient for the BT tail is constant and larger 
either than one or less than zero depending on the value of~: 

!
>1 -1~~<0, 

Qy (y) = 
1 

: { ---> oo for { __, -1 , 

< 0 -oo < ~ < -1. 

(6.4) 

All of these tail Q values imply light tails and they are consistent with 
the above discussions of the various types of bounded tails shown in Fig. 9. 
Weibull and Gnedenko showed that the (bounded and properly scaled) max­
imum Z = max Xi has a so-called Weibull asymptotic extreme value distri-

n 
bution: 

~ < 0, 0 < z < w, 
1 

w = --
~· 

(6.5) 

The three extreme value distributions given by ( 4.24), (5.3) and (6.5) 
for the tails of the ETT type, the PT type and the BT, respectively, can be 
united in the generalized extreme value distribution given earlier in Eq. (3.4). 
All of these distributions have the important property of being tail equiva­
lent (Sec. 3) with the tails of their parent distributions. 

7. The tail heaviness index (THI) 

The tail heaviness index (THI) was introduced by Breiman et al. (1979) 
and first used by Boos (1984) in a comparative study of techniques used to 
estimate large quantiles. The idea is to benchmark heaviness against that 
of the exponential tail which is assigned a value of zero; it is negative for 
lighter than exponential tails (subexponential) and positive for heavier than 
exponential tails (superexponential). 

The index is, generally speaking, a function of the position on the tail, 
i.e. left- versus right-handed tail, as well as the exceedance probability q and 
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the corresponding quantile Xq. It is defined as 

[ !' l ( ( 1 - F) f) H(xq) = -q ! 2 _ - 1 =- ! 2 _ - 1, 
X-Xq X-Xq 

(7.1) 

where f is the density function of X. Alternatively (7.1) may be expressed 
in terms of the loglikelihood function l ( x) = ln f ( x): 

H(xq) = -q [z' e-l] - 1. 
X=Xq 

(7.2) 

Since q = 1- F(xq), it can easily be checked that the minus-log-exceedance 
function 

L(x) = -ln (1- F(x)) (7.3) 

where F(x) is the cumulative distribution function, can also be used in the 
definition of H(xq): 

[ L" l H(xq) =- £'2 . 
X=Xq 

(7.4) 

It should be noted that if q is a probability per unit time (e.g. annual ex­
ceedance probability), then L(x) represents the log-return-period function. 

The tail heaviness index is, in fact, closely related to previously defined in 
Eq. ( 4.3) extremal quotient Q(x) and it therefore inherits similar properties: 

1 
H(x) = Q(x) - 1. (7.5) 

8. Detecting heaviness in the (L, x) plot 

The optimal way of representing and investigating tail behaviour is the 
(L, x) plot, where the minus-log-exceedance function L defined in (7.3) is 
plotted as a function of x. In what follows, we will focus on right-hand tails 
only, i.e., x approaches oo or some upper bound w. In an (£, x) plot, the 
exponential tail is represented by a straight line, because Q ( x) = 1 and 
hence H = 0 and £" = 0 according to the above equations. 

It is clear from the identity (7.4) that the tail heaviness index is propor­
tional to the negative of the curvature L" ( x) at any point x in the graph, 
as shown in Fig. 10. Consequently, a convex plot ("dogtail") has a negative 
H -value; this points to a light tail of the beta-type, and, it suggests the likely 
existence of some upper bound on x. Conversely, a positive tail heaviness in­
dex corresponds to a concave (L, x) plot of a heavy tail of the Pareto-type, 
as shown in Fig. 10. 
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L(x) 

H=O 

E2 

Heavy tails 

X 

FIGURE 10. (L, x) plot showing various tail characteristics. 

It should be noted that the use of a Gumbel plot (Castillo, 1992) rather 
than an (L, x) plot is equally effective. In this plot of the Gumbel ordi­
nate ry(x) = -In [-lnF(x)] versus x, a double exponential distribution 
is represented by a straight line. But for small exceedance probabilities 
[1- F(x)] ---+ 0, and, consequently, for tail values, ry(x) is virtually equal 
to L(x), which means that the (L, x) plot and the Gumbel plot are tail 
equivalent (see Sec. 3). 

Unlike other probability-paper methods, (L, x) plots should be used only 
to assess tail behaviour, i.e., as a tool for decision-making with respect to 
small exceedance probabilities, large quantiles, tail extrapolation, or other 
applications in reliability. 

9. Tails exceeding a high threshold 

We referred earlier to three types of tails with negative, zero, and positive 
tail heaviness indices. The concept of tail equivalence allows us to identify the 
tail behaviour using the excesses X - u of the random variable X over a high 
threshold u. Pickands (1975) showed that the generalized Pareto distribution 
(GPD) arises as the limiting distribution of the excesses provided the tail be­
longs to the domain of attraction of one of the extreme value distributions. 
The G PD summarizes the three previously discussed tail-over threshold dis­
tributions (4.22), (5.1), (6.1), so that (3.5) can also be written as: 

[ 
~(x-u)l-1/~ 

Fcpn(x) = 1- 1 + a + , X> U, (9.1) 
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where u is the high threshold, and a is a positive constant. As before, the 
case ~ = 0 is interpreted as the limit ~ ---+ 0, which results in F(x) = 1 -

exp (- (x~u)), i.e., the excess X - u over the threshold u is an exponential 

random variable with mean a. If~> 0, (9.1) represents one of several forms 
of the (unbounded) Pareto tail type, whereas the case ~ < 0 restricts the 
range of the excess to the interval 0 <X- u <-a/~, so that the GPD (9.1) 
becomes a (bounded) beta distribution, representing the Beta tail type. 

The GPD enjoys widespread use in areas such as hydrology and oceanog­
raphy. In fact, it forms a key component of peak-over-threshold methods of 
analysis. It can easily be seen that a Poisson process of exceedances of a 
high level having excesses with a generalized Pareto distribution results in 
maxima which have a generalized extreme value distribution (6.5). 

Consequently, GEV and GPD are tail equivalent according to criterion 
given in Eq. (3.1) and the three types of extreme value distribution corre­
spond directly to the three tail-over-threshold types. Moreover, it can be 
seen from the derivatives of the minus-log-exceedance function: 

1 [ ~(x-u)l Lcpo(xlu, c:, a) = ~ ln 1 + a + for x > u, (9.2) 

and also from the previous expressions for Q ( x), that the tail heaviness index 
of the GPD is constant over the entire range of x, and equal to: 

Hcpo =+ ~ for all x > u. (9.3) 

The GPD represents the only family of distributions with constant heav­
iness; this provides justification for the labels in Fig. 10. 

Figure 10 shows the three types of GPD distributions with their respective 
constant tail heaviness indices. Also included in this plot are tails belonging to 
the three ETT classes. Now these tails have H(x) values that are not constant 
but instead are negative and slowly increase to zero as x ---+ oo for class E3, 
or else, are positive and slowly decrease to zero as x ---+ oo, for class El. 
The advantage of the (L, x) plot is that the GPD never fails to provide a 
reasonable fit to the curvature associated with the empirical distribution. 
This is discussed in the next two paragraphs and it also illustrated in Fig. 11 
which is based on random samples generated from various pdfs. 

Examples of light tails (i.e. negative heaviness indices) include the nor­
mal, the gamma (with a > 1), the logistic, the uniform ( H = -1), the 
beta, and most distributions with a finite upper bound. Whereas some of 
the above eventually reach zero tail heaviness, lim H(x) = 0 because they 

X-+00 

belong to the ETT class of distributions, their behaviour in the practical 
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FIGURE 11. (L,x) plot of random samples from various distributions. 
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pre-asymptotic range is that of subexponential (BT class) tails (Figs 10-11). 
Since the tail heaviness becomes more negative as x becomes smaller on the 
tail, this effect is more noticeable in applications with smaller sample sizes. 

Positive H -values characterizing long, heavy (PT type) tails include the 
gamma (with n < 1), the lognormal, the Pareto, the Cauchy and the Frechet. 
Similar to the gamma or the t distribution, the Weibull distribution as a 

member of the ETT family F(x) = 1 - exp (- (~)k) has a tail heaviness 

index that can be either positive (class El), zero (class E2), or negative (class 
E3) before reaching zero at x ~ oo; see also Figs. 10 and 11: 

(9.4) 

Thus, for exponents k > 1, the Weibull tail is light, for k = 1 it is exponential, 
and for k < 1 the tail is heavy, but since the right-hand tail of the Weibull 
belongs to the ETT, lim H(x) = 0. 

x-oo 

10. GPD estimation 

Let the empirical distribution function of X in an (L, x) plot be described 
by the n pairs (Li, xi) of the ordered sample x1 ~ x2 ~ ... ~ Xn, where 

Li = - ln ( 1 - n~ 1) . In the upper tail area T, we are now interested in 

fitting a GPD distribution (9.1) which is tail-equivalent to this empirical 
distribution. 

The first problem is to define the extent of the upper tail area T, which 
amounts to determining the threshold u, the lower cut-off of T. This is a 
somewhat subjective task, although a quick visual inspection of an (L, x) 
plot often suffices to identify the best threshold. 

A useful tool is based on the equivalent of the mean residual life (MRL) 
diagram for lifetime modeling. This is a plot of the conditional mean of the 
excesses E(X -uiX > u) as a function of u. The only stable part of this graph 
is located in the tail, and it often provides for a straightforward threshold 
selection. The slope and the intercept of the best MRL straight line fit can 
subsequently be related to the parameters ~ and a of the GPD in the tail 
area. A more rigorous approach to the problem of how to separate the central 
portion from the tail portion is discussed in Sec. 12. 

Other methods for estimating the GPD parameters (Davison and 
Smith, 1989) include maximum likelihood estimation and the Hosking and 
Wallis' (1987) method based on a simple extension of the MRL plot. 

In reality, however, tail estimation is essentially a decision-making prob­
lem: no single tail fit is satisfactory for all purposes and for all possible 
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different types of future usage. There is no single "good-for-all" tail fitting 
criterion. Rather, we wish to conjecture that the criteria selected for achiev­
ing a suitable tail fit are critically dependent on what it is one wants to 
achieve; they should be consistent with the measure of risk associated with 
the application affected by the tail behaviour. Hence, a tail model used by 
decision maker A may be different from the model used by B even though 
identical tail data is used. This is a clear case of the ends justifying the means. 

The most flexible option for achieving this objective is weighted least 
squares on the (Li, xi) data in the tail region. The weights Wi should depend 
on the quantity (or, property) of interest so that, in general, the G PD pa­
rameters can be found from the minimization with respect to ~ and a of the 
sum of weighted square errors SWSE: 

SWSE = L Wi [Li- L(xilu, ~' a))
2 

iET 

(10.1) 

where L is given by (9.2). This implies that errors !J.L = Li- L are iid with 
mean 0 and variance proportional to 1/wi. By treating this heteroscedastic 
model as a likelihood problem, similar to the Maes and Breitung (1994) 
analysis for the GEVD, probability intervals may be determined to describe 
model and parameter uncertainty. 

Let us list some examples of appropriate expressions (10.1) consistent 
with a few specific tail evaluation objectives: 

Case A: The objective is to determine small exceedance probabilities with 
the smallest absolute error. 
Very rarely does one encounter engineering applications in which risk 
can be measured in terms of absolute errors !J.qi on small probabilities of 
exceedance qi. The relative error, or the error on log (probability), forms 
a much more frequent (and appropriate) criterion for tail evaluation. 
But in order to minimize absolute errors on probability in the tail 
area -!J.q1 = !J.Fi = (1 - Fi) !J.Li, it is clear that we need to use 
weights Wi = (1- Fi)2 in (10.1). As expected, these weights reduce the 
importance of the upper tail, since the (L, x) plot amplifies precisely 
this region. 

Case B: The objective is to determine small exceedance probabilities with 
the smallest relative error. 
Since -!J.qifqi = -/::::,. (1- Fi) / (1- Fi) = -!J.ln (1 - Fi) = !J.Li, unit 
weights Wi = 1 are requires in (10.1). This reduces (10.1) to regular least 
squares together with straightforward parameter uncertainty analysis. 

Case C: The objective is to determine return periods with the smallest ab­
solute error. 
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If the random variable X applies to a unit period of time, then 1!Fi 
represents a return period. If we wish to consider errors on this function, 

then we have~ ( 1!Fi) = (t=_lpd. Accordingly, we require weights Wi = 
( 
1

_ ~i ) 2 in ( 10.1) which increase with distance on the tail. The large 

tail weights indicate that, for this purpose, the ( L, x) plot does not 
"amplify" the tail area sufficiently. 

Case D: The objective is to determine return period with the smallest rel­
ative error. 
More frequently, it is the relative error on the return period, which 

~-}-

serves as a true risk indicator. Because \- Fi = 1~~~ = ~Li, this case 
I-Fi 

is equivalent to the base case B with unit weights. 

Case E: The objective is to detennine large tail quantiles xq . 
If the decision criterion involves a risk measure, which can be expressed 
as a linear function of the error of the unknown quantile (a nonlinear 
function requires linearization but the treatment is otherwise the same), 

then the weights required in (10.1) are equal to -k = a+.E(~i -J.t), since 

the error on the quantile can be written as ~Xqi = ~Ld L~. 

Case F: The objective is to respect the principle of tail equivalence in gen­
eral. 
If one wishes to construct or extrapolate a distribution tail to a (usually 
limited) set of tail data, and no clear-cut risk-based decision criterion is 
available for the goodness of fit, then the basic principle of tail equiva­
lence should apply. With (F +~F) equal to the empirical distribution 

function, (3.1) becomes li1n [ 1-([_+fF) - 1] = 0, which shows that 
x-oo 

errors 1~FA = ~L need to be minimized. As a result, the best tail fit is 
also achieved with Wi = 1, similar to case B. 

Case G: The objective is to model tails so that we are consistent with their 
subsequent use in a structural reliability analysis. 
This subject is discussed in more detail in the following section. It will 
be shown that for G PD tail fits on independent basic random variables, 
the case B with unit weights in (10.1) is the most appropriate choice. 

11. Tail sensitivity in structural reliabilty applications 

Consider a set of basic random variables X = {X1 , ... , Xm} and a 
failure set F described by {XIg(X) < 0}. When the failure probability 
P(F) = Pr (g (X) < 0) is small, then the tail behaviour of (at least) some 
of these variables will have a critical effect on P( F). The question addressed 
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here is exactly how sensitive P(F) is to errors on the tail of one the basic 
variables, say variable Xj having a minus-log-exceedance function Lj(x) and 
a loglikelihood function lj ( x). 

As shown in Maes (1991) as well as from the previous discussion of tail 
evaluation criteria, errors on [- ln P( F)) often represent an appropriate mea­
sure of risk than errors on P(F) itself. Consequently, we will focus on the 
effect of .6.(-lnP(F)). According to Breitung and Faravelli's (1994) asymp­
totic result describing the sensitivity of P(F) to Xj ; we have 

(11.1) 

where l(x*) is the loglikelihood function evaluated at the point of maximum 
likelihood (PML) x*. This point is the unique point (if it exists) which maxi­
mizes l(x) subject to g(x) < 0. If the basic random variables are independent , 
then it follows that: 

a ln P(F) "'l'· (x~) = (Jj) . ax . J J ! · 
J J x; 

(11.2) 

The error on ln P(F) due to a tail modelling error .6.Lj on the j-the 
variable can consequently be written as: 

t> ( -inP(F)) = [- ( 81~=j(F)) ( ~~:) -1 t>Lj L, (11.3) 

J 

to which the results ( 4.8) and (3.3) can be applied, to yield: 

[ r 1- F · ] .6. (- ln P( F)) "' - 2 · --1 .6.Li 
Ii fj X~ 

J 

(11.4) 

or, 

t> (-In P(F)) ~ QJ~xj) f>LJ ~ [1+ Hj(xj)] f>LJ. (11.5) 

Two conclusions may be drawn from this result. First, expression (11.5) 
shows that if the tail behaviour of variable Xj is modelled using the G PD, 
then because of (9.3), the factor [1+Hj) is constant over the entire tail region , 
and the effect of an error .6.Lj anywhere on the tail is homogeneous and 
directly proportional to the error on ln P( F). Consequently, no additional 
weights (wi = 1) are required in the SWSE criterion (10.1), that is, the base 
case B of the previous section is applicable. 
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The second conclusion concerns the matter of tail sensitivity. If the upper 
or lower tail regions of k independent random variables contribute to P( F), 
then the uncertainty on ln P(F) as a result of the tail modelling uncertainties 
O"L. can be expressed as: 

J 

k 

O"~n P(F) ~ L (1 + HjfO"Li · 
j=l 

(11.6) 

As discussed above, there is no need to specify that Hj be evaluated at the 
PML if GPD tails are used. If we exclude the exceptional cases for which 
Hj ~ -1, this results shows that ln P(F) is considerably more sensitive to 
heavy tails, where Hj > 0, than to light tails, where Hj < 0. For instance, in 
the case of a limit state function using both normal and lognormal variables, 
the modelling of the tails of the latter variables has a much more critical effect 
on P(F) from the point of view of tail sensitivities. Similar to importance 
factors (a factors) in FORM, we can also define the relative tail sensitivity 
of tail j as the factor: 

1 

(1 + Hj)/ [~ (1 + Hj)
2
] 

2 

(11. 7) 

12. Where is the tail? 

We have seen that characterization of tails of random variables involves 
several challenging tasks. First , a probabilistic model had to be selected for 
large (or small) values of the random variable. Then, appropriate statistics 
and uncertainty modeling had to be used. But we avoided one important 
problem: we must decide where exactly the upper and lower tail region of 
the variable are located. In other words: how do we decide what is "tail", and 
what is "central"? In this respect, a compromise must be struck between using 
too many data to define the tail, which introduces bias towards central values, 
and using too few which causes excessive scatter for the final estimates. 

This raises questions with regard to the extent of the tail: how many 
data should be included in each tail? We will apply a minimum mean square 
error-criterion (MSE) to a specific parameter such as the tail heaviness index, 
an endpoint, an extreme quantile, a reliability index or any other decision­
based measure of risk. In order to evaluate the MSE needed to determine 
the optimal tail range and to establish confidence intervals on tail-related 
parameters, a simple variation of the non-parametric bootstrap method is 
used. 
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The vast majority of statistical techniques are based on estimating the 
central part of the distribution model of a random variable. The distributional 
form can be parametric or non-parametric. In both cases some measure of 
distance (likelihood, x2 , moments) is used to define the misfit between the 
data and the theoretical (or expected) model. These measures are generally 
based on the central limit theorem. 

When extrapolation beyond the highest or lowest data is needed, central 
methods often fail to produce accurate results. Moreover, in many practical 
cases, the tail behaviour of the variable can be considerably different from the 
bulk or central part of the data. In that case one wants to extrapolate frorn the 
empirical tail using only those data which yield relevant information for the 
actual or true tail behaviour. The extrapolation is based on the assumption of 
the continuity of the tail beyond the data; an assun1ption which-from a strict 
mathematical point of view-cannot be justified. The important question that 
is raised in this section is to find the value or threshold above (below), which 
the tail actually "starts", i.e., which part of the data can be labelled "tail" 
and which part "central". 

In the following we concentrate on upper tails but the methodology easily 
carries over to lower tails. To distinguish between central and tail data, many 
practitioners use visual methods based on quantile plotting or probability 
paper. The standard procedure consists of drawing the empirical distribution 
or quantiles versus the expected ones and looking for steady trends in the 
extreme part of the plot (Gumbel, 1958; Castillo, 1988). In some cases, there 
exists a distinct threshold above which there is consistent behaviour. Due 
to the lack of data in others, the choice of a clear threshold is prone to 
considerable uncertainty or variation, and the picking of such levels requires 
creative and - one would hope - educated guessing. 

The most powerful quantile plot is the so-called generalized Pareto­
quantile plot (GP-quantile plot) as described in Caers and Rombouts (1996) 
and Beirlant et al. ( 1996b). This is the scatter plot of points 

where 

and 

(-log~' log UHj,n) , j = 1, ... , n- 1 for right tails, (12.1) 

(log~' log UHn-j,n) , j = 1, ... , n- 1 for left tails, 

k 

Hk,n = ~ L (log x~-j+l -log x~-k). 
j=l 

(12.2) 

(12.3) 

(12.4) 
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Here j is the index that defines the scatter of points on the quantile plot, 
while k denotes the number of highest order statistics used to calculate the 
statistics UH and H . The justification for the selection of the UH statistics 
is given in for instance Smith (1987) and Beirlant et al. (1996a, 1996b). At 
this stage, it is sufficient to point out that the plot matches the extreme 
behaviour associated with Eq. (9.1). 

The GP-quantile plot ultimately becomes linear as one takes higher 
thresholds (Caers, 1996; Beirlant et al. , 1996b). Therefore, the main prop­
erty of the plot is that the slope of a line fitted using a weighted mean 
square error criterion to the k highest data above that threshold converges 
in probability to the extreme value index ~- In the case of Gumbel domain 
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FIGURE 12. Wall thickness data: GP-quantile plot (top), UH-estimator (bottom) . 
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attraction, one expects the GP-quantile plot to level to a horizontal line, in 
the case of Pareto-type tails and bounded tails, to a positive and negative 
slope, respectively. 

Even so, the use of GP-quantile plot does not eliminate the problem of 
identifying a clear threshold between the central part or the upper and lower 
tail. To illustrate some aspects of the resulting "guestimation", consider a set 
of wall thickness data as measured on casing tubes exiting the steel mill. 
Typically, these data have some form of lower bound because of the nature 
of the manufacturing process. Here we consider the ratio of the actual wall 
thickness to the nominal wall thickness. Figure 12 shows the GP-quantile 
plot and estimated slopes for the lower tail of the wall thickness data. 

The plot of the estimated slope versus the threshold 'U (Fig. 12(b)) reveals 
that as the threshold moves down (and k decreases), the slope seems to vary 
around a value of ~ ~ -0.5 to -0.8, which means the data are bounded. 
However the overall variability increases: ~ = -0.994 at u = 0.884, ~ = 
+0.221 at u = 0.881. The same observation applies to the GP-quantile plot 
in Fig. 12(a). At first, the central or bulk part of the data shows a positive 
slope, in contrast to the negative slope in the extreme part. Then as one looks 
more and more to the left of the plot, the variability increases. Therefore, 
the choice of the threshold has important repercussions on the estimated 
value of~' even in the downward trend of the quantile plot. The amount of 
extremes above a threshold has its own sampling distribution. Parametric 
methods such as the maximum likelihood method (Smith, 1987, 1989) take 
a fixed threshold and a fixed amount of extremes above that threshold. 

In a sense, the GP quantile plot is similar to the aforementioned (L, x) 
plot and the Gumbel plot (Gumbel, 1958). This latter is a plot of the ordered 
data on the x-axis versus the Gumbel quantiles on they-axis 

(X~-i+ 1, - log (- log n : 1 ) ) , j = 1, ... , n for right tails, (12.5) 

( Xj, -log (- log n : ~ ~ j)) , j = 1, ... , n for left tails. (12.6) 

Whereas in the GP-case one always expects a linear behaviour, the Gumbel 
plot is either linear (~ = 0), convex (~ > 0) or concave (~ < 0), but always 
monotonically ascending. A similar method of finding regression estimators is 
used by Castillo (1988) on the Gumbel plot. He suggests to look for the ratio 
of the mean slope in two neighbouring zones, the quotient of this slope being 
a measure of curvature. This quotient is then used as a statistic to decide on 
the tail behaviour. In this respect, the GP-plot seems more powerful since it is 
easier to detect linearity than to detect convexity or concavity, certainly when 
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only few data samples are available. In Caers and Maes (1998) it is shown 
that the GP-quantile plot leads to a sin1ple estimator which is efficient in 
estimating negative values of~. 

However, the challenge remains: how does one choose a "good" thresh­
old u? The threshold cannot be too low, since in that case, too many central 
values will disturb the estimation in the sense that it introduces bias. On the 
other hand, as less data points are available above higher thresholds, the vari­
ance increases considerably. In response to this question, Boos (1984) recom­
mends that the ratio of k (number of tail data) over n (total number of data) 
should be k/n = 0.02 (50 < n < 500) and k/n = 0.1 for 500 < n < 1000. In 
a recent discussion, Hasofer (1996) suggests to use k ~ 1.5fo. 

Due to the trade-off between the conflicting trends of bias and variance, 
we propose to use a finite sample mean square error (MSE) as a criterion for 
estimating the threshold. The idea is to select as an optimal threshold the 
one which minimizes this MSE. Suppose that one is interested in estimating 
some extremal property, B, which can be the THI, an upper bound w, a high 
quantile, or a safety index, or a failure probability. It is important to realize 
that the choice of the estimator is entirely dictated by the scope of decision 
we ultimately need to make. The estimator of the (fixed but unknown) () is 
denoted as the random variable 0. Then the MSE can be applied to 0 as 
follows 

MSE(Ii) =E [(n-or]= (E(B-o)r +E [((B-o) -E(B-o)r] 

= ( E [li]- 11) 
2 

+ E [ (li - E [li]) 
2

] = bias2 (1i) + var(li). (12.7) 

The MSE can now be evaluated for any threshold u, based on the estimate of 
0 = O(u) using the data above the threshold u. The first term in (12.7) usu­
ally increases when the threshold is lowered, while the second one increases 
when the threshold is increased and the plot becomes more scattered. The 
dependence on u of the MSE becomes apparent. Minimizing the MSE can be 
contrasted with recent work in extreme value statistics which, instead, con­
centrates on optimizing the asymptotic mean square error ( ASME), (Beirlant 
et al. 1996a, b) in order to estimate ~. Expressions for bias and variance un­
der the asymptotic conditions of some estimators of ~, for example, exist in 
literature (Beirlant and Teugels, 1986; Dekkers and de Haan, 1989; Csorgo 
et al., 1985). 

It is important to note that the proposed MSE-criterion can be applied 
to any extremal property, such as an extreme quantile, an exceedance prob­
ability, an end-point or a reliability index and that it does not require the 
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asymptotic conditions needed for AMSE which, in any case, seem unrealistic 
for small samples. 

Expressions for the finite sample MSE as in (12. 7) are generally not read­
ily available for most estimators and the question remains how to estimate 
MSE. A natural choice is to use the bootstrap as an estimate for finite sample 
bias and variance at each threshold. Details of this procedure and the sub­
sequent question of finite sample confidence intervals are discussed in Caers 
and Maes, (1998). 

13. Conclusions 

Tail heaviness plays an important role in all of risk analysis and reliability­
based design. Following the fundamental principle of tail equivalence, any tail 
can be represented by a GPD with selected tail heaviness coefficient. Risk­
based tail estirnation criteria are seen to be dependent on the objectives of 
the analysis. In most of the cases discussed here, least squares in an (L, x) 
plot is shown to be consistent with these objectives. Tail sensitivity in struc­
tural reliability is formulated asymptotically in terms of the individual tail 
heaviness indices. The use of an MSE-based criterion on the tail/extreme 
parameters that will ultimately influence the decision we need to make is 
suggested to decide on the optimal extent of the tail to be used in a G PD 
tail analysis. 
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