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Algorithms for solving three classes of reliability-based optimal design problems 
are presented. The algorithms address design problems for structural components, 
series systems, and a portfolio of series systems, where the objective and/or con­
straint functions involve probability terms. Due to lack of continuous differen­
tiability of the probability terms or their approximations, the posed problems 
cannot be solved by standard optimization algorithms. The proposed approach 
employs reformulations of the problems, in which probability terms are replaced 
by better-behaving functions. The reformulated problems can be solved by ex­
isting semi-infinite optimization algorithms. It is shown that the reformulated 
problems produce solutions that are identical to those of the original problems 
when the limit-state functions are affine, or when first-order reliability approxi­
mations are used. Improved solutions for higher-order reliability approximations 
are obtained by adjusting a set of parameters in the algorithm. An important 
advantage of the approach is that the required reliability and optimization cal­
culations are completely decoupled, thus allowing flexibility in the choice of the 
optimization algorithm and the reliability method. Numerical examples demon­
strate applications of the proposed algorithms. 
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1. Introduction 

Uncertainties and optimization are two major considerations in struc­
tural design. Uncertainties, arising from randomness in structural materials 
and applied loads as well as from errors in behavioral models, are inevitable 
and must be properly accounted for in the design of structures to assure 
safety and reliability. Optimization in the design of structures is desirable 
in order to maximize benefits and to make effective use of resources. Thus, 
optimal design under uncertainty is a topic of significant practical interest 
in structural engineering. Due to the challenges present in both probabilis­
tic analysis and optimal design of structures, the combined problem poses 
significant difficulties as well as opportunities for research and innovation. 

The typical single-objective optimal design problem involves an objective 
function that is to be minimized (or maximized), and one or more equal­
ity or inequality constraints, which define the feasible domain of the design 
variables. Under conditions of uncertainty, probabilistic terms may enter the 
objective, the constraints or both. Furthermore, the probabilistic terms may 
involve various measures, such as statistical moments of structural response 
or probabilities associated with various structural performance events. 

In this paper, we present a summary of algorithms developed by the 
authors for solving single-objective design optimization problems involving 
failure probabilities (complements of reliability) as constraints, in the ob­
jective function, or both as constraints and in the objective function. Both 
structural component and series system problems are considered. For more 
detailed background on the development of these algorithms, including proofs 
of the various statements, the reader should consult Royset et al. (2001, 2002, 
2003). A comprehensive review of other works in reliability-based optimal 
design is presented in Royset et al. (2002) and will not be repeated here. 
However, two distinguishing characteristics of the approach presented here 
relative to the reliability-based optimal design algorithms developed or used 
by other researchers and practitioners are that: 

(a) in the proposed approach the computations for reliability and optimiza­
tion are decoupled, thus allowing maximum latitude in the choice of 
algorithms for solving these sub-problems, 

(b) the developed algorithms have proven convergence properties under 
certain conditions. 

The paper begins with a brief review of the relevant reliability methods 
followed by the definition of three classes of optimal design problems. Each 
problem is then considered and applicable algorithms are developed and ap­
plied to example problems. 
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2. Structural reliability 

Let x be an n-dimensional vector of deterministic, real-valued design 
variables, e.g., member sizes, maintenance times, extent of future repair. 
Following the well-established theory of structural reliability (Ditlevsen and 
Madsen 1996), we express the system reliability of a structural design by 
means of a set of continuously differentiable limit-state functions Gk (x, v), 
k E K = {1, 2, ... , K}, involving x and an rn-dimensional vector v of real­
izations of random variables V. The event { G k ( x, V) ~ 0} defines the fail­
ure of the structure in its k-th mode, a "component" event. The failure of 
the structure as a "series system" occurs if any of the component events 
{Gk(x, V) ~ 0}, k E K, occurs. 

Several computational reliability methods require a bijective transforma­
tion of realizations v of the random vector V into realizations u of a stan­
dard normal random vector U. Such transformations can be defined under 
weak assumptions. For a given design vector x, let Tx (v) be this transfor­
mation. Replacing v by T; 1(u) gives the equivalent limit-state functions 
9k (x, u), k E K, defined by 9k(x, u) = Gk(x, T; 1(u)). Since structures usu­
ally posses high reliability, any realistic design should be safe at the mean 
point and hence 9k(x, 0) > 0 for all problems of interest here. 

The failure probability of the structural system is defined by 

p(x) = j cp( u) du, 

O(x) 

(2.1) 

where <p(u) is the m-dimensional standard normal probability density func­
tion and 

n(x) = u { u E Rm I 9k (x, u) ~ 0}, (2.2) 
kEK 

is the failure domain. The failure probability for the k-th component, Pk(x), 

is defined as in (2.1) with the integration domain replaced by r2k(x) = {u E 

Rm I 9k (x, u) ~ 0}. We define the critical component to be the component 
with the largest failure probability. 

Various reliability methods are available for estimating the probabilities 
Pk(x) and p(x). In the first-order reliability method (FORM), an approxi­
mation to Pk(x) is obtained by linearizing the limit-state function 9k(x, u) 
at the point in the set { u E Rm I 9k (x, u) = 0} closest to the origin, i.e., at 

uk(x) E arg min { llull I 9k (x, u) = 0}. (2.3) 
uERm 
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Such closest points are referred to as design points. The corresponding ap­
proximation of the component failure probability takes the form 

Pk(x) ~ <P( -f31,k(x)), (2.4) 

where f3I,k(x) = lluk(x)ll is the first-order reliability index and <P ( ·) is the 
standard normal cumulative distribution function. Equality holds in (2.4) 
when 9k(x, u) is affine in u, i.e., when 9k(x, u) = bo,k(x) + bk(x)T u for 
some positive valued function bo,k (x) and vector-valued function bk (x). For 
a series system with affine component limit-state functions, the failure prob­
ability is obtained as the probability content in a polyhedral domain in the 
standard normal space. For non-affine component limit-state functions, the 
polyhedral domain defined by linearization of the individual component limit 
states provides a first-order approximation to the series system probability. 

In the second-order reliability method (SORM), an approximation to 
Pk(x) is obtained by replacing the limit-state function 9k(x, u) by a quadratic 
approximation in u at the design point uk(x). The expression for the second­
order approximation of Pk(x) involves {31,k(x) and the principal curvatures 
of the surface { u I 9k(x, u) = 0} at the design point. A second-order ap­
proximation to the series system probability may be obtained by adjusting 
the distances to the faces of the first-order polyhedral approximation from 
f3I,k(x) to f32,k(x) such that <P ( -f32,k(x)) equals the SORM approximation 
of Pk(x). 

Another approach for computing failure probabilities is by Monte Carlo 
simulation, including various forms of importance sampling (see Ditlevsen 
and Madsen 1996). The probability of failure in (2.1) is written in the form 

J cp(w) 
p(x) = I(x, w) h(w) h(w) dw, (2.5) 

O(x) 

where h(w) is a suitable sampling density and J(x, w) = 1 for w E O(x) 
and J(x, w) = 0 for w ~ O(x). It follows that p(x) is equal to the 
expectation of J(x, W)cp(W)/h(W), where W is a random vector with 
probability density function h(w). An estimate of the failure probability 
is then obtained as the sample mean of J(x, W)cp(W)/h(W), given by 
2:!1 J(x, wi)cp(wi)/(h(wi)N), for a set of randomly generated realizations 
Wi, i = 1, ... , N, of Win accordance with the density h(w). The estimate 
is unbiased provided h(w) f. 0 wherever J(x, w)cp(w) f. 0. Furthermore, the 
simulation is efficient (i.e., the estimate converges rapidly) if h(w) is selected 
to be nearly proportional to I(x, w)cp(w). It is evident that to maintain effi­
ciency, the sampling density h(w) may have to be changed with x. The con­
ventional Monte Carlo approach corresponds to the selection h( w) = cp( w). 
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An important requirement in all gradient-based optimization algorithms 
is the existence of at least first-order derivatives of the objective and con­
straint functions with respect to the design variables x. In a reliability­
based optimal design problem, this translates into the requirement of dif­
ferentiability of the failure probability, or the employed approximations 
thereof, with respect to the design variables. Unfortunately, none of the re­
liability approximations described above are guaranteed to be differentiable 
with respect to x. For example, one can easily show that the FORM and 
SORM approximations of the failure probability for the limit-state function 
g(x, u) = 5- 0.2(ul - x)2 - u2 are not differentiable at x = 0. Similarly, the 
estimate of the failure probability obtained by a simulation method naturally 
fluctuates, with each sample leading to varying accuracy of finite difference 
estimates of the gradient of the sample mean of I(x, W)<p(W)/h(W). Even 
for a given sample, the gradient of the sample mean of I(x, W)<p(W)/h(W) 
is not differentiable everywhere with respect to x due to the non-smoothness 
of I(x, u) as a function of x. In a recent paper, Royset and Polak (2004) 
have shown that the component failure probability computed by a new sim­
ulation method is differentiable under certain conditions. However, for the 
more general case of a series system, even the exact failure probability can 
be non-differentiable. One example is the series system with the compo­
nent limit-state functions 91 (x, Ut, u2) = 3- u1, 92(x, u1, u2) = 3- u2 and 
93(x, u1, u2) = 3- u2- x, whose exact failure probability is not differentiable 
at x = 0. 

The difficulty with differentiability means that optimization problems in­
volving the failure probability in the objective function or the constraints may 
not be solvable by standard nonlinear optimization algorithms (e.g., NLPQL 
by Schittkowski (1985), LANCELOT by Conn et al. (1992), and NPSOL by 
Gill et al. (1998)). Ironically, most existing literature on reliability-based op­
timal design employs FORM approximations or simulation techniques and 
standard nonlinear optimization algorithms. This does not mean that the 
solutions reported in the literature by use of these methods are necessar­
ily wrong, but that the algorithms employed in these applications are not 
robust for the given problem and may fail to reach a solution for other sim­
ilar problems. In short, standard nonlinear optimization algorithms do not 
appear to be suitable for the solution of reliability-based optimal design prob­
lems obtained by the use of the probability approximations described above. 
The algorithms presented in this paper circumvent this problem by a re­
formulation that replaces the probability terms with other better-behaving 
functions. The reformulation does not lead to optimization problems that 
can be solved by standard nonlinear optimization algorithms, but the prob-
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lems can be solved by so-called semi-infinite optimization algorithms. These 
algorithms are well-known in the optin1ization literature. 

3. Definition of optimization problems 

This paper addresses three classes of optimization problems denoted as 
P1, P2 and P3. The series-system versions of these problems are denoted as 
P1,sys 2 P2,sys and P3,sys· For P3, a version applicable to a "portfolio" of series 
systems, e.g., a group of bridges, is also formulated and denoted as P3,por· 

To define these problems, let eo (x) be the initial cost of the design, ck (x), 
k E K, be the cost associated with the failure of component k, and 

X= {x ERn I /j(x) ~ 0, j = 1, ... , q}, (3.1) 

with /j (x) being continuously differentiable functions describing determin­
istic constraints. Problems P 1, P2 and P3 are defined as follows: 

pl = min { eo (x) I Pk(x) ~ Pkl k E K, X Ex}' (3.2) 
xERn · 

P2 = 1nin { maxpk(x)lx Ex}, (3.3) 
xERn kEK 

P3 = ~lr. {CO (x) + ~ q(x)pk(x) I Pk(x) <;; fik, k E K, x EX}. (3.4) 

As can be seen, P1 minimizes the cost of the design subject to the constraints 
that individual component failure probabilities are less than Pk, P2 minimizes 
the failure probability of the critical component, and P 3 minimizes the sum of 
the initial cost and the expected cost of failure of the components, assuming 
the component failure costs are additive, subject to constraints on individual 
component failure probabilities. All three problems are also subject to the 
deterministic constraints fi (x) ~ 0, j = 1, ... , q. The series system versions 
of these problems are defined as 

P1,sys = ~lr. { CO (x) I p(x) <;; fi, Pk(x) <;; fik, k E K, x E X} , (3.5) 

P 2 sys = m in { p (X) I X E X} , 
' xERn 

(3.6) 

P3 sys = min { co(x) + c(x)p(x) 1 p(x) ~ p, 
' xER" 

Pk(x) <;; fik> k E K, x EX}· 

(3.7) 
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As can be seen, in P1,sys a constraint on the system failure probability is 
added, whereas in P2,sys it is the system probability that is minimized. 
In P3,sys, the expected failure cost is in terms of the system failure, and 
the system failure probability is included in the constraint set definition. To 
define the portfolio version of P3, let the superscript (l), l E L = {1, ... , L }, 
define the l-th series structural system among a portfolio of L such systems. 
P3,por is then defined as 

L L 

P3,por = ~ir. { ~ cg)(x)+ ~ c(ll(x)p(ll(x) I p(1l(x) ~ p(l), lE L, x EX}· 

(3.8) 

Here, c~l) (x) is the initial cost of the l-th series structural s;stem, and c(l) (x) 
is cost associated with failure of the l-th series structural system. For the sake 
of simplicity in the notation, in the above we have removed the constraints 
on the individual components of the series systems. This problem aims to 
minimize the portfolio cost of the design plus expected cost of system failures, 
subject to constraints on the individual system probabilities. 

In this paper, all the cost, limit-state and constraint functions are as­
sumed to be continuously differentiable. Additionally, we assume that the 
interval (for m =1), area (for m = 2), volume (for m = 3), etc., in which 
the limit-state function vanishes, have length, area, volume, etc., equal to 
zero, respectively. This is normally satisfied in realistic design problems. The 
precise mathematical statement of this assumption can be found as Assump­
tion 1(iii) in Royset et al. (2003). 

4. Probabilistic constraints: problems P 1 and P 1,sys 

4.1. Approximating problems 

Consider the probabilistic constraint Pk (x) ~ Pk in (3.2). The failure 
probability Pk(x) can rarely be computed exactly and some approximation 
must be employed. As mentioned above, the existing reliability methods for 
estimating the failure probability are not suitable for use with standard non­
linear optimization algorithms due to the lack of differentiability. However, 
the FORM is a motivation for the following approximation originally found 
in Kirjner-Neto et al. (1998) and Der Kiureghian and Polak (1998). 

In view of (2.4), the classic FORM approximation to the constraint 
Pk(x) ~ Pk is 

f3I,k(x) ~ f3o,k, (4.1) 
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where 
f3o,k = -<1>-I (Pk). (4.2) 

By definition, ( 4.1) implies 

min {I lull I 9k(x, u) = 0} ~ f3o,k· 
uERrn 

(4.3) 

Structures tend to be highly reliable, and hence we can assume 9k(x, 0) > 0 
for all relevant designs x. Consequently, the equality in ( 4.3) can be replaced 
by an inequality. Under this assumption, an equivalent but mathematically 
more convenient expression for the constraint ( 4.3) is 

min {gk(x, u) I llull ~ f3o k} ~ 0. 
uERrn ' 

( 4.4) 

At first glance, the expression in ( 4.4) does not appear more advantageous 
than the one in (4.3). However, the left hand-side of (4.4) can be inter­
preted as a so-called standard min-function, while f3I,k(x) is a generalized 
min-function. Standard min-functions have been studied extensively in the 
literature, and there is a variety of efficient and robust algorithms available 
for solving optimization problems involving such functions. On the other 
hand, generalized min-functions are significantly more difficult to deal with. 
Note that standard min-functions are not differentiable everywhere even if 
9k(x, u) is differentiable. This fact is incorporated into the algorithms in the 
literature for solving optimization problems with min-functions. 

In view of the above discussion, we define the standard min-function 

(4.5) 

where Sk > 0 is a parameter. Hence, we obtain the following approximation 
to PI: 

P1,s = ~w. { eo(x) 1'1/Jk,s.(x) ~ 0, k E K, x EX}. (4.6) 

The relation between PI and PI,s is given in the following statement. Various 
versions of this statement are found in precise mathematical language with 
proofs in Kirjner-Neto et al. (1998), Der Kiureghian and Polak (1998), Polak 
et al. ( 2000), and Royset et al. ( 2002). 

Statement about PI and PI,s: If the limit-state functions 9k(x, u), k E K, 
are affine in their second argument, i.e., 9k(x, u) = bo,k(x) + bk(x)T u, and 
s = (s1,s2, ... sK), with sk = -<1>-1(ftk), k E K, then :X solves P1 if and 
only if it solves PI,s· 
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An important consequence of the above finding is that , for non-affine 
limit-state functions , P 1,s has solutions identical to those of P1, if the failure 
probability terms in the latter are expressed in terms of the FORM approxi­
mation. However, if higher order probability approximations are to be used, 
adjustments in the parameters Sk , k E K, must be made. Specifically, if 
at the solution :X of P 1,s the FORM approximation for a component k is 
smaller than the corresponding higher-order probability approximation, such 
that the latter violates the probability constraint in (3.2), then problem P1,s 
must be re-solved using a larger value of Sk. Conversely, if the FORM ap­
proximation is larger than the higher-order probability approximation, then 
a smaller value of sk may be used. This process is repeated until all the com­
ponent probability constraints in (3.2) are satisfied for the desired probability 
approximation level. A recursive formula for these updates of pararneters sk 

is given below. 
The above parameter-adjustment procedure can also be employed to solve 

the series system problem P1,sys· It is well known (Ditlevsen and Madsen, 
1996) that 

maxpk(x) ~ p(x) ~ sumpk(x). 
kEK kEK 

(4.7) 

Hence, the failure probability of the series system is closely related to the 
failure probabilities of the components, particularly that of the critical com­
ponent. In view of the right-hand side of (4.7), the constraint p (x) ~ p can 
be satisfied by selecting a sufficiently large value of Sk for each component. 

4.2. Algorithms 

It is clear that when the limit-state functions 9k(x, u), k E K, are affine, 
P1 can be solved by applying an algorithm to P1,s· The latter belongs to 
a well known class of optimization problems called semi-infinite (see e.g., 
Polak, 1997, or Royset et al., 2002). Thus, it can be solved by any of a series 
of well-honed algorithms with guaranteed convergence properties. To obtain 
approximate solutions in the case of non-affine limit-state functions and/ or 
problems involving series systems, we repeatedly solve the approximating 
problem P1,s as described below. This approach was originally proposed by 
Der Kiureghian and Polak (1998) and Polak et al. (2000) for problems with 
component failure probabilities, i.e., P1. In Royset et al. (2001) and (2002), 
this approach was extended to also address P1,sys · 

Algorithm 1 for solving P1 

Data. Provide an initial design xo and a sequence of strictly increasing in­
tegers No, N1, N2, . ... 
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Step 0. Set i = 0 and the parameters (sk)o = -~- 1 (.Pk), k E K. 
Step 1. Set Xi+l to be the last iterate after Ni iterations of a 

semi-infinite optimization algorithm on the problem Pt,si, with 
Si= ((st)i, (s2)i, (sK)i), and initialization Xi. 

Step 2. Compute appropriate estimates Pk(xi+I), 
k E K, of Pk(xi+t), k E K. 

Step 3. Update the components of Si+I by setting 

Step 4. Replace i by i + 1 and go to Step 1. 

(4.8) 

With the phrase "appropriate estimate" of a failure probability in Step 2 
of Algorithm 1, we mean that the failure probability estimate should be 
computed using the same reliability method (e.g., FORM, SORM, or Monte 
Carlo Simulation) and with the same level of accuracy as the one used to 
verify the final design obtained by Algorithm 1. 

In the case of P1,sys, the following algorithm can be used: 

Algorithm 2 for solving Pt,sys 

Data. Provide an initial design x 0 and a sequence of strictly increasing in­
tegers No, N1, N2, .... 

Step 0. Set i = 0, and the parameters (sk)o = -~- 1 (.Pk), k E K. 
Step 1. Set Xi+1 to be the last iterate after Ni iterations of a 

semi-infinite optimization algorithm on the problem P1,si, with 
Si= ((si)i, (s2)i, ... , (sK )i), and initialization Xi· 

Step 2. Compute appropriate estimates Pk(xi+1), k E K, and p(xi+I) of 
Pk(xi+I), k E K, and p(xi+I), respectively. 

Step 3. Update the components of Si+1 by setting 

( 
~-1(.Pk) ~-1(.P) ) 

(sk)i+1 = (sk)i max ~-1 (Pk(xi+t))' ~-1 (p(xi+I)) ' (4.9) 

for all k = k such that Pk(xi+t) = maxkEK Pk(xi+1)· Otherwise, set 

( 4.10) 

Step 4. Replace i by i + 1 and go to Step 1. 

For the special case of P1,sys with no component failure probability con­
straints, a slightly simplified algorithm can be found in Royset et al. (2002). 
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4.3. Example: reinforced concrete girder 

(a) (b) 

I, 
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FIGURE 1. Example reinforced concrete girder: (a) cross section , (b) side view 
with shear reinforcement. 

In this subsection, we present a summary of the design example found 
in Royset et al. (2002) . Consider a highway bridge with reinforced concrete 
girders of the type shown in Fig. 1. The objective is to find the optimal design 
for one such girder using the material and load data from Lin and Frangopol 
(1996) and Frangopol et al. (1997). The nine design variables are collected 
in the vector 

( 4.11) 

where As is the area of the tension steel reinforcement, b is the width of the 
flange, hr is the thickness of the flange, bw is the width of the web, hw is 
the height of the web, Av is the area of the shear reinforcement (twice the 
cross-section area of a stirrup), and 81, 82 and 83 are the spacings of shear 
reinforcements in intervals 1, 2 and 3, respectively, see Fig. 1 (b). The random 
variables describing the loading and material properties are collected in the 
8-dimensional vector 

( 4.12) 

where jy is the yield strength of the reinforcen1ent, f~ is the compressive 
strength of concrete, Pn is the dead load excluding the weight of the girder , 
ML is the live load moment , Ps1, Ps2 and Ps3 are the live load shear forces 
in intervals 1, 2 and 3, respectively, see Fig. 1(b), and W is the unit weight 
of concrete. Following Lin and Frangopol (1996), all the random variables 
are considered to be independent and normally distributed with the means 
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TABLE 1. Statistics of normal random variables in girder example. 

Variable Mean c.o.v. 

jy 413.4 MP a 0.150 

~~ 27.56 MP a 0.150 

PD 13.57 kN / m 0.200 

!vh 929 kNm 0.243 

Ps1 138.31 kN 0.243 

Ps2 183.39 kN 0.243 

PsJ 228.51 kN 0.243 

w 22.74 kN / m3 0.100 

and coefficients of variation as listed in Table 1. In the remainder of this 
section, the random variables and their realizations are denoted with the 
same symbol. Let the girder length be Lg = 18.30 m, and the distance from 
the bottom fiber to the centroid of the tension reinforcement be a = 0.1 m, 
see Fig. 1. 

The objective is to design the girder according to the specifications in 
AASHTO (1992). However, these specifications do not lead to well-defined 
optimization problems for two reasons. First, some of the constraints are 
not continuous functions, but of the form f(x) :::; 1 whenever h(x) :::; 0 and 
otherwise f(x) :::; 2, where f(x) and h(x) are some continuous functions. 
Second, h(x) may also depend on the random variables of the problem. In 
the following, the first difficulty is overcome by considering different cases. 
For example, Case 1 has the constraints f(x) ~ 1 and h(x) ~ 0, while Case 2 
has the constraints f(x) ~ 2 and h(x) ~ 0. The optimal design for each case 
is found independently, and the design with the smallest value of the objective 
function is our solution. The second difficulty is overcome by replacing any 
random variables in the definition of h(x) by their mean values. In Royset et 
al. (2002), it is shown that the AASHTO specifications can be formulated as 
four cases, each with 28 constraints. The reader is referred to Royset et al. 
(2002) for the details. 

As in Lin and Frangopol (1996), we assume that the reinforced concrete 
girder fails if it exceeds its flexure capacity or its shear capacity in one of 
three sections of the girder (see Fig. 1 (b)). Hence, the reliability of the girder 
is defined by a series structural system with four components. The limit­
state functions associated with the four failure modes are given in Royset et 
al. (2002). 
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Suppose that the objective is to minimize the material cost of the rein­
forced concrete girder subject to a constraint on the system failure probabil­
ity, i.e., a design problem of the type P1,sys· Let Cs = 50 and Cc = 1 be the 
unit costs of steel reinforcement and concrete per cubic meter, respectively. 
As in Lin and Frangopol (1996), we define the objective function to be 

eo (x) = 0. 75CsLgAs 

+ CsnsAv (hr + hw- 0 + 0.5bw) 

+ CcLg (bhr + bwhw), ( 4.13) 

where n8 = Lg(1/Sl+1/S2+1/S3)/3 is the total number of stirrups. 
In ( 4.13), the first term represents the cost of the bending reinforcement. 
The factor 0.75 appears due to the assumption that the total amount of 
bending reinforcement is placed only within a length Lg/2 centered at the 
middle point of the girder, and the remaining part is reinforced with 0.5A8 • 

The second and third terms in ( 4.13) represent the costs of shear reinforce­
ment and concrete, respectively. Let the constraint on the system failure 
probability be p(x) ~ 0.001350. 

This problem is solved by using Algorithm 2 for P1,sys· The results after 
25 iterations (beyond which little change in the design is observed) are given 
in Table 2, where the design vector Xi, the objective eo (xi), and the system 
failure probability p(xi) are listed. The system failure probability is evaluated 
using Monte Carlo simulation with a c.o.v. of 0.01. 

A direct comparison with Lin and Frangopol (1996) is not possible be­
cause of different assumptions regarding a (see Fig. 1 (a)) and the fact that 
we have introduced additional constraints to eliminate the possibility of an 
unrealistic geometric shape of the girder. However, the design in Table 2 
with a cost of 13.6 appears to be better than the one reported in Lin and 
Frangopol (1996), which has a cost of 16.7. 

TABLE 2. Results for P 1,sys design of reinforced concrete girder. 

Design Value at iteration 25 Design variable Value at iteration 25 
variable 

As 0.009832 m2 s1 0.508m 

b 0.418 m s2 0.224m 

he 0.415 m s3 0.140 m 

bw 0.196m p(X25) 0.001310 

hw 0.785m eo(x2s) 13.664 

Av 0.0001859 m2 
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5. Probabilistic objective function: problems P 2 and P 2,sys 

5.1. Approximating problems 

We now consider the problems P2 and P2,sys, where the failure probability 
is not involved in the constraint set definition. In Der Kiureghian and Polak 
(1998), Polak et al. (2000), Royset et al. (2001), and Royset et al. (2002), we 
find that approximating problems for P2 and P2,sys can be constructed in a 
manner similar to those for P1 and P1,sys, as described above. 

In view of the equivalence between (4.3) and (4.4), it is clear that under 
fairly general conditions a larger value of 

/31 k(x) = min { !lull I 9k(x, u) = 0} , 
' uERm 

corresponds to a larger value of 7/Jk,s(x) in ( 4.5) for a given s, and vice versa. 
Hence, instead of finding the design x with the largest /31,k(x), which would 
be P2 with a FORM approximation of the failure probability, we find the de­
sign x with the largest 7/Jk,s(x) for a given value of the parameters. Thus, we 
avoid using the generalized min-function /31,k(x) and instead use an approx­
imation in terms of the standard min-function 7/Jk,s(x). As mentioned above, 
this change results in the fact that we now have well-honed optimization algo­
rithms available for solving an approximation to our optimal design problem. 
Additionally, as in Algorithms 1 and 2, adjustments in the parameter s may 
be used to improve the approximation. 

In view of the above discussion, we define the following approximation 
to P2: 

P2,s = n1ax {min 'ljJ (x)} , 
xEX kEK k,s 

(5.1) 

where 7/Jk,s(x) is given in (4.5). Note that in P2,s the parameters is a scalar, 
while in P1,s there are K parameters sk. The relation between P2 and P2,s 

is given in the following statement. Various versions of this statement are 
found in precise mathematical language with proofs in Der Kiureghian and 
Polak (1998), Polak et al. (2000), and Royset et al.(2002). 

Statement about P2 and P2,s: If the limit-state functions 9k(x, u), k E K, 
are affine in their second argument, i.e., 9k(x, u) = bo,k(x) + bk(x)T u, then 
x solves P2 if and only if x solves P2,s for an arbitrary s > 0. 

A geometric interpretation of problems P2 and P2,s helps us understand 
the argument behind the above statement and the situation for non-affine 
limit-state functions. The distance from the origin in the u-space to the 
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nearest point in fl(x) is usually given by {31 k(x), where k is the index of the 
critical component. With the FORM approximation, P 2 finds the optimal 
design by maximizing this distance. In contrast, P2,s finds the optimal design 
by maximizing minkEK 1/Jk ,s(x), i.e. , by maximizing the minimum value of the 
limit-state functions within the ball of radius s. This maxin1um may occur at 
a point ftk(x), which, in general , is different from uk(x) as defined in (2.3), see 
Fig. 2. For affine limit-state functions, it is clear from Fig. 2 that vectors ftk(x) 
and uk (x) are collinear and the two maximizations produce identical designs 
for an arbitrary s > 0, hence the above statement on the equivalence of P2 

and P2,s for affine limit-state functions. For non-affine limit-state functions, 
we see from Fig. 2 that the two approaches would produce identical designs if 
s is taken equal to {31 k(x*), where x* is a solution of P2. It is also clear from 
the geometry in Fig. '2 that the solution of P2,s for a non-affine limit-state 
function would tend to be insensitive to the value of s in the neighborhood 
of {31 k(x*) . Hence, a rough estimate of s is usually sufficient. Furthermore, 
owing to the close relation between the FORM approximation and the exact 
failure probability, minimizing the FORM approximation produces designs, 
which tend to minimize the exact failure probability as well. Additionally, 
owing to the dominance of the critical failure 1node in the series system 
failure probability (see ( 4. 7)) , we can conclude that a solution to P2,s , with 
s close to f31,k(x*), is a good approximation to the solution of P2,sys as well. 

FIGURE 2. Geometric interpretation of problems P2 and P2,s· 
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5.2. Algorithm 

When the limit-state functions 9k(x, u), k E K, are affine, P2 can be 
solved by applying an algorithm to P2,s· Since P2,s is a semi-infinite opti­
mization problem (see e.g., Polak 1997), it can be solved by any of a series 
of well-honed algorithms with guaranteed convergence properties. To obtain 
approximate solutions in the case of non-affine limit-state functions and/ or 
problems involving series systems, we repeatedly solve the approximating 
problem P2,s as described below. This approach was originally proposed by 
Der Kiureghian and Polak (1998) and Polak et al. (2000) for problems with 
component failure probabilities, i.e., P1. In Royset et al. (2002), this approach 
was extended to also address P2,sys· 

Algorithm 3 for solving P2 and P2,sys 

Data. Provide an initial design xo, an integer N, and a parameter so, with 
value in the neighborhood of the first-order reliability index of the 
critical component for the anticipated optimal design. 

Step 0. Set i = 0. 

Step 1. Set Xi+1 to be the last iterate after N iterations of a semi-infinite 
optimization algorithm on the problem P2,si, with initialization Xi. 

Step 2 . Compute appropriate estimates Pk(xi+1), k E K, of Pk(xi+1 ), 
k E K. If considering P2,sys, also compute the appropriate estimate 
p (xi+ I) of p (xi+d· 

Step 3 . Determine ki+1 (the index for the critical component) such that 

Pki+I (xi+1) = maxkEK Pk(xi+l) and compute the corresponding FORM 

reliability index {31 k.. (xi+ I)· 
) t+l 

Step 4. Set Si+1 = {31 k. (xi+d· 
' t+l 

Step 5. The best estimate of the optimal design after i + 1 iterations is 
Xi+1 E arg minj=1, .. . ,i+1 Pk . (xj) (in case of P2) and 

J 

Xi+1 E arg minj=1, ... ,i+1 p(xj) (in case of P2,sys). 

Step 6. Replace i by i + 1 and go to Step 1. 

5.3. Example: offshore jacket structure 

In this subsection we present the summary of a design example originally 
found in Royset et al. (2001) and (2002). Consider the idealized offshore 
jacket structure shown in Fig. 3, which is modeled as a plane truss with 
linear elastic members and supported by linear elastic springs representing 
the foundation flexibility. 
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1 

i = member type i, 
i = 1' 2, ... , 6 

20 m 

FIGURE 3. Offshore jacket structure. 

The structure is subjected to combined wave and wind loads of magni­
tudes proportional to H , and gravity loads P and W, all applied at the nodes 
of the truss. The load magnitudes as well as the elastic modulus of the ma­
terial, E, and the stiffnesses of the supporting springs, k8 , are considered to 
be statistically independent random variables with the distributions listed in 
Table 3. The structure has six different member types, each type having a 

TABLE 3. Distributions of random variables for jacket structure. 

Variable Distribution Mean c.o.v. 

H Gum bel 70 kN 0.35 

p Gum bel 2,940 kN 0.10 

w Gum bel 20 kN 0.10 

E Lognormal 210 GPa 0.12 

ks Lognormal 50,000 Nj m 0.30 
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circular tubular cross section with an outside radius ~ and wall thickness ti, 
i = 1, ... , 6. The ratio of the wall thickness to outside radius of each member 
is assumed to be a constant, td ~ = 0.05. The task is to optimize the radii 
~to achieve maximum reliability with respect to a threshold of Do = 0.20 m 
for the horizontal displacement at the top right node of the structure. The 
limit-state function is defined as 

G(x, v) =Do- D(v, x), (5.2) 

where v = (H, P, W, E, ks) is the vector of random variables, x = 
(RI, R2, R3, R4, R5, ~) is the vector of design paran1eters, and D(v, x) is 
the horizontal displacement of the structure at the top right node expressed 
as a function of v and x. The function D(v, x) is not available in an explicit 
form and its evaluation requires structural analysis by means of, e.g., a finite 
element program. A Matlab (1999) structural analysis program was written 
for the present application to compute D(v, x) and its gradients with respect 
to v and x. 

The jacket structure is designed for maximum reliability, subject to the 
total volume of the material being limited to 6.25 m3 . This implies the con­
straint function 

6 Ni 

!I (x) = L L Lij1r [RI-(~- ti)
2

] - 6.25, 
i=l j=l 

(5.3) 

where Lij is the length of the j-th member of type i and Ni is the number 
of members of type i. Each member of the truss is constrained to have a 
slenderness ratio (length divided by the radius of gyration of the cross sec­
tion) not exceeding 130. For the circular tubular cross section, this implies 

2Lij/ J RI+(~- ti) 2 ~ 130. Let Li be the maximum length of members 
of type i. Using ti = 0.05~, the above inequality leads to the constraint 
functions 

2Li 
li+l (x) = 130v1 + o.952 - ~, i = 1' 2' · · · ' 6· (5.4) 

These are equivalent to the following constraints on the individual radii: 
RI ~ 0.201 m, R2 ~ 0.179 m, R3 ~ 0.156 m, R4 ~ 0.259 m, R5 ~ 0.199 m 
and ~ ~ 0.291 m . 

.I 

We design the jacket structure by solving a sequence of problems P2,s with 
K = 1, the constraint functions IJ(x), j = 1, ... , 7, and s values in the range 
2 to 5, where we expect the first-order reliability index to lie. The results are 
summarized in Table 4. Included are the designs Xi, the first-order reliability 
index f3I (xi), and the failure probability estimates computed by Monte Carlo 
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simulation (with c.o.v. of 0.01). It is observed that the optimal solution as 
well as the failure probabilities are virtually invariant of the assumed value 
of s. It is noted that the first-order failure probability approximation p(xi) ~ 
<I> (- ,81 (xi)) = 9.9611 · 10-5 is quite close to the "exact" failure probability 
computed by Monte Carlo simulation. This indicates that the limit-state 
surface is nearly affine. It is, therefore, not surprising that the solution is 
invariant of s. Based on the results in Table 4, the solution for this design 
problem is :X = (0.354m,0.240m,0.156m,0.259m,0.199m,0.291m). It is 
noted that the constraint functions fJ (x), j = 1, 4, 5, 6 and 7 are active at 
the solution point. 

TABLE 4. Designs of the jacket structure for maximum reliability for different s 
values. 

i R1(m) R2(m) R3(m) R4(m) R5(m) ~(m) f3I (xi) p(xi) Si 

0 0.300 0.300 0.300 0.300 0.300 0.300 - - 2.5 

1 0.354 0.240 0.156 0.259 0.199 0.291 3.72 9.574. w-5 3.0 

2 0.354 0.240 0.156 0.259 0.199 0.291 3.72 9.574. w-5 3.5 

3 0.354 0.240 0.156 0.259 0.199 0.291 3.72 9.574. w-5 4.0 

4 0.354 0.240 0.156 0.259 0.199 0.291 3.72 9.574 . w-5 4.5 

5 0.354 0.240 0.156 0.259 0.199 0.291 3.72 9.574. w-5 -

As noted, the limit-state surface for the above example is nearly affine 
in the standard normal space, in spite of the fact that D(v, x) is a non­
affine function of v and that the random variables are non-normal. One way 
to impose greater deviation from affine limit-state functions is to use more 
strongly non-normal distributions and larger variances. To achieve this, we 
consider each random variable to be independently uniformly distributed 
with the bounds, means and c.o. v. 's listed in Table 5. We realize that the 
assumed distributions or the range of variations may not be realistic for 
an offshore jacket structure. Nevertheless, we use these values to check the 

TABLE 5. Uniformly distributed random variables for modified jacket structure. 

Variable Range Mean c.o.v. 

H (-20kN, 160kN) 70 kN 0.74 

p (1880 kN, 4 000 kN) 2940 kN 0.21 

w (-lOkN, 50kN) 20 '. kN 0.87 

E (130 GPa, 290 GPa) 210 GPa 0.22 

ks (25000 N/ m, 75,000 N/m) 50000 Njm 0.29 
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TABLE 6. Designs of the jacket structure for maximum reliability for different s 
values. 

i R1(m) R2(m) R3(m) R4(m) R5(m) R6(m) .61 (xi) p(xi) Si 

0 0.300 0.300 0.300 0.300 0.300 0.300 - - 2.5 

1 0.354 0.241 0.156 0.259 0.199 0.291 3.52 7.532. w-5 3.0 

2 0.354 0.241 0.156 0.259 0.199 0.291 3.53 7.235. w-5 3.5 

3 0.354 0.241 0.156 0.259 0.199 0.291 3.53 7.235 . w- 5 4.0 

4 0.354 0.241 0.156 0.259 0.199 0.291 3.53 7.235. w-5 4.5 

5 0.354 0.241 0.156 0.259 0.199 0.291 3.53 7.235. w- 5 -

robustness of the proposed optimal design algorithm in terms of its sensitivity 
to the assumed value of s. Table 6 summarizes the results of the design of the 
jacket structure for the new set of random variables. We observe that now 
there is a significant difference between p(xi) and <P( -,81(xi)) = 2.078 ·10-4 , 

indicating that the limit-state surface in the standard normal space is at least 
moderately non-affine. Nevertheless, the optimal solution and the reliability 
indices still remain practically invariant to the assumed value of s. This is 
a confirmation of our earlier conjecture that the solution of problem P2,s 

for a non-affine limit-state surface is insensitive to the value of s in a broad 
neighborhood of the first-order reliability index. The design solution in this 
case is :X = (0.354 m, 0.241 m, 0.156 m, 0.299 m, 0.199 m, 0.291 m), which is 
nearly the same as the solution for the previous case. Again, the constraint 
functions /j (x), j = 1, 4, 5, 6 and 7 are active at the solution point. 

6. Probabilistic objective function and constraints: problems 
P 3, P 3,sys and P 3,por 

6.1. Approximating problems 

The problems P3, P3,sys and P3,por 2 where the failure probabilities ap­
pear in both the constraint definition and the objective function, are more 
complicated than the problems discussed above. The approaches for solving 
P 1 and P2 cannot simply be "combined" to create an approach for solving 
P3. In the approximation for P2, we replaced the failure probability by a 
function that had rnaxima approximately at the same designs as the minima 
for the failure probability on the given feasible set. The actual value of the 
failure probability was not involved in this approximation. In P3, P3,sys and 
P3,por we need an approximation of the failure probability to estimate the 
objective functions in these problems. In Royset et al. (2002), we find the 
following approach that builds on the approach for solving P1. 
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We first construct approximating problems for P3 by replacing the failure 
probabilities in the objective function of P3 with parameters. The parame­
ters are included in an augmented design vector and, hence, their values are 
automatically determined by the optimization procedure. 

Let x = (x, a) be an (n+K)-dimensional augmented design vector, where 
xis the original n-dimensional design vector and a= (a1, a2, ... , ak) is a K­
dimensional vector of parameters. We define the problem 

O(ak(fik, kEK, xEX}. (6.1) 

Observe that the objective function in P3 is equal to the one in P 3 when 
Pk(x) = ak. Since in P3 we only consider designs x such that Pk(x) = ak, k E 

K, and 0 ~ ak ~ Pk, the following statement must hold: 

Statement about P3 and P3: The minimum value of problem P3 is equal 
to the minimum value of problem P3. 

The above statement is stated and proven formally in Royset et al. (2002). 
It is seen from (6.1) that P3 is a minimization problem of a smooth objec­
tive function with failure probability equality constraints. This is similar to 
P1, but P1 contains inequality constraints. The above reformulation removes 
the failure probability in the objective function. However, the failure prob­
ability is still part of the constraint set definition. Hence, one more step is 
needed to reach an optimization problem that can be solved by semi-infinite 
optimization algorithms. 

We proceed by constructing an approximating problem with min-function 
constraints. Let t be a K-dimensional vector of positive numbers. This pa­
rameter vector is similar in nature to sin P1,s· However, as seen below, their 
numerical values tend to be different. We define the approximating problem 

K 

P3,t = min { eo(x) + L ck(x)ak 1-J;k,tk (x) ~ 0, 
x=(x a)ERn+K , k=l 

where 
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Note that -0k,tk (x) is the minimum value of the limit-state function inside 
a ball of radius -~-l (ak) tkl while 'l/Jk,sk(x) is the minimum value of the 
limit-state function inside a ball of radius Sk· Hence, the radius of the ball 
associated with -0k,tk (x) varies with the argument X.. The problen1 Pa,t is a 
semi-infinite optimization problem that can be solved by various algorithms 
(see, e.g., Polak, 1997, or Royset et al., 2002). 

In the same way that P1and P1,s were related, we find that Pa and Pa,t 
are related: 

Statement about Pa and Pa,t: If the limit-state functions 9k(x, u), k E K, 
are affine in their second argument, i.e., 9k(x, u) = bo,k(x) + bk(x)T u, and 
t = (1, 1, ... , 1), then x solves Pa if and only if x solves P3,t· 

The mathematically precise statement and its proof can be found in Roy­
set et al. (2002). In view of the two statements above, the original problem 
Pa is equivalent to Pa,t, when the limit-state functions are affine. For non­
affine limit-state functions, Pa,t is a first-order approximation to Pa with 
parameters t, which can be adjusted to improve the approximation. 

The situation for Pa,sys and Pa,por is similar to the one for Pa. We first 
define 

L L 

Pa,por = minn+L { Lc~l)(x) + Lc(l)(x)azl p(l)(x) = az, 
(x,a)ER l=l l=l 

0,;;; ap;; p(ll, lE L, x EX}· (6.4) 

The equivalence between Pa,por and Pa,por is clear from the next statement, 
the proof of which can be found in Royset et al. (2002). 

Statement about Pa,por and P3,por: The minimum value of the problem 
Pa,por is equal to the minimum value of the problem P3,por· 

Next, we define the approximating problem 

L L 

Pa,por,t = _ min n+L { L c~l) (x) + L c(l) (x)atl-0g) (x) ~ 0, 
x=(x,a)ER l=l l=l 

0,;;; a1,;;; p(l), lE L, x EX}, (6.5) 

where 
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We are not able to prove equivalence between P3,por and P3,por,t similar to 
that between P3 and P3,t for affine limit-state functions. However, if all the 
limit-state functions g~ ( x, u) are affine in their respective second arguments, 

then -0t
1

l (x) ~ 0 implies that the critical failure component, say kz, of the 

l-th structure has failure probability p~l)(x) ~ <P ( -<P-1(az)tz). Hence, when 
kt 

tz = 1, p~l) (x) ~ az. Due to the close relation between the failure probability 
kt 

of the critical component and the failure probability of the series system, 
see (4.7), we can adjust tl such that pl(x) ~ al whenever -0g)(x) = 0. Hence, 

P3,por,t is a good approximation to P3,por for a suitable selection oft. 
In view of the above discussion, we can approximately solve P3,por by 

solving the semi-infinite optimization problem P3,por,t· We present algorithms 
for P3 and P3,por in the next section. Since P3,sys is very similar to P3,por 
(set L = 1 in P3,por and add component failure probability constraints), we 
do not discuss P3,sys separately. It is straightforward to develop an algorithm 
for P3,sys based on the ones for P3,por and P1. 

6.2. Algorithms 

When the limit-state functions 9k(x, u), k E K, are affine, P3 can be 
solved by applying an algorithm to P3,t· Since P3,t is a semi-infinite opti­
mization problem, it can be solved by any of a series of well-honed algorithms 
with guaranteed convergence properties. To obtain approximate solutions in 
the case of non-affine lin1it-state functions, we repeatedly solve the approxi­
mating problem P3,t as described below. 

Algorithm 4 for solving P3 

Data. Provide an initial design x0 and a sequence of strictly increasing in­
tegers No, N1, N2, .... 

Step 0. Set i = 0, ao = (fJI,P2, ... ,fJK), to= (1, 1, ... , 1) and X.o = (xo,ao). 

Step 1. Set Xi+1 to be the last iterate after Ni iterations of a semi-infinite 
optimization algorithm on the problem P3,ti, with initialization Xi. 

Step 2. Compute appropriate estimates Pk(xi+1), 
k E K, of Pk(xi+I), k E K. 

Step 3. Update the components of ti+1 by setting 

<P-1 ((ak)i+1) 
(tk)i+1 = (tk)i <J?-1 (- ( )) ' Pk Xi+1 

Step 4. Replace i by i + 1 and go to Step 1. 

kEK. (6.7) 

In a similar manner, we obtain the following algorithm for solving P3,por· 
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Algorithm 5 for solving P3,por 

Data. Provide an initial design xo and a sequence of strictly increasing in­
tegers No, N1, N2, .... 

Step 0. Set i = 0, ao = (f/1),p(l), ... ,p(L)), t 0 = (1, 1, ... , 1), and 
:Xo = (xo, ao). 

Step 1. Set Xi+1 to be the last iterate after Ni iterations of a semi-infinite 
optimization algorithm on the problem P3,ti, with initialization Xi. 

Step 2. Compute appropriate estimates p(l) (xi+ I), l E L, 
of p(l)(xi+1),l EL. 

Step 3. Update the components of ti+ 1 by setting 

Step 4. Replace i by i + 1 and go to Step 1. 

(6.8) 

Typically, structural systems are reliable, and hence the failure probabil­
ities tend to be small. In implementation of Algorithms 4 and 5, numerical 
difficulties caused by the potential difference in the orders of magnitude of 
the components of x and a can be avoided by use of the transformation 
bk = -<I>- 1 (ak), k E K. Then the optimization in Algorithm 4 is over the 
vector ( x, b), where b = ( b1, b2, ... , b K). A similar transformation can be 
employed in Algorithm 5. 

6.3. Example: reinforced concrete girder 

Suppose that the objective is to minimize the initial cost plus the expected 
cost of failure of the reinforced concrete girder described above. Additionally, 
we assume a constraint on the system failure probability, i.e., a design prob­
lem of the type P3,sys, with no component failure probability constraints. 
We summarize this example, which was originally presented in Royset et 
al. (2002). 

Let the initial cost of the design be as described in ( 4.13). The cost of 
failure is assumed to be c (x) = 500eo (x). Let the constraint on the system 
failure probability be p (x) ~ 0.001350, with no constraints on the component 
failure probabilities. 

We solve this instance of P3,sys by using Algorithm 5 and the results 
after 25 iterations (beyond which little change in the design is observed) are 
given in Table 7, where the design vector x 25 , the auxiliary design variable 
a25, the objective eo (x25) + c (x25) p (x25), and the system failure probability 
p (x25) are listed. The system failure probability is evaluated using Monte 
Carlo simulation with a c.o.v. of 0.01. 
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Note that the system failure probability constraint is not active in this 
example. Comparing the results in Tables 2 and 7, we see that the initial cost 
of the design, eo(x2s), has increased significantly in account of the expected 
failure cost in the objective function. 

TABLE 7. Results for P3,sys design of reinforced concrete girder. 

Design Value at iteration 25 Design variable Value at iteration 25 
variable 

A, 0.0116 m2 s2 0.226m 

b 0.492 m s3 0.142 m 

he 0.415 m p(X25) 0.000188 

bw 0.196m CO(X25) 15.558 

Hw 0.785m c(X25)p(X25) 1.459 

Av 0.000227 m2 Objective 17.017 

s1 0.502m 

Now suppose that the girder is subject to corrosion of its longitudinal 
reinforcement. We adopt a corrosion model similar to that used in Fran­
gopol et al. (1997), where the diameter Db(T) of a longitudinal reinforcement 
bar at timeT is given by 

forT> T1, 

forT~ T1, 
(6.9) 

with DbO being the initial diameter, v being the corrosion rate, and T1 be­
ing the corrosion initiation time. The factor 2 in (6.9) takes into account 
that the reinforcement bar is subject to corrosion from all sides. We assume 
T1 = A+ Bca, where A is a lognormal random variable with mean 5 years 
and c.o.v. equal to 0.20, representing the time it takes to initiate corrosion 
with a 10 mm concrete cover, B is a lognormal random variable with mean 
300 years/m and c.o.v. equal to 0.20, representing the additional time it takes 
to initiate corrosion per meter additional concrete cover, and Ca is the con­
crete cover in meters in addition to the 10 mm minimum cover. The additional 
concrete cover ea is considered a design variable and is included in the de­
sign vector x. We assume that the corrosion rate v is lognormally distributed 
with mean 0.000040 m/years and c.o.v. 0.30. All the random variables are as­
sumed to be statistically independent and lognormally distributed with the 
parameters as in Table 8. 

As seen from Eq. (6.9), the area of bending reinforcement is reduced over 
time. Hence, the reinforced concrete girder is now a time-varying structure. 
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TABLE 8. Statistics of lognormal random variables describing corrosion. 

Variable Mean c.o.v. 

A 5 years 0.20 

B 300 years/ m 0.20 

V 0.000040 m/ years 0.30 

Since the area of the bending reinforcement is 1nonotonically decreasing over 
time, it is reasonable to assume that the failure probability in a given time 
period is approximately equal to the failure probability at the end of the 
time period. Based on this assumption and a time period of 60 years, limit­
state functions can be defined corresponding to the four failure modes of the 
girder. Details about this can be found in Royset et al. (2002). We obtain a 
design problem of the form, where the initial cost now is 

eo(x) = 0.75CsLgAs + CsnsAv (hr + hw- n + 0.5bw) 

+ CcLg (bhr + bwhw) + CcLgbwCa, (6.10) 

and the cost of failure is 500eo(x). Let the constraint on the system failure 
probability be, with no constraints on the component failure probabilities. 
The deterministic constraints defining X are as above except that we also 
include the two constraints Ca ~ 0.05 and Ca ~ 0. 

We solve this instance of P3,sys by means of Algorithm 5. Starting from 
the solution of the previous case, after 5 iterations (beyond which little change 
in the design is observed), the results in Table 9 are obtained. The system 
failure probability is evaluated using Monte Carlo simulation with c.o.v. 0.01. 

We see in Table 9 that there is a discrepancy between as and p( xs). This 
is caused by the fact that as is only approximately equal to p(xs) whenever 

~~x) = 0. As the computations progress in Algorithm 5, the parameter t is 
automatically modified in a way such that the discrepancy between ai and 
p(xi) is reduced. Note that the constraint associated with maximum concrete 
cover is active, i.e., the use of maximum concrete cover is most cost efficient. 
Comparing the results in Table 7 with those in Table 9, we see that the 
objective function (total expected cost of the design) is higher in the latter 
case in account of the corrosion effect. 

Now suppose it is decided to maintain the structure in intervals of 
20 years, i.e., at 20 and 40 years after its construction. The time of main­
tenance can be incorporated as a design variable, but in this example we 
have fixed those times for simplicity. Let m1 and m2 be two design variables 
characterizing the maintenance effort at 20 years and 40 years, respectively. 
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TABLE 9. Results for P3,"Y" design of deteriorating girder. 

Design Value at iteration 5 Design variable Value at iteration 5 
variable 

As 0.0161 m2 s3 0.154 m 

b 0.686m Ca 0.050m 

he 0.415 m as 0.000246 

bw 0.197m p(xs) 0.000261 

hw 0.78.5m co(xs) 20.434 

Av 0.000255 m2 c(xs)p(xs) 2.514 

s1 0.549m Objective 22.948 

s2 0.246m 

Let mi = 0 denote no maintenance, and mi = 1 denote full maintenance, i.e., 
restoration to the initial state of the structure. Furthermore, we consider m1 

as the fraction of the aging of the structure from initial construction (T = 0) 
to the first maintenance action (T = 20 years) , which is restored to its initial 
condition. Thus, 40- 20ml years is the effective age of the structure before 
the second maintenance action at T = 40 years. Similarly, m2 is the fraction 
of the aging of the structure from initial construction (T = 0) to the second 
maintenance action (T = 40 years), which is mitigated by the second main­
tenance effort , i.e., 20 + ( 40 - 20rn 1 ) ( 1 - m2) years is the effective age of the 
structure at T = 60 years. We add the two variables m1 and m2 to the vector 
of design variables, i.e., 

( 6.11) 

We ensure the safety of the girder by imposing the constraint that the sys­
tem failure probability over the 60 years lifetime be less than 0.00135. This 
probability is obtained as the probability of the union of the failure events 
during the intervals 0-20 years, 20-40 years and 40-60 years. For the reasons 
mentioned earlier, the event of failure within each interval is identical to the 
failure event at the end of the interval. The design is subject to the determin­
istic constraints as above with the additional constraints mi ~ 1 and 0 ~ mi, 
i = 1, 2. Let the initial cost of the structure be as in (6.10), the cost of failure 
be c(x) = 500co(x), and the cost of maintenance be 

(6.12) 

where cy = 0.15 represents the cost of complete restoration of the girder after 
a year's worth of corrosion. Note that the factor in front of m2 represents the 
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effective age of the structure at 40 years. We solve this particular instance 
of P3,sys by using the Algorithm 5. Starting frmn the solution point of the 
previous case, after 6 iterations the results in Table 10 are obtained. The 
system failure probability is evaluated using Monte Carlo simulation with 
c.o.v. 0.01. 

TABLE 10. Results for P 3 ,por design of maintenance plan. 

Design Value at iteration 6 Design variable Value at iteration 6 
variable 

A:s 0.0144 m2 Cu 0.050m 

b 0.612 m ffil 0.4684 

he 0.415 m ffi2 0.5316 

bw 0.196 m a6 0.000195 

hw 0.785m p(x6) 0.000198 

Av 0.000255 m2 c-o(x6) 18.678 

SI 0.550m c(x6)p(x6) 1.824 

s2 0.247m Cm(X6) 1.699 

s3 0.155 m Objective 22.201 

Comparing the results in Tables 9 and 10, we see that the expected total 
cost of the design is smaller for the case with the option of maintenance 
(Table 10) than for the case without this option (Table 9). Also in the case 
with maintenance, there is a significant decrease in the initial cost, at the 
expense of a subsequent rnaintenance cost. The optimal solution suggests a 
larger maintenance effort at 40 years than at 20 years. 

7. Conclusions 

Five algorithms are developed for solving three classes of optimal struc­
tural design problems with functions representing the failure probability in 
the objective function and the constraint set definition. The failure probabil­
ities can describe component or series structural system failures. Based on 
a first-order approximation to the failure probability, we have constructed 
approximating problems that can be solved repeatedly to obtain an approx­
imation to a solution of the original design problem. By the use of higher­
order reliability methods in the iterative scheme, e.g., second-order or Monte 
Carlo simulation, the approximating solution can be made to satisfy failure 
probability constraints for corresponding reliability measures. 
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The algorithms have stronger convergence properties than other algo­
rithms found in the literature. Hence, the proposed algorithms are expected 
to be numerically more efficient and robust than algorithms based on heuris­
tics. A significant advantage of the new algorithms is the flexibility in the 
selection of the reliability method. The approximating problems are semi­
infinite optimization problems that can be solved using algorithms from the 
literature. 

Numerical examples demonstrate that the new algorithms can be used 
in design and maintenance planning and with models involving both time­
invariant and time-variant failure probabilities. 
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