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1. Lecture 1: Maximum of a Gaussian load 

The celebrated Rice formula for the expected number of times a station­
ary process X ( s), s E (0, t], "crosses" a fixed level u has found application 
in various engineering problems, especially in safety analysis of structures 
interacting with the environment, for example through wind pressure, ocean 
waves or temperature variations. The safety of a structure may depend on 
extreme and rare events such as loads which exceed the strength of a compo­
nent, or on everyday load variability that may cause changes in the properties 
of the material, e.g. cracking (fatigue) or other types of aging processes. In 
the first case, the number of rare events that occur in time or in space is 
often modeled as a Poisson process. Then, the Rice formula is used to com­
pute the intensity of events, and hence gives the parameters in the Poisson 
model. In the second case, the aging process may depend both on frequencies 
of some events as well as their magnitudes. A magnitude of an event is called 
a "mark". 

Let us start by demonstrating in a few typical examples some applications 
of the Rice's formula in engineering problems. 

1.1. Design load - crossing intensity 

A structure should sustain the everyday variability of load during its 
service time. Usually the stronger (and safer structure) tends to be more 
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242 I. RYCHLIK 

expensive, hence one needs methods to quantify risks in order to achieve 
some balance between strength and cost. 

Still at the design stage, one has to choose the so-called "design loads" 
and to plan the strength of the components so that, with high probability, 
those will sustain the loads. Exceedance of the design load limits, by the 
real load, results in structural damage. So it is important to know how often 
those potentially dangerous conditions may happen. A convenient measure of 
load severity is the so-called "return period" which equals the inverse of the 
frequency of exceedances over a certain limit. Let us assume that a design 
load limit was set-up to be u and that the future load can be described 
mathematically, as a continuous function x(s), s 2: 0. Let us also denote by 
nt(u) the number of times the function x(s) takes the value u, i.e 

nt(u) =number of times x(s) = u, 0::; s::; t. (1.1) 

With some abuse of terminology, we will call nt ( u) number of level crossings. 
If x is also differentiable, the number of upcrossings of the level u, may be 
defined as 

ni(u) =number of times x(s) = u, x'(s) > 0, 0::; s::; t. (1.2) 

The crossing, upcrossing - intensity of the level u by the load x may be 
defined as: 

( ) 1
. nt ( u) 

nu = 1m --, 
t--too t 

(1.3) 

provided the limits exist. Then the return period is given by T = ljn+(u). 
Often in practice one has only one historical record of the load x( s), s E 

[0, t]. If ni ( u) > 0 then the return period can be estimated by means of 
tfni(u). Under the assumption that the future load will demonstrate the 
same kind of "behavior" as the historical one, the estimated return period 
may be used for safety evaluation. However, it often happens, especially when 
t < T, that ni(u) = 0. In such situations, one needs to employ some mathe­
matical models in order to extrapolate ni ( u) for t approaching infinity. Two 
methods are commonly employed: 

• Statistical algorithms (fitting of extreme value distribution, POT) are 
used to estimate the tail of the cumulative probability distribution 
of x(s). Then the return period is computed using the fitted model for 
the tail. 

• A family of random processes is used to model the load, whose param­
eters are estimated by means of the historical data. Then the return 
period is computed for the chosen family. The Gaussian processes are 
often employed as useful models. 
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In these notes we will only consider the second method. 
Suppose that the function x is modeled as a random function. By this 

we mean that x( s) is a realization of the random process X ( s). Functionals 
defined on x become random variables and according to our notational con­
vention are denoted by capital letters. Hence we write Nt(u), (Nt(u)) for 
the number of crossings (up crossings) of the process X in the interval (0, t]. 

Remark 1. The crossing intensity n(u) is defined as the limit, nt(u)/t 
as t approaches infinity. It is not obvious that such a limit exists for all ran­
dom functions x. However, if X is a stationary process then the sequences 
Nt(u)/t and Nt+(u)/t converge as t tends to infinity, with probability one. 
Still though, the limiting values (crossing intensities) denoted by N ( u) and 
N+(u) respectively, may vary for different random functions x, see the fol­
lowing Example 1. 

For stationary loads the upcrossing intensity is random N+ ( u) and hence 
the return period 1/ N+ ( u) is also random. To avoid using a random variable 
in order to measure the risk of exceedance of the design load, we modify the 
above definition to 

1 
T = E(N+(u)). 

The expected values E(N(u)), E(N+(u)) will be denoted by J-t(u), J-l+(u) 
respectively. The important property is that 

(1.4) 

Often the expectations J-t(u), J-t+(u) can be computed using the Rice's for­
mula, given in the following section. The formula gives us the tools to solve 
the following inverse problem; given the return period T find the design load 
u, i.e. solve 

(1.5) 

for u. 

Example 1. Consider a simple Gaussian wave X(t) = aRcos(At + 0) 
where R, (}are independent r.v's distributed as Rayleigh and uniform respec­
tively. The variable R has probability density f(r) = re-r

2
12 , r 2:: 0. It is 

easy to see that the upcrossing intensity N+ ( u) is a random variable given by 

if u E (-a R, a R), 

otherwise. 

The expected upcrossing intensity J-t+(u) = E(N+(u)) is easy to compute, viz. 

A A A u
2 

E(N+(u)) = 
2
1rP(u E (-aR,aR)) = 

2
1rP(R > u/a) = 

2
7re-2a'!. (1.6) 
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244 I. RYCHLIK 

Using Rice's formula we shall demonstrate that the last equation holds for 
any differentiable stationary Gaussian processes X ( t) having expectation 
E(X(t)) = 0, variance V(X(t)) = a 2 and the mean angular frequency ~ 
equal to A, see (1.15). 

Suppose that we model the future load by means of a random process X. 
If the load is a simple Gaussian wave then for a particular random function 
x(t) (yet unknown) the load will exceed (almost immediately) the design 
level u or will stay for ever under it. So the safety is zero or one depending 
on which of these two possibilities will happen. The return period defined 
as 1/ J-l + ( u) can be still used to measure the uncertainty whether the design 
load will be exceeded or not. 

In the following we will always assume that the process is ergodic. If 
X is a stationary and ergodic process, N(u) = J-t(u), N+(u) = J-t+(u) with 
probability one. This means that crossing intensities are constant and equal 
to the expected crossing intensities. 

1.2. Extreme loads- safety 

The return period is a very simple measure of the severity of a load. 
Often one wishes to know the probability that the structure will experience 
load exceeding the design load u during a service time S, say. In other words 
one wishes to find probability that Ms(X) = maxo<s<S X(s) > u. Finding 
this probability is an important problem both in probability theory and in 
applications. 

As we will demonstrate next, finding the probability P(Ms > u) is equiv­
alent to estimation of P(N"J(u) > 0), since 

P(Ms > u) = P(X(O) > u) + P(X(O) ::; u, N"J(u) > 0) 
s (1.7) 

~ P(N"J(u) > 0)::; E(N"J(u)) = SJ-t+(u) = T' 

where T is the return period. The approximation in the second line can be 
motivated when the probability that the load exceeds the design value at 
t = 0 is negligible. However, if S is very short then one should rather use the 
following bound 

P(Ms > u) = P(X(O) > u) + P(N"J(u) > OIX(O)::; u)P(X(O)::; u) 
(1.8) 

::; P(X(O) > u) + E(N"J(u)IX(O)::; u)P(X(O)::; u). 

The Rice's formula for the intensity of upcrossings of the level u will be 
employed to compute bounds (1.7). 
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Example 2. Design of sea-walls. When designing protection against the 
high sea level, one speaks about lOO-year or 10 000-year storms which means 
that in average one have to wait 100 or 10 000 years, to observe a storm 
stronger than the lOO-year or 10 000-year storms. We will discuss two exam­
ples of design of sea-walls: at Ribe in Denmark (at the North Sea) and in the 
Netherlands. In Denmark, one chose in the 1970s a design load with a return 
period of 200 years. (The old level was 30-45 years.) In the Netherlands, after 
disastrous floods in the early 1950s, the decision was taken to design the sea­
walls against return storms of 20 000 years. Let neglect the sesonal variability 
of strength of storms, use of Eq. (1.7) gives the probability of catastrophical 
floods in the following 50 years, i.e. at least one flood, p:::; ~, which, in case 
of Ribe in Denmark, gives a considerable risk with likelihood 1/4. Due to 
this risk, it is worth to have some alarm system to warn the inhabitants of 
the possibility of a flood. Such systems are installed. In the Netherlands the 
chance is negligible if all computations and constructions have been done 
properly. 

However, aspects not known at the time of the analysis have obviously 
not been taken into account. Wave climate in the Atlantic Sea may change, 
knowledge about the impact of ice melting at the poles is uncertain. Besides 
this "model type" uncertainties we need to acknowledge that we have also sta­
tistical uncertainty due the fact that one wishes to find properties of storms 
that are very rare. Consequently our estimates will be uncertain values too. 
For example the storm, which we consider as 20 000 years storm may have 
return period of 1000 years or less. All this means that the calculated val­
ues of risk for rarely occurring catastrophes should not be treated as exact 
values. 

Finally, note that we have not said how to find the size of the sea-walls 
which will sustain storm with return period of 50 or 20 000 years, or equiv­
alently how to find parameters describing those storms. 0 

Finding the probability P(N"J(u) > 0) is a very difficult problem. The 
following two asymptotic results are often useful: under some assumptions on 
the process X, e.g. X is Gaussian with covariance function rx(t) ·ln t--+ 0 
as t --+ oo, see Leadbetter et al. (1983) for more detailed discussion, one can 
demonstrate that 

• as t and u go to infinity in a way that E ( Nt+ ( u)) is constant (say equal 
to J.L) then P(Nt(u) = 0) converges toe-~-'. 

• for fixed u, t-112 (Nt(u)- tJ.L+(u)) is asymptotically (as t tends to 
infinity) normally distributed. 

The first asymptotic result is often used to approximate P(N"J > 0) in the 
case when both u and S take large values. Then, by taking J.L = E(N"J(u)), 
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one can derive the following approximation 

P(Ms > u) ~ P(Nt(u) > 0) ~ 1- e-E(N%(u)). (1.9) 

If E(Nt(u)) is small then 1- e-E(Ni(u)) ~ E(Nt(u)) = SJL+(u). Conse­
quently if the service time S of the structure is much shorter then the return 
period for the design load then 

P( max X(t) > u) ~ _TS. 
O:Ss:SS 

Accuracy of this approximation for moderate levels u will be studied in 
Sec. 1.3.1. In the case when u is not very high and t very long then the sec­
ond asymptotic result could be applied. Namely, for a fixed level u, Nt ( u) 
is asymptotically normally distributed. In order to be able to use this re­
sult one needs to be able to compute (or estimate) the variance V ( Nt ( u)). 
The approximation is applicable when t is large (E(Nt(u)) is large and 
V(Nt(u)) i= E(Nt+(u)). We mention the last condition since even Poisson 
asymptotic may lead to the Gaussian approximation. More precisely, if both 
t and u are large and J-l+ = E(Nt(u))) > 10 then Nt(u) is approximately 
N(JL, JL)-distributed. 

In the following example the design load is the endurance limit for fatigue. 

Example 3. Multiaxial fatigue - extreme stresses. Multiaxial fatigue 
failure criteria are now widely used design tools to evaluate design margins 
against long term fatigue for metallic structures subjected to multiaxial pe­
riodic loads. The criteria are generalizations of the uniaxial endurance limit , 
defined as the smallest stress level Se leading to the initiation of a macro­
scopic crack, which generally appears after Ne = 106 - 107 cycles under an 
alternating sine stress of constant amplitude. Even if its existence is being 
called into question, the endurance limit is generally used design tool even 
for variable amplitude loading, i.e. if a component is subjected to fluctuat­
ing stresses never exceeding the stress level Se, a component is supposed to 
have an infinite fatigue life. The extension of this concept to multiaxial stress 
states is often done by separation of the stress space into two parts, the un­
safe one and the safe one. We shall illustrate the approach using the so-called 
Crossland's criterion, which will be given next. (Crossland's criterion belongs 
to the category of global approaches which are based on stress tensor invari­
ants, see Crossland (1956). Comparison studies of multiaxial criteria, see e.g. 
Papadopoulos et al. (1999), report that Crossland's criterion can lead to a 
deviation error between predictions and experimental values ranging from 
-30% and +15%.) 
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Let us consider a material point q in a structure subjected to biaxial 
stress fields where sx(t), sy(t) and Sxy(t) are the normal and shear stresses 
expressed in the local coordinate system (x, y). Crossland's criterion can be 
formulated as follows: if 

ma.xo<t<S lsc(t)1/v'3 + ncma.xo<t<SP(t) c ll 
f3c ~ 1 10r a q, (1.10) 

then no fatigue crack will initiate before the time S ·Ne; otherwise, a fatigue 
crack is expected to appear at every point of the structure where the condition 
is not satisfied. Clearly service time should be shorter than S ·Ne. 

Here sc(t) is the von Mises stress that is defined in the biaxial case by 

(1.11) 

while p( t) is the hydrostatic pressure defined as the first invariant of the 
stress tensor Sij ( t) and which can be written as follows 

1 
p(t) = 3(sx(t) + sy(t)), (1.12) 

with ne and f3c determining material properties 

{ 
<>c: {t-J- f-J/..f3)/{f-J/3), 
f3c- t_l, 

where f _1 and t_ 1 are the endurance limits for a reversed tension stress and 
a reversed torsion stress respectively. 

Clearly if the applied load is random then also s(t) = (sx(t), sy(t), Sxy(t)) 
is a vector of random processes. (Since the stress tensor is also dependent on 
location q it can also be considered as random vector valued field.) In Fig. 1 
we give simulated records of the stress tensor under the assumption that the 
load is stationary Gaussian process. 

In safety analysis one wishes to compute the probability that Crossland's 
criterion fails or, slightly easier problem, to check if 

max E (maxo<t~S lsc(t)1/v'3 +ne ma.xo<t<S p(t)) ~ 1. 
q f3c 

(1.13) 

In following we will assume that the load is a zero mean stationary Gaussian 
process and hence p(t) will be a Gaussian process too, while s~(t) is a x2 

process. In order to compute the expectations in (1.13) we will compute 
the crossing intensities 1-lp+(u), J-L-t;(u) and use the approximation (1.9) of 

se 

P(Ms > u). (Note that E(Ms) ~ J0+oo P(Ms > u) du.) We return to the 
computations of the expectation E(Ms(p)), E(Ms(s~)) later on. 

http://rcin.org.pl



248 I. RYCHLIK 

sx(t) (Mpa) 
200 ,:.:--------:..-'----'~-

-100 

to• to (radls) -200 
0 1100t000tll00201l021100 o o.o:z o.04 o.O& o.oa o.t 0.12 o.14 o.1& o.tl 0.2 

10
,. <~>.y.y(ul) (Pa'IHz) s7 (t) (Mpa) 

15 . . 

~ l 

10... '\ ,~'\ l'\ 
\ I "-.__ __ ./ "-. 
\( ·---
~ 

10 ~ ·~ t 
11 ' • '' /1 n 1\vi ~ I' 

s 'I'' 1'1 '' ! 1\ ;\..:'·-. {Vv,,, /'\1 I I~ V I 1\ 
0 111111 I I ,' \ rl I"' 'v· I ~I V I I' i• I ~~ ~~ fl I d t (8) 

1 ,. J 1, .,
1

\r ,r,r l 1 v' 11.1 wll 11 11 
-a ' ~ j v v .. , r,,, I I , 1 '· ~ ~ 

-1o 'j 'J . \J V 

to' - . <·> (rad/s) 
0 500 1000 1500 2000 2500 

-15L-----------~-~-~----' 
0 0.02 0.04 0.06 0.01 0.1 0.12 0.14 0.18 0.11 0.2 

S"Y(t) (Mpa) 
1~ ~-----------~---------------. 
100 -

-100 -

1r/ m (radls) 
0 1100 1000 11100 2000 21100 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.18 0.11 0.2 

(a) (b) 

FIGURE 1. (a) The power spectral densities of sx, Sy, Sxy· (b) The simulated 
stresses. 

1.3. Rice's formula-Gaussian processes 

Let X ( t) be a stationary Gaussian process with mean m and finite zero 
and second order spectral moments, Ao, A2 < oo. Such a process possesses a 
derivative X ( t) and we have 

m= E(X(t)), V(X(t)) = Ao, V(X(t)) = A2. 

For the process X(t), the expected crossing intensity is given by the Rice's 
formula 

( ) _ l/¥o2 -(u-m) 2 j2>.o 11- u -- \e . 
7r 1\Q 

(1.14) 

Since on average there are equally many up- and down-crossings, JJ-( u) = 
211-+(u), and hence the intensity of upcrossings of the mean level, 

(1.15) 
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The parameter ~ = J )..2/'A.o is called the mean angular frequency of the 
process. Clearly the intensity can now be written as 

(1.16) 

For the simple Gaussian wave in Example 1, we have that Ao = a 2
, m = 0, 

while~ = ).. and we have verified that the Rice's formula holds for the simple 
Gaussian wave. 

Example 4. Significant wave height. In oceanography one often assumes 
that under relatively short period of time, between 20 minutes and a few 
hours, the sea surface elevation at a fixed point can be, with sufficient ac­
curacy, described using a stationary Gaussian process X ( t), say. The exact 
shape of the spectral density S()..) is usually not known and one is charac­
terizing the sea conditions by means of the so-called significant wave-height 
H8 and zero-crossing wave period Tz, i.e. the inverse upcrossing intensity of 
the still water level. The mean m , of X ( t) is called the still water level and 
is often taken to be zero. (Note that for non Gaussian sea models the still 
water level can be defined as the level most frequently crossed by X ( t).) The 
variance and the angular frequency of the process X ( t) are defined by the 
parameters H 8 , Tz as follows 

~ 27r 
).. = Tz. 

Obviously, for Gaussian sea the parameters m, Hs and Tz define the crossing 
intensity 

1 -8~ 
J.L+(u) = -e H .• 

Tz 
In the analysis of frequency of occurrence of extreme waves in an interval 

of length S, one is sometimes using the following parameter 

N= ~s 
27r' 

(1.17) 

which is equal to the expected number of waves in [0, S]. 

We turn now to our main example and compute E(Ms(p(t)). 

Example 5. Multiaxial fatigue continuation of Example 3. If the load 
applied on the specimen is stationary and ergodic Gaussian process then (as­
suming the linear theory) the stresses sx(t), sy(t), Sxy(t) at a fixed position q 
represent a Gaussian vector valued process. Consequently the hydrostatic 
pressure p(t), see (1.12) is a Gaussian process too. Knowing the mean and 
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spectral density (measure) of the load one can, by means of the finite ele­
ment program, estimate the mean m and spectral n10ments -\o, -\2 for p(t). 
Obviously the parameters will vary between the different locations in the 
structure. For simplicity only let us assume that rn = 0. Now for a fixed S 
we want to derive an approximation for E(maxo::;t::;s p(t)). 

As before let us denote by A1s(p) = maxo::;t::;s p(t). As we have mentioned 
earlier for extreme levels u and long periods T one can use the Poisson 
approximation, i.e., 

P(lvfs > u) ~ 1- e-E(Ni(u)) = 1- e-sJ.L+(u). 

Clearly for long periods S and low positive values u sJ.l+(u) is large and 
hence P(Ms > u) ~ 1. From this we are drawing the conclusion that for 
long periods S the last formula is an accurate approximation for any positive 

u2 

u. Consequently, since for Gaussian processes S J-1+ ( u) = Ne- 2Ao , where N = 
2~ S is the expected number of waves (up crossing of mean), we have 

00 00 '2 
-~ 

E(Ms) "'J P(Ms > u) du"' J 1- e-Ne 
0 

du. (1.18) 

0 0 

The last integral can be computed numerically. 
However, for Gaussian processes an alternative asymptotic result has been 

proved. Namely that Ms is asymptotically Gumbel distributed as u and S 
tend to infinity. 

Let X(t), 0 ::; t ::; S, with E(X(t)) = m be a stationary Gaussian 

process having expected number of waves N = 2~S, where where ~ is the 
average angular frequency, see (1.15). Now, under suitable assumptions on 
the covariance function, e.g. rx(t) ·In t---+ 0 as t---+ oo, we have, asS---+ oo, 

P(Ms ::; u) ~ exp { -e-(u-bN )/aN}' 

where 

and 

Now the Gumbel distributed variable X, say, with parameters a, b has the 
mean 

E(X) = b + 0.5572a. 

http://rcin.org.pl



FIVE LECTURES ON RELIABILITY APPLICATIONS OF RICE'S FORMULA ... 251 

Let, for the process p(t), Np be the expected number of waves in [0, S] while 
Ab= V(p(t)), then 

r:p ( 0.5772 ) E(Ms(Pc))=y/\0 y'2lnNp+ . 
J2lnNp 

(1.19) 

Finally one can ask how the two formulas (1.18) (1.19) are interrelate. This 
will be shown next. For simplicity only we assume that m= 0, then 

P(Ms :S u) ~ e-E(Nt(u)) = e-sJ.L+(u) 

= exp { -Ne-u2j2>..o} = exp { -e-u2j2>..o+ln(N)} 

= exp - e- 2-Xo = exp - e- 2-Xo 
{ 

~} { (u-bN)(u+bN)} (1.20) 

~ exp -e- 2.Xo/2hN = exp -e- aN 
1 { ~} { ~} 

since u ~ b N. Consequently for very long times S both approaches are equiv­
alent. 

Conclusion of the last example is that assuming that hydrostatic pressure 
is Gaussian then knowing mean value m, variance Ao and the mean angular 
frequency ~ is sufficient to approximate the expected value of the Ms(P) = 
maxo<t<S p( t). Since we proposed to use a Gumbel distribution to compute 
E( Ms(p)) the accuracy of this approximation is satisfactory only when ~T /27r 
(expected number of waves) is large. 

However, it is not easy, for a particular process X(t) to give conditions 
when N = ~S /27r (average number of waves) is sufficiently large so that us­
ing asymptotic results gives accurate approximations. The name asymptotic 
approximation is motivated by a general result that, under some assumptions 
on how fast the covariance function r(t) decreases to zero as t--+ oo, the dis­
tribution of a suitably normalized points {t E [O,S]: X(t) = u,X(t) > 0} 
converges to a Poisson process as the level u and S tend to infinity. (This 
fact also holds for some non-Gaussian processes). 

The Poisson approximation can be very accurate even for moderately 
high levels u if the process has a broad-band spectrum, e.g. the covariance 
function r( t) converges rapidly to zero as t goes to infinity. For a narrow 
band process, upcrossings may occur in clusters or "clumps", and then the 
level u has to be very high to assure an acceptable accuracy of the asymptotic 
approximation, as we shall see in the following subsection. 
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1.3.1. Maximum of a narrow-band Gaussian process. Let X(t) be the 
displacement of a damped harmonic oscillator driven by a Gaussian white 
noise process, i.e. the solution to the equation 

X(t) + 2(X(t) + X(t) = aW(t), t ~ 0, 

where W(t) is a Gaussian white noise process. (The relative damping is 
(, 0 < ( < 1.) Assuming that a 2 = 4( then X(O), X(O) are independent 
and standard Gaussian variables. The process X(t) has mean m = 0, mean 
angular frequency .X = 1 and the zero spectral moment .-\0 = 1. The spectral 
density of X ( t) is given by 

(1.21) 

For the process X ( t) (due to the particular choice of constants), the crossing 
intensity is simply 

p,+(u) = ~e-u2/2. 
27r 

By choosing the damping parameter ( close to zero we obtain a narrow 
band spectrum while for ( > 0.2 the process becomes broad-band. In Fig. 2(a) 
and (b) we have parts of a simulated process X(k · ~t) where ~t = 0.1, 
for ( = 0.01 and ( = 0.4. The narrow band character is very clearly seen 
in Fig. 2(a). 

We take u = 3 (three standard deviations from the mean) and find the 
distances between consecutive upcrossings of the level u = 3 in a sample of 
X ( t), 0 ~ t ~ S. Here we have used S = 105 and hence by Rice's formula we 
have an expected number of 2~ e-u

2 
12 = 176.8, u-upcrossings in the entire 

interval, and the mean length between the upcrossings (return period) is 
21re4·5 = 565.6 seconds. Since the average number of upcrossings is finite we 
can order all the points in { t E [0, S] : X ( t) = u, X ( t) > 0} and let denote 
them by ti. 

In the asymptotic Poisson approximation the intercrossing distances 
ti- ti-1 are independent exponential variables. From Fig. 2(a) it is obvious 
that this model can not be correct for a narrow band process with ( = 0.01, 
since after an upcrossing u there is a high probability that the next upcross­
ing is located approximately in a period 21r. This can also be seen on the 
Weibull probability paper in Fig. 4(a). Often the maximum of a narrow-band 
Gaussian process is approximated by the maximum of its envelope process, 
see Fig. 6 for the illustration of the relationship between the process and 
its envelope. The Poisson approximation is then applied to crossings of the 

http://rcin.org.pl



FIVE LECTURES ON RELIABILITY APPLICATIONS OF RICE'S FORMULA .. . 253 

(a) 

2 

-2 

-3 

6~00 6820 6840 6860 6880 6900 6920 6940 6960 6980 7000 

(b) 4.---------,---------,--------,,--------. 

2 

0 

-1 

-2 

-3 

7~50 8000 8050 8100 8150 

FIGURE 2. Narrow- and broad-band linear oscilator: (a) ( = 0.01, (b) ( = 0.4. 

envelope, see Ditlevsen and Lindgren (1988) for more detailed presentation. 
Consequently, one can approximate 

P( max X(t) > u) ~ 1- e-8JJ.~(u) 
O~t~S ' 

where crossing intensity of the envelope process 11-~(u) is given by (2.9). The 
intuitive motivation is that the envelope crosses less frequently the level u 
than the process X and hence would give better approximation. This is not 
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FIGURE 3. (a) Comparison between the empirical distribution of Ms(X), ( = 
0.01 and S = 104 s, (irregular line) with the asymptotic Poisson approximation 
P(Ms(X) > u) ~ 1 - e-s~+(u) solid line and using the envelope P(Ms(X) > 
u) ~ 1- e-s~t<u) dots. (b) The simulated number of upcrossings of the level u 
by the process X plotted on the normal probability paper. 

http://rcin.org.pl



FIVE LECTURES ON RELIABILITY APPLICATIONS OF RICE'S FORMULA .. . 255 

(a) 

(b) 

2 

0 

CL 
:::.-1 
Cl 

J?. 
~-2 
Q) 

:0 
tU 

·~-3 
> 

8 .g -4 
a: 

-5 

-6 

-7 

made by FAT 

0 

-5 

-6 

-7 

made by FAT 

. 

. . 

. 

2 

/ 

0 

Weibullplot 

···~· • • ---------

3 4 5 6 

Weibullplot 

~ 

./ 

. .Y . ./ 
e/ 

y 
/ 

/ /. 
./ 

/ 

2 3 4 

. 
~ 

~ .. , .-::::;;;;-,.-

7 8 9 

. 
.~~.Y 

_I/ , 
I 

,lr 
r 

a ,. 
~ 

6 7 8 

99.9% 

99% 

95% 
90% 

80% 
70% 
60% 
50% 
40% 

~ 
20% 
15% 

10% 

5.00% 
4.00% 
3.00% 

2.00% 
1.50% 

1.00% 

0.50% 
0.40% 
0.30% 

0.20% 
0.15% 

0.10% 

99.9% 

99% 

95% 
90% 

80% 
70% 
60% 
50% 
40% 

~ 
20% 
15% 

10% 

5.00% 
4.00% 
3.00% 

2.00% 
1.50% 

1.00% 

0.50% 
0.40% 
0.30% 

0.20% 
0.15% 

0.10% 

FIGURE 4. Illustration of the asymptotic Poisson approximation for upcrossings 
of narrow- and broad-band damped linear oscillator. Empirical distribution of 
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the case for the narrow-band process studied in this example, see Fig. 3(a). 
Figure 3(b) shows Nt ( u), S = 104 , the number of upcrossings of the level 
u = 3 plotted on normal probability paper. Clearly Nt ( u) is not normally 
distributed indicating that the time periodS, corresponding to 1600 waves, is 
still too short for the asyrnptotic results to be valid. The same conclusion can 
be drawn from the Fig. 3(a). We conclude that approximating the maximum 
distribution for the narrow-band process studied in this example is a very 
complicated problem. 

For a broad-band process the asymptotic approximation works well for 
the level u equal to three standard deviations from the mean. In Fig. 4(b) we 
show the distribution of ti- ti-l on Weibull probability paper. The estimated 
parameters are k = 0.97 and a= 624.3 which are very close to the exponential 
density, i.e. k = 1 and a = 565.6. Note, that we have only 168 observations, 
and the expected number of u-upcrossings in [0, 105] equals 176.8 by Rice's 
formula. 

Finally, in Fig. 5 one can see that the Poisson asymptotic result gives a 
very accurate approximation of the distribution of the maximum Ms, for 
the broad-band process X. Note that S = 100 s is very short, one has in 
average only N = 16 waves in simulated paths. The envelope approximation 
is not applicable at all for this case since it has much higher maxirna than 
the process X. 

104~--~----~----~--~----~----~--_j 
1 1.5 2 2.5 3 3.5 4 4.5 

FIGURE 5. Comparison between the empirical disstribution of lvfs(X), ( = 0.4 
and S = 100 s, (irregular line) and the asymptotic Poisson approximation 

P(Ms(X) > u) :=::::: 1 - e-s~+(u) (solid line) and using the envelope P(Ms(X) > 
u) :=::::: 1 - e-s~~(u) (dots) . 
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2. Lecture 11: Maximum of a x2-load 

2.1. Rice's formula for non-Gaussian processes 

Rice (1944, 1945) and Kac (1943) obtained (1.14) for a certain class of 
Gaussian processes and polynomials with random coefficients, respectively. 
The formula is often written in the following alternative way 

+oo 

!L(u) = j 1±1 f(X, u) dX, 
-oo 

00 

!L+(u) = J Xf(X,u)dX, 

0 

(2.1) 

(2.2) 

where f(x, x) is the density of X(O), X(O). In the following example we will 
demonstrate that (1.14) follows from (2.2). 

Remark 2. We know that for a stationary Gaussian process X, the 
process value X ( t) and the derivative X ( t) at the same time are independent, 
so the joint density is just the product of the densities 

f(x, x) = f(x)f(x). 

Furthermore, if X(t) E N(m, >..o), then X(t) E N(O, >..2). So, we can write 

00 

!L+(u) = f(u) j Xf(X) dX = f(u)E(X(t)+), 

0 

where x+ = max(O, x). Now, for any Gaussian variable Y, if YE N(m, a 2 ), 

then E(Y+) = aw( -m/a), see (A.4). Using the last property we get 

This is just the formula (1.14) since 

w(O) = _1_ and f(u) = _1 __ 1_e-(u-m)2/2>..o . 
.j2; .j2; ~ 

It has been proved that (2.1), (2.2) hold even for many non-Gaussian 
processes X, see e.g. Leadbetter (1966), Marcus (1977) for sufficient condi­
tions. In engineering literature formulas (2.1), (2.2) are used to compute the 
expectations E ( N s ( u)), E ( Nt ( u)) for non-Gaussian processes as long as the 
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joint density of X(O), X(O) is available. Generally the Rice's formula always 
holds if the expectations E(Ns(u)), E(Nt(u)) and the integrals in (2.1-2.2) 
are continuous functions of u (proof of continuity of E(Ns(u)), E(Nt(u)) 
can be technical). 

The difficulty in evaluating the Rice's formula for non-Gaussian processes 
is that the integral J0

00 x f ( x, u) dx, usually, can not be evaluated analytically 
and that for many irnportant classes of processes X, the explicit expression 
for the joint density f(x, x) of X(O), X(O) is not known. 

We shall illustrate these problems by considering the class of non-central 
x2 processes which find many applications in engineering. We give first a 
motivating example. 

Example 6. Suppose we are interested in modeling the response of a 
structure to a wind load. Also, suppose that the structure is linear and can 
be approximated by means of the second order oscillator. Now the wind 
load F(t) = cV(t)2 where V(t) is the wind velocity process and c denotes 
a constant. We assume that V(t) is a stationary Gaussian process with the 
mean E(V(t)) = v and the spectrumS(,\). Now let Y(t) = V(t) -v, i.e. Y(t) 
is a zero mean Gaussian process describing fluctuations of the wind velocity 
around its mean value, then the response X ( t) of the structure is defined by 
the following differential equation 

·· · 2 2cv c 2 X(t) + 2(-\pX(t) + ,\pX(t) = M Y(t) + M Y(t) , 

where M is the total mass, ,\P is the natural frequency of the system, ( is the 
relative damping. (Note that we have not included in the model the constant 
load cv2 .) Since the differential equation describing the structure is linear, 
the response process can be written as a sum 

X(t) = Xt(t) + Xq(t), 

where Xt ( t) is the zero mean Gaussian process defined by 

·· · 2 2cv 
Xt(t) + 2(-\pXt(t) + ,\pXt(t) = M Y(t), 

while Xq(t) is the quadratic correction for non-linearity and is defined by 

.. . 2 c 2 
Xq(t) + 2(-\pXq(t) + ,\pXq(t) = M Y(t) 

Suppose now that the process Y ( t) can be well approximated by means of a 
sum of N independent Gaussian waves defined in Example 1, i.e., 

N 

Y(t) = L ajRj cos(,\jt + Oj), 
j=l 

(2.3) 
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which means that Y has a discrete spectrum with atoms at Aj. Here aJ is the 
average energy of the wave with angular frequency Aj. In engineering, one 
usually assumes that Y ( t) has continuous spectral measure with one-sided 
spectral density Sy(A), A 2: 0, say. Often a cut-off frequency Ac is chosen, 
so that Sy(A) = 0, for A > Ac. This implies that the process is analytical 
(all spectral moments are finite). Now the process can be approximated by 
the process defined in (2.3) with aj = JSy(Aj)~A, where Aj = jAc/N 
and ~A = Ac/ N. Actually it is easier to write the defining equation for the 
nonlinear response Xq(t) using complex random variables. This will be done 
next: 

Let Ao = 0 and ao = 0 and define Uj = Rj cos(Oj) and Vj = Rj sin(Oj)· It 
is well known that Uj, Vj, j = 1, ... . N are independent N(O, 1) variables. 
Defining a_j = aj, U_j = Uj V_j = -Vj, the process Y(t) defined in (2.3) 
can be written in the following alternative way 

N 

Y(t) = L ad (Uj- iVj)ei-'3t, 
j=-N 

which is the so-called spectral representation of the process Y, see for­
mula (A.23). Since the transfer function of the structure (oscillator) is 
equal to 

1 
H(A) = A~- A2 + 2i(ApA' 

the Gaussian response is given by 

N 
2cv "'"' aj i-\ t Xl(t) = M L 2:H(Aj)(Uj- iVj)e j • (2.4) 

j=-N 

Next, since 

(properties of the Y ( t) 2 process were studied already in Rice ( 1944)) we have 
that the quadratic correction term is now given by 

N N 

Xq(t) = 2~ L L ajakH(Aj+Ak)(Uj-i\.tj)(Uk-iVk)ei(-'3+-'k)t. (2.5) 
j=-N k=-N 

As before, if one wishes to study the extreme responses of the structure, one 
needs to first compute the upcrossing intensity J..L+(u). However, we face the 
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problem that in general, one can not find analytical expression for the density 
f(x, x) of the process. In Machado (2002), Section 4.2, a detailed discussion 
is presented. 

For the chosen parameters, the author demonstrated that the quadratic 
correction term Xq(t) can not be neglected if one is interested in the distri­
bution of maximum response P(Ms(X) > u). 

In the last example we have introduced the process (2.5), which describes 
the non-Gaussian properties of the response process. Through matrix diago­
nalization and some matrix algebra, see Machado (2002) for detailed presen­
tation, we can rewrite the equations (2.4), (2.5) so that the response process 
X(t) = X1(t) + Xq(t) is a non-central x2 process as defined next. 

Definition 1: The process X(t) will be called non-central x2 if 

where Z(t) = (Z1 (t), ... , Zn(t)) is a vector-valued stationary Gaussian pro­
cess, such that for each t, Zj(t) E N(O, 1) and the variables Zj(t), Zk(t) are 
independent. If Z(t) = (Zt(t), ... , Zn(t)), then (Z(t), Z(t)) E N(O, E), where 

(2.7) 

where I is the identity matrix (note that matrices E12, E22 do not need to be 

identity matrices). Finally the constant mo = rn- ~j~ 1 ~· 
Many processes can be transformed into this form, for example the von 

Misses stress, envelope process, Stoke's waves, motion of a moored floating 
structure, second-order sea-surface and many other. In order to study the 
global maximum of the process X, one needs to compute the crossing inten­
sity J.L+(u). As we have already mentioned, an analytical expression for the 
density f(x, x), except for some special cases, is not known at present and 
hence one can not use the Rice's formula to compute J.l+ ( u). 

An important property of the process, defined by (2.6), is that one can 
compute the so-called moment generating function of (X(O), X(O)), M(s, t), 
defined by 

00 00 

M(s, t) = J J e•x+ti: f(x, ±) d± dx = E ( e•X(O)+t.X(o)). 

-oo -oo 
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Theorem 1: Suppose that X ( t) is a non-central x2 process, specified in 
Definition 1. Then the moment generating function is given by 

1 ( t2 1 ) M(s, t) = exp ms + -
2 

{3TV{3 + -tT A-1t , 
y'det(A) 2 

where 
T 2 A= I- 2sr- 2t(rE12 + E12r)- 4t rvr, 

t = (si+ tE12 + 2t2fV){3, 

V= E22- Ef2E12· 

Here r is a diagonal matrix with rl, ... , rn on the main diagonal and {3 = 
({3~, ... 'f3n)T. 

Knowing the mmnent generating function, the density of X(O), X(O) can 
be obtained by means of the two-dimensional Fourier inverse 

ioo ioo 

!(X x) = --
1

- J J M(s t)e-(sx+tx) ds dt 
' (27ri) 2 ' . 

-ioo -ioo 

Consequently, one could compute numerically the last integral and then use 
the Rice's formula to compute the crossing intensity J.L+(u). This can be done~ 
but the numerical algorithms are often slow and can be unstable. Another 
approach is to approximate the integral 

oo ioo ioo 

J.L+(u) = - 1
- j j j M(s t)xe-(sx+tx) dsdtdx 

(21f)2 ' 
0 -ioo -ioo 

using the so-called saddle-point approximation, introduced in statistics by 
Daniels ( 1954). For the process X the saddle point approximation of the up­
crossing intensity J.L !-( u) will be denoted by {i 1 ( u). Note that for the Gaussian 
X, P, x ( u) = J.L !-( u). The algorithm is presented in Butler et al. ( 2003) and 
contains the following steps: 

• Compute the cumulant generating function K(s, t) = ln(M(s, t)) and 
its derivative Kw(s, 0) = 8K(s, 0)/8s. 

• For a fixed u find s such that Kw(s, 0) = u. 

• For s, compute at (s, 0) the following derivatives: K2o, Ko2, K3o, K12, 
K 22, K 04, K 20. The final approximation is an explicit function of the 
derivatives. 

The program is included in the toolbox WAFO, see Brodtkorb et al. (2000), 
that can be downloaded, free of charge, from: 
http://www.maths.lth.se/matstat/wafo 
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2.1.1. Crossings of the envelope process. An important process that 
can be written in the form (2.6) is the square of the envelope of a Gaussian 
process. More precisely, let X ( t) be a zero mean stationary Gaussian process 
having finite spectral moments Ao, At, A2. If X(t) denotes the Hilbert trans­
form of X, see Cramer and Lead better ( 1967), then the envelope process is 
defined by 

E(t) =V X(t)2 + X(t)2. 

In engineering literature E(t) is often called Cramer and Leadbetter envelope. 

Remark 3. In this remark we shall write E(t) 2 in the form (2.6). First, 
one can show that Z 1 ( t) = X ( t) I A and Z2 ( t) = X ( t) I A are independent 
N(O, 1). Then the covariance matrix E, defined in Definition 1, consists of 
the following blocks 

Consequently E(t)2 = AoZ1 (t)2 + AoZ2(t) 2 is in the form (2.6) with n = 2, 
!31 = !32 = 0, 11 = 12 = Ao and m = 0. Since both {3 coefficients are zero 
therefore E(t)2 is actually a x2 process. By Theorem 1 the moment generating 
function M(s, t) is given by 

M(s, t) = det(A)- 112 = 1 
, (2.8) 

1- 2Aos- 4t2 AoA2(1- oi) 

where 01 = AIIVAoA2 is called the groupness parameter. 

The process E(t) has found several applications in engineering. The one 
which is of special interest, is in the study of wave groups in the sea. In ocean 
engineering for example, the sea surface is usually modeled by a stationary 
Gaussian field with a special form of the spectrum which follows from the 
dispersion of water waves. 

From a formal standpoint, wave groups are difficult objects to study. 
They can be observed only under special circumstances when the sea surface 
is narrow-band and long-crested. For a confused sea there is no noticeable 
organized movement of waves and thus each large extreme wave can be taken 
as a crest of a wave group. 

In his pioneering work, Longuet-Higgins (1957) has introduced the de­
composition of traveling random waves into the envelope (low frequency vary­
ing amplitude) and the carrier (high frequency oscillations). The simplest 
(one-dimensional) record in which wave groups can be observed, consists of 

http://rcin.org.pl



FIVE LECTURES ON RELIABILITY APPLICATIONS OF RICE'S FORMULA ... 263 

two sinusoidal waves traveling together, given by 

The sinus in the last formula represents individual waves while the cosine 
which modulates their amplitudes describes the motion of a wave package. 
The group velocity is given by vc = gj(A.2 + A.1) and the wave velocity by 
vw = g(A.2 + A.l)/(A.~ + A.r). In the "narrow band" case when A.1 ~ A.2 we have 
vw ~ gj A.1 ~ 2vc, thus individual waves travel approximately twice as fast 
as wave groups. 

More generally, the envelope is a positive process that is always higher 
than the sea elevation process. For narrow-band processes, the envelope is 
passing close to local maxi1num of the process and hence can be used to 
describe the evolution of wave groups (see Fig. 6). Often, one uses the so­
called groupness parameter 0::1 = J~A2 which is a measure of how broad­
band the power spectrum is. For a 1 close to one, the process is considered 

200 400 600 800 1000 
[s] 

-4~------~------~------~------~--~ 
0 2000 4000 6000 8000 

[m] 

FIGURE 6. Envelope and wave groups in the narrow-band case. Records: 
in time (top), in space (bottom). 
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narrow-band and one can observe grouping of waves. As we have mentioned 
before, the other two important parameters describing sea spectrum are: the 
mean wave period Tz that equals 27r I~' and the significant wave height H8 , 

defined as 4VXQ. The three parameters a1, ~ and Hs define the upcrossings 
intensity f..t~(u) of the envelope process, namely 

(2.9) 

Note that jl~(u), the saddle point approxirnation of the crossing intensity 
f..£~( u), is exact. 

Often, a wave group is defined as a part of a space or time record that 
lies between two consecutive upcrossings of the level uo, where the level uo is 
the one at which the envelope attains the highest intensity of crossings. For 
the intensity of crossings 1-t~(u), see (2.9), the maximal intensity is attained 
at the level uo = VXQ. In Fig. 6, this level is marked by a horizontal line. 
Changing the level would lead in average to smaller number of wave groups. 
Finally, the average length of the wave group can be computed by combining 
the following two results: P(E(O) > uo) is equal to the fraction of the time 
(distance) the envelope spends above the level u and f.-L~(uo) is the intensity 
of wave groups. Hence the average length of a wave group is equal to 

P(E(O) > uo) 

~-t~(uo) 

Similarly one can com~ute the average length the process X stays above the 
level uo by means of (Xj~)>~o). Consequently, the fraction 

J.Lx uo 

P ( E ( 0) > uo) I f..£~ ( uo) _ e 1 v'27f<I> ( -1) _ 1. 081 

P(X(O) > uo)l~-ti(uo) - )1- ai - ~' 
could be taken as an approximation of the expected number of waves in a 
wave-group. 

For the responses of narrow- and broad-band linear oscillator with ( = 
0.01, ( = 0.4, respectively, discussed in Section 1.3.1, the parameter a1 is 
equal 0.995, 0.85, and hence the average number of waves per group is ap­
proximately 11, for the narrow-band case, and 2 for the broad-band one. This 
example motivates why a 1 is called the groupness parameter. 

We finish this subsection by proving formula (2.9). 

Example 7. Proof of {2.9}. Let R(t) = E 2 (t)1Ao = Z1(t)2 + Z2(t)2, 
where the processes Zt, Z2 are defined in Remark 3. Since ~-t~(u) = 
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J.L~( u2 / >-.o), we only need to show that 

(2.10) 

Denote by f(r, r) the joint density of R(O), R(O). Then by Rice's formula 

00 

JL ~ ( r) = J r f ( r, r) dr. 
0 

Consequently we need to find the joint density f(r,r). Since Z1(0),Z2(0) are 
independent N(O, 1) we know that 2R(O) is exponentially distributed and 
hence the marginal density of R(O) is given by 

1 r 
f(r) = 2e-2. 

Next we write f(r, r) = f RIR(rlr)fR(r), r > 0, where f(rlr) is the conditional 

density of R(O) given that R(O) = r. Consequently we get 

00 00 

JL~(r) = f(r) J r /(fir) df = f(r) J y](y) dy, 

0 0 

since r is fixed, we suppressed it in the notation. It can be shown, by a 
simple change of variable that the conditional density ](y) E N(O, a 2(r)), 
where a2(r) = 4rA2(1- or). Consequently, 

00 

J - 1 
yf(y) dy = a(r)\11(0) = a(r) ~ 

0 

by means of (A.4). Since f.l~(r) = f(r)a(r)/~ the formula (2.10) has 
been derived. What remains is to show that the conditional density ](y) E 

N(O, a 2 (r)). 
Let introduce the additional variable e defined by the relation sin( B) = 

Z1 (0)/ y'R(O). Obviously, Z1 (0) = y'R(O) sin( B) and Z2(0) = y'R(O) cos( B). 
Let z = (z1, z2)T and r ~ z? + z~. Now using (A.20), (A.21) we have that 

the conditional density of zl (0), zl (0) given zl (0) = ZI, Z2(0) = Z2 is a 
two-dimensional Gaussian with mean and variance given by 
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and the conditional covariance matrix has the following form 

1 [ .\2-.\i/.\o 0 l 
:Ezjz = :E22- :E2l:El2 = .\o 0 ,\2- .\i/ .\o . 

Consequently the conditional density of R = 2(Zlil + z2i2) with zl = Zl, 

z2 = Z2 is Gaussian with mean 

and variance 
,\2 

4(x2 + y2)(.\2- ,\~)/.\o = a2(r). 

Since the conditional density does not depend on the angle e it is easy to 
demonstrate that the conditional density of R(O) given R = r is zero mean 
normal with variance a2 (r). 

2.1.2. Narrow-band Stoke's waves. Let us consider the sea containing 
only one Gaussian cosine wave, i.e. X(t) = a Rcos(.\t + 4>), where R is 
a standard Rayleigh distributed variable and 4> is a uniformly distributed 
random phase, which is independent of R. As before a 2 is the energy of the 
wave. The Hilbert transform of the cosine wave is X ( t) = a R sin( .\t + 4>). 
The Stoke's wave can then be written as follows: 

,\2 
W(t) =a Rcos(.\t + 4>) + 

29 
a 2 R 2 cos(2.\t + 24>) 

,\2 
= X(t) + 2g (X(t) 2

- X(t) 2
). 

(2.11) 

We shall now generalize Eq. (2.11) and let X(t) = v'AQZ1(t) be a zero-mean, 
stationary Gaussian process with spectral moments -\0 , .\1 , .\2 < oo. As in 
the previous subsection let X(t) = v'AQZ2 (t) be its Hilbert transform. Define 
Gaussian Stoke's wave as follows 

(2.12) 

where Ap is the peak angular frequency of the spectrum S(.\). Note that 
Ap is usually close to the mean frequency A. Clearly the process W ( t) is a 
non-central x2 process written in a standard form (2.6). 

In oceanography the process Eq. (2.12) is sometimes used to model sea 
surface elevation when the power spectrum is concentrated around the peak 
frequency Ap. Such sea is called narrow-band. 
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Although the process W ( t) is given by only slightly more complex for­
mula (2.12) than the squared envelope process, however the explicit analyti­
cal formula for the up crossing intensity J.Ltir( u) is not known. In Butler et al. 
( 2003), the intensity J.Ltir ( u) is given as a one-dimensional integral that can 
be computed numerically with very high accuracy. So, computed values are 
used to check the accuracy of the saddle-point approximation p,+(u) of the 
crossing intensity J.Ltir(u). The relative error is presented in Fig. 7. The ap­
proximation p,+ ( u) is perforrning very well giving a relative error below 10%. 
As can be see in Fig. 7, taking only the linear part will give fewer crossings, 
leading to high relative errors. 

18 
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' ' ' ' ' ' ', .. 
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-2 0 
u(m] 

.......... ---
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--- --- ---

4 6 8 

FIGURE 7. Relative errors of the saddle-point approximation p,+(u) (dashed line) 
and the crossing intensity of the linear (Gaussian) part of the sea ~Z1 (t) (dot­
ted line). 

2.1.3. Crossings of general x2-processes. We turn now to a more gen­
eral x2-process: 

n 

R(t) = L Xi(t) 2
, (2.13) 

i=l 

where X(t) = (X1(t),X2(t), ... ,Xn(t)) is a stationary, vector-valued, Gaus­
sian process that can also be assumed zero mean, though the variables Xi(t), 
Xj(t) can be correlated. Note that in the case of an envelope process X 1(t), 
X2(t) were independent. Obviously, (X(O), X(O)) is a Gaussian vector, i.e. 
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(X(O), X(O)) E N(O, 'E) where the covariance matrix has the following block 
structure 

'E= [ 'Exx 'Exx ]· 
'Exx 'Exx 

We shall now write the process R(t) in the form (2.6). First, we shall in­
troduce an important variable transformation yT = AXT, where A is an 
n-dimensional matrix. 

Suppose X E N(m, :E) is n-dimensional Gaussian vector such that det('E) > 
0. Let A be the (n, n) matrix whose rows are the eigenvectors of 'E. The 
eigenvectors are normalized to have unit length, i.e. AAT =AT A= I. Denote 
the corresponding eigenvalues by /j and let r be a diagonal matrix with the 
/j as the elements on the main diagonal, then 

Consequently 
yT = AXT E N(Am, r), (2.14) 

i.e. Y is a vector of independent Gaussian variables with variances equal to 
eigenvalues, i.e. V(}j(t)) = /j· 

Suppose that det('Exx) > 0 and let A be the above defined transforma­
tion, then 

R(t) = X(t)X(t)T = Y(t)AATY(t)T = Y(t)Y(t)T, 

where }j(t) are independent N(O, /j) variables. Consequently, with Zj(t) = 

}j(t)/ fij, the process R(t) defined by (2.13), can be rewritten in the stan­
dardized form of Definition 1, as follows 

2 2 R(t) = 11Z1 (t) + ... + !nZn(t) , 

where Zi(t) and Zj(t) are independent N(O, 1). Since Z(t)T = r-1/2 AX(t)T, 
the covariance matrix 'E, defined in Definition 1, consists of the following 
blocks 

'E12 = r-1/2 Ar'ExxAr-1/2, 'E22 = r-1/2 (Ar'ExxA) r-1/2. 

Here r-112, r-1 are diagonal matrices with elements 1/ fij, 1/!j on the main 
diagonals, respectively. 

Example 8. Multiaxial fatigue continuation of Example 3. We turn now 
to computation of the approximation of the expectation of the second term 
in the Grassland's criterion, namely 

Ms(lscl) = max lsc(t)l. 
O~t~S 
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Since E(Ms(lscl)) = J0
00 P(n1axo::;t::;s lsc(t)l > u) du we will next approxi­

mate the probability P(Ms(lscl) > u). First we shall demonstrate that s~ is 
a x2-process. Note that after the variable change: 

X ( ) = Sx(t) 
1 t v'2 ' 

X ( ) 
= Sx(t)- Sy(t) 

3t v'2 ' 

we get sc(t)2 = X1 (t)2 + ... + X4(t)2. Although the covariance matrix ~ 
of X(O) = (Xl(O),X2(0),X3(0),X4(0)) is degenerated, we still can find the 
transformation A where one of the eigenvalues is zero. Let us change rows in 
the matrix A so that 1'1 ;?: 1'2;?: r3;?: 1'4 and define Y(t)T = AX(t)T. If some 
of the eigenvalues are very small relatively to r1 we can replace them by zero. 
Now for the j for which rj > 0 we define Zj(t) = Yj(t)/ ..rYJ· Suppose that 
there are k ~ 3 positive eigenvaleus rj, then 

We see that s~ ( t) is represented in the standard form of Definition 1 and 
we can apply the saddle-point method to approximate the crossing intensity 
J.L+;(u). As before denote the saddle-point approximation be p,+(u). Since 

se 

lsc(t)l = J sc(t)2 hence 

Consequently, the expected maximum value of lsc(t)l on the interval [0, S], 
is approximated by 

00 

E(Ms(lscl)) ""j 1- e-Sj<+(u') du. 

0 

The function p,+(u2 ) can be computed using a program in WAFO. We observe 
that an alternative method to compute J.L+2 (u2), which uses Hasofer-Linds 

Se 

safety index, was proposed in Breitung (1988). 
The simplest approximation of the crossing intensity of s~(t) is obtained 

by letting the eigenvalues 1'2 = 1'3 = 1'4 = 0. In that case lsc(t)l is an ab­
solute value of the Gaussian process with mean zero and .Ao = rl· Now 
for zero-mean Gaussian processes, under some assumptions, one can demon­
strate that up- and down-crossings of level u, -u, respectively, converge to 
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independent Poisson processes. Consequently, asymptotically Ms(lsel) has 
the same distribution as M2s(se)· 

Let V be the eigenvector corresponding to 11 and let L:22 be the covariance 
matrix of X(O), then the second order spectral moment of se, A2 = VTL:22 V 
and hence the expected number of waves in [0, 28] is given by 

and, similarly to (1.19), 

E(max lse(t)l)=vfr1 y'2lnNe+ . ( 
0.5772 ) 

O~t~S y'2ln Ne 
(2.15) 

Combining (1.19), (2.15) we derive an approximation of the expected value 
of the Crossland's criterion at a fixed position q: 

E(Ms(lsei))/J3 + neE(Ms(p)) 

f3e 

The approximation depends only on the parameters 11, Ab and expected num­
ber of waves Np, Ne. The parameters are easily derived from the spectrum of 
the stress tensor. For the particular structure and loading presented in Fig. 1, 
the resulting expected value is presented in Fig. 8. The regions where the ex­
pectation exceeds one, one predicts that cracks will start. In the left plot we 
have the estimate of the expectation based on a long simulation and in the 

A 

Ofi 1 C 

FIGURE 8. The estimated from simulations (left) and approximated (right) ex­
pected value of the Crosslands criterion. 
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right the approximated one in the way discussed above. Since the expected 
value is exceeding one at several locations, the conclusion is that the time S 
should be shortened. Note that the expectation is basically a linear function 
of JlllS. 

3. Lecture Ill: Crossings of intervals 

In the previous two lectures we have presented means to compute the 
crossing ( upcrossing) intensities for Gaussian and x2 processes. The upcross­
ing intensity was then used to find the return period for a load to exceed the 
design load u and to bound the distribution for the highest value (global max­
imum) of the load during the service periodS, see formulas (1.5) and (1.7). 
The crossing intensity is an important characteristic describing the variability 
of a process. One additional property, for a stationary X(t), is that 

+oo J p(u) du = E(IX(O)I) 
-oo 

is equal to the average total variation of the process on interval [0, 1], 

E(f0
1 

IX(t)l dt). If X is Gaussian then E(IX(O)I) = .;>::2~. The total varia­
tion is a simple measure of severity of the load for the fatigue damage. We 
recall that fatigue is a process of initiation and growth of cracks in a mate­
rial, usually rnetal, due to variable stresses. However, often one needs a more 
complete description of the loads horizontal variability and such parameter 
is the following function, called oscillation-intensity, defined as follows. 

Definition 2: Suppose that X ( s), s E R, is a stationary and ergodic ran­
dom process with continuous sample paths. The oscillation intensity J-L08c( u, v) 
of the interval [u, v] is defined by 

J.L08c(u,v) = lim ~(number ofupcrossings of[u,v] by X(s), sE [O,t]), 
t-+oo t 

Note that the number of upcrossings of [u, v] by a continuous function 
x(t), 0 ~ s ~ t, is equal to the largest index n such that there are times 
0 ~ s1 < t1 < s2 < ... < Sn < tn, satisfying x(si) < u ~ v < x(ti) 
and Sn ~ t. The number of crossings of an interval is well defined even for 
very irregular functions, which may have infinite total variation and hence 
infinitely many crossings of u in any finite interval. The oscillation intensity 
can be defined using the concept of downcrossings of [u, v], viz. (see Fig. 9): 

J.L08c(u, v) = lim ~ (number of downcrossings of [u, v] by X(s), sE [0, t]). 
t-+oo t 
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Down oscillations across (0, 1) 
4.-----~------~------~------~-----. 

-4~----~------~------~------~----~ 
0 10 20 30 40 50 

FIGURE 9. Oscillations between levels v = 1 and u = 0. 

Obviously, J-L08c( u, v) is equal to the average rate of oscillations between 
sets ( -oo, u) and (v, +oo) by X(t), which motivates the name. The cross­
ing intensity is difficult to compute. The explicit formulas which exist are 
for processes with Markov structure, e.g. Ornstein-Uhlenbeck process having 
A2 = oo, see Rychlik (1996). 

There are, however, the following explicit bounds: 

(3.1) 

since one has to cross, at least once, all levels in the interval [u, v] in order 
to cross the interval. 

3.1. Wave crest distribution 

Design of offshore structures and safety of offshore operations both de­
pend on accurate prediction of frequencies of occurrences of high waves (for 
given sea conditions). In this subsection we shall demonstrate that the cross­
ing intensity is the most important "simple" characteristic of sea conditions 
relevant to the wave height prediction. 

Let X ( t) be the height of the sea level at a fixed point as a function of 
time. In oceanographic applications X ( t), is often viewed as a sequence of 
"apparent waves". There is no general agreement about the formal definition 
of a wave. Often one uses the so-called upcrossing waves, where the apparent 
individual wave is the part of the record between two consecutive upcrossings 
of the so-called still water level m, say, see Fig. 10. (The still water level is 
generally unknown. It is often estimated by the mean of the recorded sea 
elevation X or is chosen to be equal to the level most frequently crossed 
by X.) 

The intensity of waves is by definition equal to the intensity of upcrossings 
of the still water level m by the process X. Assume that the level m is known. 
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\ 
v~ _ _____...,v 

FIGURE 10. Some characteristic wave parameters: Ac (crest amplitude) and Tc 
(crest period), m= 0. 

By Rice's formula the intensity of waves is equal to J..L+(m), given by (2.2), 
while the intensity of waves with crest higher than v is more difficult to 
compute. An important relation linking the crest height distribution and the 
oscillation intensity is that 

(intensity of waves with crest higher than v) = J..L08c(m, v). (3.2) 

We turn now to an important upper bound for the pm(Ac > v) which is 
defined as the proportion of waves with crest higher than v that is observed 
in X(s), 0 :S s :S t as t tends to infinity. For ergodic sea pm(Ac > v) = 
{losc(m,v)/J..L+(m). Since J..L08c(m,v) :S jl+(v) and hence 

Prn(A ) - J..losc(m, v) J..L+(v) 
c>V- <--­

J..L+(m) - J..L+(m) 
v 2: m. (3.3) 

Consequently, if we assume that the sea elevation is well modeled by a Gaus­
sian process then, using Rice's formula, we obtain 

(3.4) 

In oceanography one often approximates the distribution of Ac- m by the 
distribution of ~·~ R, where R is a standard Rayleigh distributed variable. 
That actually it is always a conservative bound, is less known. 

Example 9. Assurne that at a location of a buoy the sea has Tz = 10 s, 
and Hs = 10 m. Then the probability that a crest height is above 10 meters 
is less than e-8 . Practically, if one assumes that the sea state rest for 1 hour 
then it will be in average 360 waves passing the buoy and of them less than 
100e-8 ~ 3.3% (12 waves) will have crests higher than 10 meters. 
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The Rayleigh approximation for the crest height distribution in Gaussian 
sea is well established in oceanography. The deep water sea with moderate 
waves (not too steep) is often well described using Gaussian fields based on 
the linear wave theory. However, for severe sea states considerable asymmetry 
is observed; troughs are shallower while crests are higher than predicted by 
the Gaussian model. Since the crests can be up to 20% higher, these effects 
can not be neglected. In the literature one is often modeling the observed 
wave asymmetry by adding a random quadratic correction to the Gaussian 
model term, i.e X(t) = Xz(t) + Xq(t) similarly to the example of response of 
a wind loaded structure. The proposed model is a noncentral x2 process, see 
Machado and Rychlik (2003). For this model, the upcrossing intensity J-L+(u) 
can be approximated by p,+(u), computed using the saddle-point rnethod. 

Example 10. Consider a deep water location having JONSWAP spec­
trum, see Hasselmann et al. (1973), with H8 = 7m, peak period Tp = 11 [sec) 
and peak-shape parameter r = 2.385. In Fig. 11 the accuracy of the approx­
imation of the conditional distribution of the crest height given that crests 
are higher than one meter is presented, i.e., 

m pm(Ac >h) p,+(h) 
P (Ac > hiAc > 1) = pm(Ac > 1) ~ p,+(1). 

2 3 4 5 6 7 8 9 10 
h[m] 

FIGURE 11. Conditional distribution of crest amplitudes Ac, i.e. P(Ac > hiAc > 
1), h m. Irregular line: empirical distribution estimated from simulated 24-hour­
sea elevation, dotted line: Gaussian approximation (X(t) = X1(t)), i.e. the dis­
tribution of Ac given in Eq. (3.4) and dashed line: the approximation based on 
saddle-point approximation p,+(u). 
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(The reason for considering only the waves with crest above one meter is 
to exclude small waves that can not be well approximated by means of 
bound (3.3). Such small waves are less important in safety analysis of off­
shore structures.) In the figure we can see excellent agreement between the 
approximation and the empirical distribution obtained from simulated sea 
surface elevation. 

We shall quantify the difference between the linear- and quadratic-model 
by giving the size of the so-called 10 days crest height, i.e if the sea had 
the same JONSWAP spectrun1 for 10 days, then (on average) one wave in 
10 days would have crest higher than the 10 days crest. The 10 days crest 
height is predicted to be 8.4 m and 9.8 n1, if we model the surface by means 
of a Gaussian linear sea Xz and the second-order sea, respectively. 

3.2. Fatigue of metals 

The first systematic quantitative investigation of fatigue damage was per­
formed by August Wohler (1870), and resulted in the widely known Wohler 
curve, which shows the relationship between the amplitude S = v-u and 
mean m = ( u + v) /2 of the applied stress function 

u+v v-u. 
x(r) = -

2
- + -

2
- Sin(Ar), T ~ 0, (3.5) 

and the number of periods to fatigue failure. Wohler discovered that the 
number of periods to failure depend mostly on v, u and that it is almost 
independent of the frequency A. In practical tests, it is hard to obtain stresses 
that are exactly sinusoidal, however the particular shape of the function x is of 
secondary importance as long as the local maxima are approximately v high, 
while local minima have height u. This property is called rate independence. 

Although the tested specimens are almost identical and the loading func­
tion x is the same for all specimens, one observes a large variability of times 
to failure of a specimen due to variability of material properties. The number 
of cycles to failure, sn( u, v) is used as a measure of material strength against 
fatigue. Often a simple regression model is fitted to the observed data and 
the strength of material is modeled as 

sn(u, v) = K · f(u, v), K = exp(aX), (3.6) 

where X is a standard normal variable, while f(u, v) is a deterministic (me­
dian) strength. In fatigue codes one often uses 

f(u, v) = k(v- u)-a, (3.7) 
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where a 2: 1, k and a are material dependent constants. In the experiments 
one is observing that a often depends on (u, v); however, this dependence is 
usually neglected. The parameters are estimated by fitting regression line to 
the logarithmed data. 

Obviously real loads are seldom so simple as a constant amplitude load. 
Consequently one needs to find methods to characterize variability of a load 
relevant for fatigue life prediction. The approach presented here is based on a 
concept of linear damage accumulation model proposed by Palmgren ( 1924) 
and Miner ( 1945). This approach is commonly used in engineering practice. 

Traditionally there are two main approaches to define D(x), say, the 
damage caused to material by a variable load x: 

• Define a suitable damage accun1ulation rule for the constant amplitude 
load (3.5) and then extend it to the case of more complicated loads by 
means of cycle counting schemes. 

• Specify a number of properties that the fatigue damage accumulation 
process should satisfy. This will define a suitable class of functionals 
D(x) which are then calibrated using Wohler curve. 

We limit ourselves here to the first approach. Assume that x has finite 
intensity of local extremes. Let us begin with the damage caused by a simple 
load function x(T), T E [0, t], defined by (3.5). Denote by Nt the number of 
local maxima of x (Nt ~ t>..j21r). Since damage D(w) is rate independent then 
it is a function of u, v and Nt alone. Using (3.6) a (dimensionless) damage is 
defined by 

Dt(x) = Nt/ f(u, v). 

By (3.6), we derive the following fatigue criterion: 

"the load x is safe for fatigue" if Dt < K, (3.8) 

where K is a random threshold with median one. Obviously, the condition 
Dt < K is equivalent to Nt < sn(u, v). 

Now we shall write the damage Dt(x) in a way that is easy to extrapolate 
to more complicated loads than (3.5). Let ti be times of local maxima in x. 
Suppose that the damage is constant in the intervals (ti-ll ti) and increases 
at ti by 

1 
Di = f(u v), then Dt(x) = L Di. 

' ti~t 

We turn now to a general load x. Even in this more complicated situa­
tion accumulated damage D(x) is a function of the sequence of local max­
ima and minima of x. As before let ti be the time of ith local maximum 
with value Vi = x(ti) and the damage increment in the interval (ti-1, ti] 
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equal to Di. For a constant amplitude load x, the damage increases by 
Di = 1/f(ui,vi)(= 1/f(u,v)), where Ui = minti-t<s<ti x(s) is the value of 
the preceeding minimum. Since ui, Vi are well defined for general load hav­
ing finite number of local maxima one could use Di = 1/ f ( ui, Vi) to model 
damage increase between the two consecutive local maxima. Such fatigue ac­
cumulation rule was used before, but since it often gives too small damage 
increments it has been abandoned. It was concluded that the damage incre­
ments depend on the sequence of the local extremes in a more complicated 
way, and not only on the last two extreme values (ui, vi)· 

At present, the most commonly used definition of the damage increment 
Di is the so-called rainBow method proposed by Endo, the first paper in 
English is Matsuishi and Endo (1968). It is a complicated algorithm us­
ing hysteresis properties of metals to define Di, see Brokate and Sprekels 
(1996, p. 76) for details. While original algorithm for the computation of Di 
is complicated the damage functional Dt(x) = Lt·<t Di is rrmch simpler to 
compute, see the following theorem, proved in Rychlik (1987). 

Theorem 2: Let each local maximum Vi= x(ti) in x be paired with one 
particular local minimum uk, determined as follows: from the ith local maxi­
mum (value vi) one determines the lowest values in forward and backward di­
rections between ti and the nearest points at which x(t) exceeds Vi· The larger 

{less negative) of those two values, denoted by u~ fc, is the rainfiow minimum 

paired with Vi, i.e. u~ fc is the least drop before reaching the value vi again 

on either side. Thus the ith rainfiow pair is (u~fc, vi), see Fig. 12. The total 

damage D~fc(x) defined using the rainfiow method of Endo is equal to 

D r jc( ) _ """"" 1 
t X - L rjc · 

t ·<t f(ui 'vi) 
1_ 

{\-- V; 

FIGURE 12. Definition of rainftow cycle. 
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As is evident the rainftow minimum does not necessarily immediately fol­
low or preceede the corresponding maximum. This explains why it is difficult 
to compute the damage increase in the interval (ti-1, ti], Di. 

The fatigue criterion (3.8) is reformulated as follows 

"xis safe for fatigue" if n;fc(x) < K. (3.9) 

Obviously, the environmental loads are not known in advance and hence one is 
modeling those by means of random processes. Suppose that X ( s), s E (0, t], 
is a random load, then the accumulated damage n;fc(X) is a random variable 
and hence one would like to compute the failure probability, i.e probability 
pf = 1- P(n;fc(X) < K). Since the computation of the failure probability 
is often very difficult thus, similarly as in the case of multiaxial fatigue, 
one is checking if the criterion is satisfied in average. More precisely, one is 
replacing, in (3.9), the random strength factor K by its median value that is 
1 and the damage n;fc(X) by the expected damage E(D;Jc(X)). However, 
the recent investigations by Johannesson et al. (2003) demonstrated that 
for non-sinusoidal loads K should be lognormally distributed variable with 
median smaller than one. It is not unusual that median is as low as 0.3, which 
expresses the fact that the variable load is more damaging that the equivalent 
[having the same expected damage E(D;Jc)] simple sinusoidal load is. This 
results in the following fatigue criterion 

"X is safe for fatigue" if E(D;Jc(X)) < 0.3. (3.10) 

For stationary load X there is a damage intensity dr fc, such that 
E(D;Jc(X)) = t · ~fc. If, in addition, the load is ergodic then the damage 
intensity is given by 

~ fc = lim n; fc(X). 
t-oo t 

Finally, if the service time of a component is denoted by S, then no fatigue 
failure is predicted ifS· dr fc < 1 (or more conservatively ifS· dr fc < 0.3]. 

Not many explicit general results are known about the rainftow damage 
intensity ~ fc, one of them is that in the special case when a = 1 the dam­
age intensity is proportional to the average variation of the process in the 
interval (0, 1], more precisely 

00 

,rfc = 2~ E(IX(O)I) = ~ J Jl+(u) du. (3.11) 

-oo 
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Note that the result is true for any stationary load. For a > 1, which is the 
most important case in practice, it can be shown that 

_rrfc = _ J J fP1/ f(u, v) osc( ) d d 
u {) UO V J1 u, V U V' (3.12) 

see Rychlik (1993) . As we have mentioned before the oscillation intensity 

can be computed only in a few special cases. However, since -
821/!J:,v) 2: 0, 

thus by bounding J1°8 c(u,v) by Inin(J.-L+(u),J.-L+(v)) we obtain the conservative 
estimate of the rainfiow damage intensity. In the following example we shall 
derive the bound for a Gaussian load. 

Example 11. Let load X(t), 0 ~ t ~ S,be a zero-mean Gaussian process 

with variance Ao and average angular frequency .X = VA2/ Ao. Further, let 

N = S 2~ be the average number of zero-upcrossings of X during the service 
period S. The load is safe for fatigue ifS· drfc < 1. We shall demonstrate 

that, according to this criterion, X causes (in average) less damage to the 
material then the following simple Gaussian wave: 

Y(t) = ARcos(.Xt +e), t E [0, S], 

where R is a standard Rayleigh distributed variable independent of the uni­
formly distributed e. Since Y is a constant amplitude load we have 

Note that for Y(t) one can compute the failure probability, i.e., 

pf = 1- P (-a ln(R) + aU > ln(N) +a ln(2A) -ln(k)), 

where U E N(O, 1) is independent of -ln(R), which is Gumbel distributed. 
However, the computed failure probability is not necessarilly a conservative 
bound for the failure probability for the X load, see discussion following 
Example 1. 

The damage intensity for the load Y is 

(3.13) 

We shall next demonstrate that d!fc(Y) > d!fc(X). Using (3.12) and the 
bound 

.X ( -~ -~) J.-losc( u, v) ~ 
2

7r min e 2>.o, e 2>.o , 
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and some symmetries (J-L08c(u, v) = J-L08c( -v, -u)) we get 

_rrfc = _ J J 82
1/ f(u, v) osc( ) d d 

u 8 u8 V J-l u, V U V 

,\ Jo Ju _2_ 
:S -2

2
7r k a( a- 1)(v- u)0

-
2e 2 >-o dvdu 

-00-U 

A 00 A 

= ~(2JTa)0 j ra+le-r
2

/
2 dr = ~(2JTa)0E(R0 ). 

27r k 27r k 
0 

Thus we have shown that drfc(X) :S drfc(Y). The derived bound is often 
called narrow-band approximation for Gaussian loads. The bound is usually 
very accurate if the groupness parameter a1 ~ 1. Similar bounds can be 
derived even for non-Gaussian stationary loads when the upcrossing intensity 
is known or can be computed. 

Note that for Gaussian process and a= 1, the upper bound 

2; k (2JTa)"E(R") = ~ J>-2/2rr = 
2
1
k E(IX{O)I), 

is the exact value of damage intensity, see (3.11). 

4. Lecture IV: Derivative and other marks at crossings 

In the previous-section we have discussed computation of the intensity 
of points t such that X ( t) = u, where X is a random process while u is a 
fixed level. In many applications one would like to know more about the fine 
details of X(t) near the points where it exceeds some level u, e.g. ·the slope 
or velocity by which it passes the level, or the duration and height of the 
excursion above u. Looking at local extremes, which are located at t where 
X(t) = 0, one is interested in their heights, e.g. frequencies oft, such that 
X(t) = 0 and X(t) > u. Such intensities are useful in evaluation of some 
characteristics of cycle amplitude used in fatigue analysis. In this section we 
will present methods to estimate intensities of the solutions to the equation 
X(t) = u that satisfy some restrictions, see the following simple example. 

Example 12. The upcrossing intensity is the intensity of t such that 
X(t) = u and X(t) > 0, i.e. we are not interested in all solutions to the equa­
tion X(t) = u but only those that satisfy the additional condition X(t) > 0. 
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4.1. Intensity of marked crossings 

Let Z ( t) be a smooth process, such that the joint density f ( i, z) of 
Z ( t), Z ( t) exists, and say we are interested in the intensity of t such that 
Z(t) = u. Suppose that, in addition to Z, one has a vector of processes 
Y(t) = (Y1(t), ... , Yn(t)) such that Z(t), Y(t) are jointly stationary and er­
godic. Consider now a statement A about the outcome of Y(t) and Z(t) for 
which we can say if it is true or not at any timet. Let 

Ct(u) ={sE [O,t]: Z(s) = u}, 

and we shall write 

Now denote 

Nt(Aiu) =number of sE Ct(u) such that A is true, 

and let 
Nt(AI·u) 

J.t(Ais E Cu) = lim ---
t-+oo t 

(4.1) 

be the intensity of the solutions of the equation Z ( s) = u, such that 
Y(s), Z(s) satisfy A. By assumed ergodicity of these processes, J.t(Ais E Cu) 
is well defined (and deterministic). 0 bviously, E ( Nt (A I u)) = t J.£ (A Is E Cu). 
Using the introduced notation, J.t(u) = J.t(s E Cu) is the intensity of the solu­
tions Z(s) = u. Usually we will write J.t(Aiu), J.t(u) instead of J.t(Ais E Cu), 
J.£( s E Cu), respectively. 

Example 13. Let Z(t) = X(t), Y(t) = X(t), and A be the statement 
A ="Y(t) > u, Z(t) < 0", then Nt(AIO) is the number of local maxima of X 
observed in [0, t] exceeding level u while JL(Ais E Co) is the intensity of such 
local maxima. 

Now the "long run" probability of A observed at s E Cu, i.e. such that 
Z(s) = u, is defined as 

P(AI C ) 
_ 

1
. Nt(Aiu) _ J.t(Aiu) 

sE u - 1m - . 
t-+oo Nt(u) J.t(u) 

(4.2) 

Note that P(A) = P((Y(O), Z(O)) E A) (likelihood that A is true at time 
zero) is usually not equal P(Ajs E Cu)· The reason for this is that values of 
Y(s), Z(s) at points such that Z(s) = u can have different distribution than 
Y ( s), .i ( s) observed at s = 1, 2, 3, .... We turn now to the computation of 
the intensity J.t(Aiu). 
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Theorem 3: Under the general assumptions of this section, if the joint 
density f(z, z) of Z(O), Z(O) exists then 

J.t(Aiu) = j P(Aiu, i)lilf(Z, u) di, (4.3) 

where P(A!u, z) is the conditional probability 

P( (Y(O), Z(O)) E AIZ(O) = u, Z(O) = z ) 

= P( (Y(O), z) E AIZ(O) = u, z(o) = z). 

In addition, if also the density f(y, z, z) ofY(O), Z(O), Z(O) exists, then 

J.t(Aiu) = j lilf(y, i, u) dy di. ( 4.4) 

A 

The proof of this theorem can be found in Leadbetter et al. (1983). 
In the Appendix we have introduced the concept of conditional probabili­
ties; for any statement A there is a function P(Aiz, z) such that P(A) = 
J P(Aiz,z)fz.z(z,z)dzdz. The formula (4.3) is a generalization of Rice's 
formula since it simplifies to (2.1) for A which is always true. 

Studying the x2 processes we found that Z(O), Z(O) may have a den­
sity f ( z, z) whose explicit analytic form is not known. Now an additional 
complication arises if one also needs to find the conditional probability 

P(Aiz, z) = P( (Y(O), z) E AIZ(O) = z, Z(O) = z). 

Finding the conditional probability can be a very complicated problem if 
Z(t) is a non-Gaussian process. There are only few examples of such anal­
ysis. The first one is given in Rice ( 1944) where the author was inves­
tigated the height of local maximum in the envelope process (Rice used 
another definition of the envelope than given in this presntation). An­
other one is presented in Ditlevsen and Lindgren (1988) where the authors 
studied frequencies of empty envelop excursions. In that work the process 

Z(t) = E(t) = X(t) 2 + X(t)2 while Y(t) = X(t + r), where r E R is a 
fixed constant. T e statement A was a very complicated property of X called 
'empty excursion", which means that the upcrossing of the level u by E(t) 
is not followed by the upcrossing of the level by the process X(t) , and it 
needs to be approximated by some simpler statement. We will not go into 
details on this problem, see also Lindgren and Rychlik (1991) (and references 
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therein) for some additional examples of computations of marked crossings 
of non-Gaussian processes. 

The problem of computing marked crossing intensities simplifies some­
what if Y(O), Z(O), Z(O) is a Gaussian n + 2 dimensional vector. If the 
condition (property) A is a complicated non-linear function of Y(t) , then 
computation of M(Aiu) requires numerical integrations inn+ 1 dimensions. 

4.2. Derivatives at crossings 

Consider a stationary ergodic Gaussian process Z ( t). Suppose that 
E( Z ( t)) = m and the spectral measure has the first two spectral moments 
finite, i.e. -Xo, A2 < oo. It is well known that the derivative process Z(t) exists 
and is also Gaussian. Let us denote by A the statement that the observed 
derivative exceeds the level v. As we have mentioned before, the deriva­
tive of a stationary Gaussian process is a zero mean stationary Gaussian 
process with variance equal to the second order spectral moment A2, i.e. 
Z(t) E N(O, -X2). This means that the fraction of derivatives exceeding v, 
observed at times t = 0, 1, 2, 3, ... is equal to 

P(Z(O) > v) = 1- <I>(v/ ~). 

Now we shall demonstrate that the fraction of derivatives observed at points 
s, such that Z(s) = u will have a different value, i.e. P(Z(O) > v) =I= P(Z(s) > 
vis E Cu)· 

Lemma 1: Under the general assumptions of this section the distribution 
Fu(v) = P(Z(s) :5,; vis E Cu) has density 

lvl 1) 2 

fu (V) = 2A2 e- 2>.2 • (4.5) 

Proof. For A ="Z(s) > v", using (4.3), we have that the intensity J.t(Aiu) 
is given by 

00 

tMiu) = j P(Z(O) > v I Z(O) = u, Z(O) = Z)lilf(u, Z) di 
-oo 

00 
(4.6) 

= j IZif(u, Z) di, 

V 

where f(u, z) is the density of (Z(O), Z(O)). By our assumptions Z(O) E 

N(m, -Xo) is independent of Z(O) E N(O, A2)· Consequently f(u, z) = 
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f(u)f(z) and hence 

00 00 

J.t(Aiu) = f(u) J IZif(i) di = 2f(u)f§i J ~~~ e -,•,', di . 

V V 

Clearly J-L(u) = J-L(A!u), for v = -oo, and hence 

J.t(u) = 2f(u)f§i 7 ~~~ e -,•:, di = 2f(u)f§i. 
-oo 

Consequently 

which after differentiation leads to ( 4.5). 0 

Before we turn to some more complicated example taken from naval 
engineering we shall first sketch a general approach to computation of 
P((Y(8), Z(8)) E A!8 E Cu) for Gaussian processes Y(8), Z(8): 

First write down a formula for the long-run distribution of the vector 
Y(s), Z(8) observed at 8 such that Z(8) = u, then find the density JU(y, z). 
(Such density always exists ifY(O), Z(O), Z(O) has non-degenerated Gaussian 
density.) Finally compute 

P((Y(s), i(s)) E Als E Cu) = J f"(y, i) dy di . (4.7) 

A 

In order to simplify notation one is often introducing variables Yu, Zu, which 
have the density fu(y, i), i.e. we can formally write 

P((Yu,iu) EA)= P((Y,i) E Als E Cu) = J f"(y,Z)dydi. (4.8) 

A 

We observe the variables Y u, Zu are the special case of the so-called Slepian 
model process, see Lindgren and Rychlik (1991) for detailed presentation. 

Now one can ask the question about the long-run probability that the 
derivative observed at upcrossings of the level u exceeds level v, i.e. we wish 
to know the proportion of 8 such that Z ( 8) = u and Z ( 8) > 0 which also 
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satisfies the condition Z ( s) > v, v 2: 0. After a short reflection one can see 
that it is just the conditional probability 

P(z. IZ. O) _ P(Z(s) > v, Z(s) > Ols E Cu) _ - 2\.
2 

u>V u> - . -e 2, 

P(Z(s) > Ols E Cu) 

see Appendix for the definition of conditional probabilities. We conclude 
that the derivative at upcrossing is Rayleigh distributed. The distribution is 
independent of the level u. 

The following lem1na gives explicit formula for Yu, Zu for the one­
dimensional Y(s), i.e. when Y(s) = Y(s). 

Lemma 2: Suppose Z(t), Z(t), Y(t) is a stationary Gaussian vector val­
ued process. Let ·m,z = E(Z(t)), my = E(Y(t)) and let the covar'iance matrix 
E of the vector Z(t), Z(t), Y(t) be given by 

E= 
0 azaypzy l 
a~ azaYPzy . 

azaYPzy a~ 

(4.9) 

The variables Yu, Zu, with distribution defined by { 4. 8), have the following 
representation; 

(4.10) 

where R, which is independent of U E N(O, 1), has a double Rayleigh dis­

tribution, and hence the probability density f ( r) = 1;1 e -r
2 
12 . Here rnu = 

my+~pzy(u-mz) and pzy, Pzy are correlations between Y(O) and Z(O), 

Z(O), respectively. Obviously, the long-run distribution Fu(y, v) ofY(t), Z(t) 
at points that satisfy Z(s) = u, i.e. P(Z(s) ~ v, Y(s)) ~ yls E Cu) is given by 

_ ( V 2 2 y-mu - p PzyR + 1- Pzy- PzyU ~ ay ' 

Proof. We need to demonstrate that 

R ~ _3!__) . 
a· z 
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where A ="Y(t) :=:; y and Z(t) :=:; v", is equal to 

( 
. . / 2 2 Y - mu V ) 

p PzyR +V 1- Pzy- Pzyu:::; O'y ' R:::; az . 

We begin by computating the intensity p,(Aiu), i.e., the intensity of points s, 
such that Z(s) = u and A is true. From formula (4.3) we know that 

+oo 

t-t(Aiu) = j P(Y(O) ::; y, Z(O) ::; v I Z(O) = u, i(O) = i)lilf(u, i) di, 
-oo 

where 

P(Y(O) ::; y, Z(O) ::; vlu, i) = { ~(Y(O) ::; YIZ(O) = u, Z(O) = i) if Z :S V 

if z > v. 

Now we know, see Appendix, that the conditional density of Y(O) given 
Z(O) = z, Z(O) = z fs Gaussian with the mean 

[ 
2 l-1 [ l az 0 z-mz 

m(z, z) =my+ ay[azpzy azPzy] O ~ a~ z . 
I 

( 4.11) 
ay ay . 

=my+ -pzy(z- mz) + -pzyZ, 
az az 

and the variance 

a 2 =a~- a~[azpzy azPzy] [ ~~ 0 2]-
1 
[ a~p~y ] 

a z azPzy (4.12) 

= a~(1- p~y- P~y)· 
Consequently we have 

2 V 

p,(Aiu) = 1 e _.;__<u_~:~t~> f <P (y- m(u, i)) lil e-(z2/2a~) dz 
~az a ~az 

-00 

(u-mz)2 !V ( ( ')) 2<7~ <P y - : u, z 

-oo 

lzl -(z2 /2a2.) d. -e z z 
2a~ z 

(u-mz)2 V • 

2 2 J ( ay · ) lzl -(;2 /2a2.) . <Yz P mu+ -p · z + aU < y -e - z dz az ZY 2a~ 
-00 z 

-00 

( 4.13) 
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(u-mz)2 

Since J.L(u) = ~*e 2,.~ , the lemma is proved. 0 

Note that the formula ( 4.13) can be computed using integration by parts, 
see the following lemma for the related result. 

Lemma 3: Let U, R be, independent, standard Gaussian and Rayleigh 
distributed variables. For a > 0 and any x 

( X) x
2 b (X b) P(aU + bR > x) = q> -~ + e-2.;2" · ~q> ~~ , (4.14) 

where a= Ja2 + b2. 

The last two lemmas give an explicit way to compute the distribution 
of Yu, Zu, i.e. pu(y, z) = P(Yu ~ y, Zu ~ z). The representation, given in 
(4.10), helps to write the probabilities P((Y(s), Z(s)) E Als E Cu) in a more 
transparent way, see the exarnple given in the following subsection. Similar 
results can be derived for vector valued process Y(t) and even for Y(t) 
containing infinitely many processes Yi(t), see Lindgren and Rychlik (1991). 

Remark 4. Suppose (Y(O), Z(O)) is Gaussian then 

· ( . 1 y- my v) 
P(Y (0) ~ y' z ( 0) ~ V) = p p zy R + V 1 - P1y u ~ ay ' R ~ a z ' 

where U, R are independent standard Gaussian, i.e. U, R E N(O, 1). Conse­
quently, if the process Y ( ·) is independent of Z ( ·) then the values of Y ( s) 
observed at points s where Z(s) = u, Yu is the same as the distribution Y(O). 

4.2.1. Extreme stresses at slams. In modeling forces and movements of 
ships on random seas, an important safety factor is size of stresses due to 
slams, that occurs when a ship proceeds at certain speed in rough seas and the 
front part of the hull bottom sustains large forces resulting from impact with 
the sea surface. Following the approach of Leadbetter and Spaniolo (1998), 
let Z(t) denote the relative vertical motion of the bow and wave height, each 
measured from their respective mean position so that Z(t) has zero mean 
(m z = 0). The bow emerges from the water if Z ( t) exceeds the draft u of 
the vessel. Further, a slam occurs when Z ( t) crosses u from above to below 
with large enough speed, i.e. Z ( t) = u and Z ( t) < c, where c < 0 is some 
fixed threshold. The whipping stress at the instant t of the slam is often 
assumed to be proportional to Z ( t) 2 . However, the vessel also experiences 
the so-called wave-induced stress Y(t), say, caused by the wave interaction 
with the vessel. The total stress S(t) at the slam instance is then 

S(t) = Y(t) + kZ(t) 2
, 
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where k is a negative proportionality constant. In safety analysis of a vessel, 
one is interested in an estimate of 

JL(Aiu) ="intensity oft such that Z(t) = u and Z(t) :S c, S(t) :Ss", 

where A ="Z(t) :S c, S(t) :Ss" and s is a fixed (negative) stress. 
We shall compute JL(Aiu) using ( 4.2) 

JL(Aiu) = P(Z(t) :S c, S(t) :S sitE Cu)JL(u), c < 0, 

where JL(u) = ~*e-u2 f2u~, while P(Z(t) :S c, S(t) :S sit E Cu) will be 
computed by means of Lemma 2. 

As we have mentioned before, the sea surface X evolving in time is usu­
ally modeled as a Gaussian random field. The simplified analysis of a ship 
motion assumes that responses are linear functionals of the sea and hence 
(Z(t), Z(t), Y(t)) is a Gaussian vector valued process. By assumed stationar­
i ty, Z ( t), Z ( t) are independent but correlations p zy, p zy can be non-zero in 
general. Suppose that the covariance matrix ( 4.9) has been computed using 
a suitable sea spectrum and the model for the vessel's motion. Assume fur­
ther that E(Y(t)) = 0. Note that the event that bow emerges from the water 
affects the ship motion in a nonlinear manner making use of the Gaussian 
model questionable, but we neglect this problem. Now using Lemma 2, 

P(Z(t) :S c, S(t) :S sitE Cu) = P(Zu :S c, Yu + kZ~ :S s). 

Hence the intensity JL(Aiu) can be written in a more explicit way: 

( 

2 ~ ) 2 c a. s-u pzy la·-~ 
JL(Aiu) = P R < -, PzyR + aU + k_g_R2 < uz _ _g_e 2rrz, 

az ay ay ?T az 

where U, Rare independent, U E N(O, 1) and a= )1- P~y- P~y' while R 

has pdf f ( r) = 9e-r2 
12 . We conclude that the intensity of slamming events 

leading to high stresses can be estimated by computing a one-dimensional 
integral. Note we could not directly apply the lemma with Y(t) = S(t) since 
Y is not a Gaussian process. 

4.3. Crests and troughs in Gaussian processes 

Let us consider a stationary Gaussian process X(t) with mean m and 
spectral distribution having finite fourth spectral moment, i.e. Ao, -\2, A4 < 
oo. This implies that the second order derivative X(t) exists and X(t) E 

N(O, -\4). Denote by llmax the intensity of local maxima. Following our 
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schema, let the process Z ( t) = X ( t). We know that, by stationarity, 
Z(t) E N(O, .X2) is independent of Z(t) E N(O, .X4). Now the intensity of 
local maxima is given by 

J.lmax = J-L(Z(s) < O!s E Co) 
00 

= J P(Z(O) < OIZ(O) = 0, Z(O) = i)lilf Z(O),Z(O) (i, 0) di 
-oo 

since P(Z(O) < OIZ(O) = u, Z(O) = z) = 1 if z < 0 and zero otherwise. (The 
intensity of local minima is equal to J.lmax). 

Obviously, between two upcrossings of the mean level there is at least one 
local maximum. This fact is used as a motivation for the use of the following 
irregularity measure of the process X 

intensity of upcrossings of the mean E(X(O)) 
Q = ----------------------------------

2 intensity of local maxima · 
(4.15) 

For a stationary Gaussian process we have (by Rice's formula) that the in­
tensity of upcrossings of the mean E(X (0)) is given by 2~ J .X2/ .Xo and hence 

(a) Narrow-band process 
4.-------------, 

-
40 50 100 

(c) Narrow-band spectrum 
2.--------~----, 

1.5 n 

0.5 

0o 0.5 1.5 2 

(b) Broad-band process 
4r---------------, 

-40 50 100 
(d) Broad-band spectrum 
1 .--------~----, 

0.75 

0.5 1.5 2 

FIGURE 13. Examples of narrow- and broad-band processes. 
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the parameter a2, defined by ( 4.15), is equal to 

-\2 
Q2 = . 

J -\o-\4 

Note that we have already introduced another irregularity measure nt = 
J;;.x

2
, called groupness measure. 

From the definition of a2 we have directly that 0 :::; a2 :::; 1. Clearly, if 
a2 ~ 1 then the process X ( t) must be quite regular with one local maximum 
between the consecutive upcrossings of the mean level. Such process is usually 
called a narrow band process. Processes with a2 ~ 0 are in general very 
irregular and are called broad band; see Fig. 13 where two sample paths of 
Gaussian processes with their spectral densities are presented. 

Remark 5. The parameter a2 is a simple measure of irregularity of the 
process and one can easily construct processes, which in fatigue application 
should be considered as extremely narrow band but they have a2 = 0. Exam­
ple of such process is presented in Fig. 14. In the figure we show two parts of 
a sample of the damped oscillator with spectral density (1.21) with ( = 0.01. 
At plot (left) we have a longer record of the process while on plot (right) we 
are zooming in on the neighborhood of a local maximum of the process. This 
process has a2 = 0 and is considered as extremely irregular (broad-band) 
since the intensity of the maxima J.Lmax is infinite. Note that the parameter 
Gt is close to one, nt = 0.995. However, the maxima cluster in a negligible 
surrounding of a major top and in practical applications these small wiggles 
can be completely irrelevant and the process should in fact be called a narrow 
band process. For this process, the narrow-band approximation (3.13) will 
give very accurate approximations of the rainflow damage. Note that formally 
we have problems in defining the rainflow damage, since the discussed process 
has infinitely many local extremes (cycles) in any finite interval. However, for 
irregular processes one can use equation (3.12) to define the rainflow damage 
even for loads that have infinitely many cycles but the sum of their damages 
is finite, see Rychlik (1993) for discussion. As we have mentioned before the 
oscillation intensity is well defined even for very irregular processes. 

We turn now to the long-run distribution of the height of local maxima, 
i.e. the distribution of X(t) fort such that X(t) = 0 and X(t) < 0 given by 

P(M ) 
= P(X(s) :::; x; X(s) < Ols E Co) 

ax < x .. . 
- P(X(s) < Ojs E Co) 

(4.16) 

We begin by computing P(X(s) :::; x; X(s) < Ols E Co). 
In order to use the lemma define Z(t) = X(t) and Y(t) = X(t) and 

let u = 0 in the condition Z(s) = u. We have my = m, mz = 0 and the 
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FIGURE 14. Narrow-band linear oscilator ( = 0.01: (a) simulated longer path of 
the process, (b) zoomed neighbourhood of a local maximum in the path. 
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covariance matrix 

Consequently a~ = A2, a~ = A4, pzy = 0, Pzy = -n2, a~ = Ao, and Lemma 
2 gives: 

Zo=~R, 

Yo = m + A ( -a2R + J 1 - a~U) , 
Note that the variable Yo is the height of local extreme (by Bulinskaya's 

lemma, Bulinskaya (1961), the solutions of the equation X(s) = 0 are with 
probability one local maxima or minima) and not the height of the local 
maximum. The probability P(Max ~ x) can be derived as follows 

P(Max ~ x) = P(Yo ~ xiZo < 0) = P(Yo ~ xiR < 0). 

This gives the final result 

P(Max ~ x) = P (m+ A ( a2R + Jl- a~ U) S x) . 

The long run distribution of height of a local maximum is the same as the 

distribution of the random variable m+ 0\0 ( a2R + y'1- a~ U), where U 
and R are independent random variables, U standard normal, and R standard 
Rayleigh, with density !R(r) = rexp(-r2/2),r ~ 0. Probability P(Max ~ x) 
can be computed by means of the formula (4.14). 

Remark 6. The intensity of local maxima with height above u, could 
also be used to bound the probability that Ms(X) = maxo<s<S X(s) > u. 
With Z(s) = X(s), Y(s) = X(s), and A ="Y(s) > u, Z(s) <-0~ we have 

Ns(Aiu) =number of sE Cs(u) such that A is true 

=number of local maxima in [0, S] with height above u. 

Now, in a similar way as we derived (1.7), we can write 

P(Ms > u) = P(X(O) > u) + P(X(O) ~ u, X(S) > u) 

+ P(X(O) ~ u, X(S) ~ u, Ns(Aiu) > 0) (4.17) 

~ P(Ns(Aiu) > 0) ~ E(Ns(Aiu)) = SJ.L(Aiu). 
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Obviously, since the number of upcrossings of the level u by X in the interval 
[0, S], denoted by Nt(u), is smaller than Ns(Aiu) the approximation (4.17) 
is less accurate (gives broader bound) than the one proposed in ( 1. 7-1.8). 
However, if one is interested in the maximum value of the field then the 
method used in ( 4.17) can easily be generalized to be valid for the fields, 
while the method used in (1.7-1.8) can not be easily extended to this more 
complicated case. In addition, it can be easily proved, see Rice (1944), that 

u2 u2 u2 

where o( e- 2>.oo ) means that e 2>.o o( e- 2>.o ) goes to zero as u tends to infinity. 
u2 

Hint: use that J.L(Aiu) = J.lmaxP(Max > u) and that 1- q>(x) = o(e-2). 
Consequently, the approximations (1.8) and ( 4.17) are equivalent. Finally, we 
give an intuitive motivation why the two approaches are equivalent for high 
values of u. 

Define first B =" Y ( s) > u, Z ( s) > O" then we have that 

Ns(Biu) =number of sE Cs(u) such that B is true 

=number of local minima in [0, S] with height above u. 

Now it is easy to see that 

P(X(O) :::; u, X(S) :::; u, Ns(Aiu) > 0) 

= P(X(O) :S u, X(S) :::; u, Ns(Aiu)- Ns(Biu) > 0), 

and that Nt(u) = Ns(Aiu) - Ns(Biu). Consequently, since, for very high 
levels u, J.L(Biu) is much smaller than J.L(Aiu) one has that J.L+(u) ~ J.L(Aiu) . 
Consequently the approximations (1.7) and (4.17) are close. 

4.4. Oscillation intensity as intensity of marked crossings 

We shall now show how one can express the oscillation intensity using the 
concept of marked crossings. Consider load Z ( t) with finite intensity J.L( v). 
We will show that 

J.losc(u, v) = J.L(v)P(Y(s) < uls E Cv), 

for suitably defined process Y ( s). We observe that J.L08c( u, v) can be computed 
for Ornstein-Uhlenbeck process for which J.L( v) = oo for all v. We turn now 
to the definition of the Y(t) process. 
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Definition 3: Let Z(t), t ER be a differentiable process, i.e. Z(t) exists. 
For a fixed value t let t- = sup{s ~ t : Z(s) > Z(t)}, with sup0 = -oo, 
be the beginning of the downward excursion ending at t. The depth of the 
excursion will be denoted by Y ( t), and defined by 

Y ( t) = inf { Z ( s) : t- ~ s ~ t}, (4.18) 

see Fig. 15. 

3~--~----~--~----~ 

-3~--~----~--~----~ 
0 5 10 15 20 

FIGURE 15. Simulation of X(t) (solid line) and corresponding Y(t) (dotted line) . 

Now, let A be the statement that observed Y is below the level u. Then 
it is easy to see that the oscillation intensity is equal to the intensity of t, 
such that Z(t) = v such that Y(t) < u. Consequently 

00 

llosc(u, v) = 11(Ajv) = J P(Y(O) < ujX(O) = v, X(O) = X)i±if(v, X) d:i; 
-00 

00 

= J P(Y(O) < uiX(O) = v, X(O) = :t)±f(v, X) d:i;, (4.19) 

0 

since, for u ~ v, P(Y(O) < uiX(O) = v, X(O) = x) = 0 for X< 0. 
As we have mentioned before, the sea level elevation Z ( t) is often modelled 

as a Gaussian process. The still water level m= E(Z(t)) = 0 the significant 
wave height H8 defines Ao = H'; /16 while the average wave period Tz = '5..j27r. 
Actually the two parameters H 8 and Tz are often the only information about 
the spectral density that is available. Since the intensity of waves with crest 
Ac > v is equal to J.-L08c(m, v) and hence one could use (4.19) to compute 
the intensity. The formula (4.19) is difficult to evaluate, since Y(t) is a non­
Gaussian process and that the conditional density of Y(O) given probability 
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Z(O), Z(O) is not known. Very accurate approximations, based on numerical 
integrations do exists. For example program spec2tpdf, given in WAFO, 
computes the density fh(t), say, of Tz for waves with crest Ac > h, such that 
P(Ac > h) = J fh(t) dt, see Fig. 10 for definition of Ac, Tc. Consequently 
Jl08c(m, m+ h) = A J fh(t) dt. 

Example 14. Consider a Gaussian sea X(t) having the so-called Jon­
swap spectrum, see Hasselmann et al. (1973), with parameters H 8 = 7 m 
and Tz = 8.5 s (Tp = 11 s). The still water level is zero, m = 0. In Fig. 16 
we present the four densities fh(t) for thresholds h = 0, 1, 2, 3 meters. Note 
that for h1 > h2 we have that fh 1 (t) ::; fh 2 (t) and hence fo(t), which is 
just the density of Tc is the highest curve. The densities are computed using 
WAFO. For example the !2(t) density can be computed and plotted using 
the following sequence of commands 

f2=spec2tpdf(jonswap,O, [], [0 10 101] ,2,3); elf; pdfplot(f2) 

Density of Tc with Ac>3 U=O 

0.3 

10 
T[s] 

FIGURE 16. The density of Tc for waves with crest Ac above a threshold h = 
0, 1, 2, 3 m for a Gaussian sea with zero still water level m = 0, and .Jonswap 
spectrum Hs = 7 m and Tz = 8.5 s. 
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Finally, we compare the probabilities P(Ac > h) = J fh(t) dt with the upper 

bound (3.4) for the probability (e -s( :J 
2 

) . For h = 1, 2, 3 the integrals give 
the following probabilities 0.806, 0.510, 0.228 while the bound (3.4) gives 
0.849, 0.521, 0.230, respectively. Note that for non-Gaussian sea the Rayleigh 
bound is unconservative, see Fig. 11. 

5. Lecture V: Marks on contours 

Stochastic processes serve as probability models of phenomena observed 
in some continuum, for example in time or in space or sometimes in both. 
It is often assumed that observed realizations produced by a model or, as 
they are often called, sample paths contain all information about the model 
( ergodic property). Vice versa, the theoretical model can provide with for­
mulas for the statistical distributions extracted from sample paths. However, 
the relation between the sample path distributions and the theoretical dis­
tributions describing the model is not always straightforward. For example, 
complications can arise from the effect of sampling bias. The name refers 
to a change of sample distribution for the same quantity due to a different 
method of collecting its values. 

Let first illustrate the concept of unbiased sampling distributions. Sup­
pose Y ( q) is a stationary vector valued random field. The probability that 
this field has a (measurable) property A is given by P(Y(O) EA). This prob­
ability has a natural statistical interpretation through the ergodic theorem 
which is stated below in the special case when q E R2. 

Let Xij = 1 if Y ( i, j) E A and zero otherwise. If at least one of the 
integers Nand K diverges to infinity, then the sequence of random variables 

1 
N K 

NKLLxij, 
i=l j=l 

converges with probability one to a random variable V such that E(V) = 
P(Y(q) E A). In the special ergodic case, the limiting variable V is constant 
and equal to P(Y(q) EA). Because the distribution is obtained by sampling 
at non-random and equally spaced points, it is referred to as the unbiased 
sampling distribution. 

5.1. Distributions arising from biased sampling 

As we have discussed in the previous sections one is often interested in 
long run probabilities of (Y(t), Z(t)) EA for random locations t defined im­
plicitly as the solution to an equation Z(t) = u. We have shown that, usually, 
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the long-run distribution differ from the probability P((Y(O), Z(O)) E A). 
Simply by observing Y(t), Z(t) at random times t may affect the distribu­
tion of Y, Z. 

An analogous question is what is the long-run probability of 
(Y(q), Z(q)) E A for random locations q defined implicitly as solutions to 
an equation Z( q) = u. In order to discuss such a "biased" sampling distri­
bution, first we should answer the question of how many points q satisfying 
Z(q) = u reside in a bounded domain. We turn to this problem next. 

Suppose Z(q), q E Rk, is taking values in Rn. Assume that n ~ k and 
from now on treat them as fixed. Let V be the relative volume in Rk of the 
dimension k - n. For example if k = 3, then V measures the length of a set 
if n = 2, the area if n = 1, and V simply counts points in a set in the special 
case n = 3. ForS C Rk define the contour 

Cs(u) = {q E S: Z(q) = u} and let Cu = C[o,t]k(u). (5.1) 

Using this notation, define the intensity 

IL(u) = E [V (Cu)]. (5.2) 

We called IL(u) an intensity since, by homogeneity, 

E [V (Cs(u))] = ISIIL(u), 

where ISI is the volume (size) of S. In a similar way as in the previous section 
where A was a statement about Y ( t), Z ( t), let here A be a statement about 
the outcome of a vector Y(q) and the matrix Z(q), then 

IL(Aiu) = E [v { q E Cu: (Y(q), Z(q)) EA}]. (5.3) 

Finally the long-run distribution P((Y(q), Z(q)) E Alq E Cu) is defined as 
follows 

· IL(Aiu) 
P((Y(q), Z(q)) E Alq E Cu) = IL(u) . 

The significance of the long run distribution follows from its interpreta­
tion, which is along the same argument as in the one-dimensional case. The 
distribution can be defined as the average size of the part of Cu on which 
statement A about Y ( q) and Z( q) is true divided by the average size of the 
entire Cu. By the ergodic theorem; the so-defined distribution coincides with 
the limiting statistical distribution of Y(q), Z(q), when q is sampled on the 
contour Cs(u) in the region S = [0, X1] x [0, X2] x [0, X3] for large X1 or 
X 2, X 3, if k = 3. 
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Example 15. The sampling interpretation in the multivariate case is 
illustrated using the model of sea surface W(q, t) = W(x, y, t), which is 
discussed in the Appendix. The time variable t is considered to be fixed and 
thus by homogeneity it can be set to zero. Suppose that we are interested in 
the distributions of ygr the velocity in the gradient direction. The velocity 
ygr(q), presented as vectors in Fig. 17, is defined as follows 

ygr(q) = [ Wx(q, 0) 
-Wy(q,O) 

Wy(q,O) l-l [ -Wt(q,O) l 
Wx(q,O) 0 . 

(5.4) 

In Fig. 17(a), an unbiased sample of velocities recorded on the entire field 
is presented, that could be used to estimate P(V9r(q) E A). In Fig. 17(b), 
an example of a biased sample is presented by velocities sampled along the 
contour Cs(O) = {q E S : W(q,O) = 0}, S = [0,50) x [100, 150) meters, 
of the fixed (zero) sea level. The sample distribution of the velocity vectors 
obtained along this contour represents (approximately if the area is large 
enough) the biased sampling distribution that could be used to estimate 
P(V9r(q) E Alq E Co) . The two distributions of ygr can be different. 

(a) (b) 

-- --/ I 
--/I/ 
-~~"'//..,..-140 ...... -

'----,-.11"""-'----....---
130 ' .......... - - --- -,,...._ ____ _ 
120 ' ' ................ ___ -...._,,,......._ __ _ _ ,,,........_....._ __ 
110 ................................................... -

10 20 30 40 

FIGURE 17. (a) Unbiased sample of velocities on the sea surface. (b) Biased 
sample of velocities along the level crossing contours vs. unbiased sample. Here 
the level crossing contour is presented at the initial time 0 and then at the time dt. 
(The scale of axes on both the pictures is in meters, velocities are rescaled for 
clarity.) 

50 

We turn now to the formulas for the intensities J.L(u), J.l(Aiu) which are 
given by means of the generalized Rice's formula. We observe that vast liter­
ature is available on the various generalizations of the Rice formula, see: 
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Brillinger (1972), Marcus (1977), Adler (1981), Leadbetter et al. (1983), 
Zahle (1984), to mention just a few of many presentations. 

Suppose that the joint density of Y, Z, Z is available, which is always 
the case in this presentation, then 

Jl(Aiu) = j P((Y(O), Z(O)) E AIZ(o) = z, Z(O) = u) 

· /z,z(Z, u)Jdet(ZZT) dZ = J fv,z,z(y,Z, u) · Jdet(ZZT) dZdy. (5.5) 
A 

Remark 7. The formula (5.5) is a generalization of the formula (4.4). 
Since, if k = 1 then z = i is a real number and hence y'det(zzT) = lil. 

By taking A = Rn in (5.5) we derive the following formula for inten­
sity ~-t(u) 

Jl(u) = J /z,z(Z, u) · Jdet(ZZT) dZ. (5.6) 

In the following examples we give explicit formulas for ~-t(u). Both cases were 
studied by Longuet-Higgins (1957). In the first example Cu is a line in (0, 1]2 
(k=2,n=1). 

Example 16. Let W(q), q = (x, y), be a homogenous Gaussian field 
with mean m and variance V(W(q)) = Aoo, see Appendix for the definition 
of the spectral moments Aij. 

The homogeneity of the field W(x, y) does not imply that it is invari­
ant under rotation. In fact a rotation affects its structure. For example let 
WA(q) = W(AqT), where A is a 2 x 2 rotation matrix. Then the covariance 
matrix of the partial derivatives of WA(q) differs from the covariance matrix 
of the derivatives of W ( q). Actually one can rotate the plane in such a way 
that the partial spatial derivatives of the field are uncorrelated. We choose 
the rotation so that the derivative in the x-direction has larger variance than 
the one in the y-direction (the x-direction corresponds to the vector with the 
largest eigenvalue in the covariance matrix of the spatial derivatives). Since 
the length of a contour is independent of the rotation we choose to study the 
length of a contour in the rotated coordinate system. In particular we have 

which for Gaussian fields, implies that the intensity of zero-crossings along 
any line passing through the origin attains its maximum on the x-axis and 
its minimum on the y-axis. (In the degenerate case when W is a model for 
the so-called long-crested sea we have that Ao2 = 0 which means that there 
are no zero-crossings along the y-axis.) 
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Let us define by Z ( q) = W ( q), then the gradient vector is given by 

which is a zero-mean Gaussian vector with covariance matrix 

(5.7) 

Since, for stationary Gaussian field the value of the field Z ( q) is independent 
of the gradient vector Z ( q) we have that the average length of the contour 
Cu, given by (5.6), can be computed as follows 

Jl(u) = J fz,z(Z, u). V det(zzT) dZ 

= j fz(Z)fz(u) .,jzr + zi dZ 

Now, with 1/r = J 'A2o/ 'Ao2, which is often used as a measure of long­
crestnedness of the sea ( r = 0 implies that all waves are propagating along 
the x-axis), we get 

where E( k) is Legendre's elliptic integral of the first kind: 

rr/2 

E(k)= j vl-k2sin2(a)da, 

0 

see Longuet-Higgins (1957, p. 346) for the proof. 

We turn now to the case when the contour contains only isolated points, 
for example positions of local extremes of a field (k = 2, n = 2). 

Example 17. In this example we shall discuss the average number of 
specular points of the field W(q) = W(x, y), satisfying the assumptions of 
the previous example. The point q is called a specular point if Wx ( q) = u1 

and Wy(q) = u2 and hence, for a fixed u = (u1, u2), the contour Cu contains 
only isolated points. Let us compute the intensity of specular points, i.e. how 
many, in average, there are q E [0, 1]2 such that Wx(q) = u1 and Wy(q) = u2. 
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In order to use (5.6) define Z(q) = (Wx(q), Wy(q)), then Z(q) is the following 
matrix 

Z(q) = [ Wxx(q) Wxy(q) ] . 
Wyx(q) Wyy(q) 

Since the vector Z( q) is independent of the matrix Z( q) we have that the 
average size of Cu is given by (5.6): 

1-'(u) = j fz.z(Z, u) · J det(ZZT) dZ 

= j /z(Z)fz(u)i det(Z)I dZ 

1 (ut )2 (u2)2 ( • ) 
= e- 2>-2o - 2>-o2 E I det(Z(O)) I . 

21rv A2oAo2 

Note that we use the coordinate system where Wx(q), Wy(q) are indepen­

dent. The computation of the expectation E (1 det(Z(O))I) is quite lengthy 

and a full account of the derivation can be found in Longuet-Higgins (1957, 
pp. 351-353). Here, for reasons of completeness, we shall give the final step. 
Consider the matrix 

(5.8) 

and let l = eig(H), with l3 :::; l2 < 0 < l1. Then 

where K
2 = ~ ~~=~; and K and F are the Legendre elliptic integrals of first 

and second kind. 
Finally, since the local extremes are the specular points for u = 0 and 

since, in average, each fourth extreme point is a local maximum we have the 
following important result: intensity of local maxima of the field W(x, y) is 
given by 

(5.10) 
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5.2. Distributions on contours in R 2 , k = 2 and n = 1. 

Now we return to the problems discussed in the Lecture IV namely distri­
bution of variables observed at crossing times. The difference is that now the 
crossings are no longer isolated points but contour lines. The formulas are 
still quite similar in the structure but more complicated since the derivative 
at crossing is a gradient vector. We shall prove a Slepian type lemma that is 
an extension of Lemma 2. The results will be then used to study velocities 
at crossings of moving fields. 

Suppose that Z ( q), q = ( x, y) E R2 , is a homogenous Gaussian field, 
then the derivative 

(the gradient) has zero-mean Gaussian components. Let Y(q) E Rm be a 
Gaussian vector-valued field. For a fixed u, consider the contour 

Cu = { (X, y) E [ 0, 1] 2 
: Z (X, y) = U}. 

We begin by studying of the distribution of Y(q), Z(q) on the contour Cu. 
As in the formula ( 4.8), we shall now define the variables Yu, Zu which have 
the distribution 

P(Yu:::; y, Zu:::; z) = P(Y(q) :::; y, Z(q):::; ziq E Cu)· (5.11) 

In the following lemma we shall consider only the case when n = 1, i.e. 
Y ( q) is a scalar valued field denoted by Y ( q). The more general case for 
n > 1 can be treated in the similar way. Some of the distributions, presented 
in the following lemma, were already given by Longuet-Higgins (1957), see 
also Adler (1981). 

Lemma 4: Suppose Z ( q), Z ( q), Y ( q) is a vector-valued {in R 4 ) station­
ary Gaussian field. Let m z = E ( Z ( q)), my = E (Y ( q)) and let the covariance 
matrix E of the vector Z(O), Z(O), Y(O) be given by 

_ [ a} E ~~ aza~pzy l 
E- Ez.z Ezz Eyz ' 

azaypzy Eyz a~ 

(5.12) 

where Ez.z, Eyz are {1,2}-matrices containing covariances between Z(O), 
Y(O) and Z(O), respectively, while E.z.z is the covariance matrix of the vector 

Z(O). For -1r < (3:::; 1r, let n((3) = (cos((3),sin((3)) and 

( ) 

-1/2 
s((3) = n((3)Ei1n((3)T n((3) 
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be a vector parallel to n(,B) with length s(,B) = ( n(,L3)Ei1n(,L3)T) -
1

/
2

. The 

variables Yu, Zu with distribution defined by ( 5.11), have the following repre­
sentation 

-1 . 
Yu = mu + Ey .zE .z.zZu +a U = mu + m(/3u)s(/3u) R +a U, 

(5.13) 

where R, f3u, U are independent random variables with the following densities: 

(5.14) 

-rr < ,L3 ~ 1r and c is the normalization constant, while U E N(O, 1). Fur­
thermore, 

ay 
mu= ·my+ -pzy(u- mz) 

az 

m(,B) = Ey.zEi1n({3)T 

a 2 
= a~(l- p~y)- Ey.zEi1E~.z· 

Proof. We need to demonstrate that 

P(Y(q) $ y, i'(q) $ vlq E C,.) = 1-'~1~~), 

(where A ="Y(q) ~ y and Z(q) ~ v"), is equal to 

P (m(/3u)s(/3u) R +a U ~ y- mu, Rs(/3u) ~ v). 

We begin by computing the intensity p,(Aiu), i.e. the intensity of points q, 
such that Z(q) = u and A is true. From formula (5.5) with z = (it, i2), we 
get 

J det(zzT) = J it + i~ = lzl, 

and hence 

+oo 

1-'(Aiu) = J P(Y(O) $ y, i'(O) $ v I Z(O) = u, i'(O) = Z)IZif(u, Z) d:i 

-oo 

+oo 

= j P(Y (0) $ y, Z $ v I Z(O) = u, i'(O) = Z)IZif(u, Z) d:i 

-00 

V 

= J P(Y(O) $ y I Z(O) = u, i'(O) = Z)l:ilf( u, :i) dZ. 
-oo 
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Now we know, see Appendix, that the conditional density of Y(O) given 
Z(O) = u, Z(O) = z is Gaussian with the mean 

( . ) ay ( ) "' "' - 1 . T "' "'-1 · T m u,z =my+ -pzy u- mz + L...yzL....z.zZ =mu+ L...yzL....z.zZ . 
az 

Here we have used the fact that Z ( 0) is independent of Z ( 0) and that 
E(Z(O)) = 0. We turn now to the conditional variance a 2 , say, which is 
given by 

a2 
= a~(l- p~y)- ~yz~i1~rz· 

Let f(u) = td e-(u-mz)2 f2u~ be the density of Z(O) while the density 
v27ruz 

f(z) of Z(O) is given by 

!(
.) 1 _lzE-:- 1.zr z = e 2 zz 

27rJdet(~.z.z) 

Now, since Z ( 0) and Z ( 0) are independent we have 
V 

JL(Aiu) = f(u) j <I> ( y- :(u, Z)) IZif(Z) dZ 

-oo 

00 

= f(u) J p (mu+ EyzEt1zT + aU < y, z $V) IZI/(Z) dZ. 
-oo 

Let us write the gradient vector z = (it, i2) in polar coordinates with r 2 = 
if+ z~, r ~ 0, and cos(/3) = i1/r, sin(/3) = z2jr, hence z = rn({3). Using the 
introduced variables the last integral can be rewritten as follows 

00 

JL(Aiu) = f(u) j P (mu+ rEyzEt1n(f3)T + aU < y, rn({J) $ v) r f(Z) dZ 
-oo 

7r 00 

= cf(u) J JP (mu+ rm(f3) + aU < y, rn({J) $ v) r2e- ,,;;l2 dr d{J 

7r 0 

7r 00 

= cf(u) J JP (rn({J) $ v, mu+ rm({J) + aU < y) s({3)3 

7r 0 

7r 

= cf(u) j P (Rs({J) $ v, mu+ Rs(f3)m(f3) + aU < y) s(f3)3 d{J, 

7r 
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where c is a constant which may change values between the lines. Now, it is 
easy to see that f f3u ({3) = cf ( u )s({3)3 / J-L( u) and the lemma is proved. 0 

Denote by IZul the length of the vector Zu, i.e. IZul = Jzuzr, and 

let f3u be the angle between the x axis and the vector Zu; obviously Zu = 
1Zul(cos(f3u), sin(f3u)) . Now it is a simple consequence of the lemma that 
f3u has the density ff3u(f3) given by (5.14) while IZul, conditionally that the 
angle f3u = {3, has the density s({3)R, where the density of R is also specified 
in (5.14). 

In the following subsection we shall use the lemma to compute the bi­
ased distribution of the velocity ygr defined by (5.4), i.e. the probability 
P(V9r(q) :S vlq E Co). 

5.2.1. Velocity of a level-contour. In this subsection we shall discuss 
velocities of level-contours, by which we mean velocities of points on contour. 
We assume that W(x, y, t) is a smooth, stationary, Gaussian field with a 
known power spectral density function such that the spectral moments A2oo, 
Ao2o and Aoo2, which are the variances of the components in the gradient 
vector (Wx, Wy, Wt), respectively, are finite . We assume that the field is given 
in the coordinate system (x, y, t) so that the partial derivatives on x and y 
are independent, see Example 16 for detailed discussion. 

Now at time t = 0, a contour Cu is considered as the boundary of an 
excursion set (possibly dangerous concentration of pollutants or region of 
high loads). We wish to study the velocity with which this contour moves. 
There is no unique approach to define dynamics of a random surface. One 
possibility is to define the velocity in the direction of gradient ygr ( q), see 
Baxevani et al. (2003) for alternative definitions of velocities, and then study 
the distribution of ygr ( q) for points q on the u-level contour. We shall employ 
Lemma 4 to derive this distribution. 

Let us define Z(q) = W(q, 0), Y(q) = Wt(q, 0) and the gradient vector 

Z(q) = (ZI(q), Z2(q)) = (Wx(q,O), Wy(q,O)) 

which is a zero-mean Gaussian vector with the covariance matrix 

(5.15) 

We also need the following covariances 

Ezz = [0 0), Eyz =[Awl Aon] a~= Aooo, a~= Aoo2, pyz = 0, 
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see Appendix for the definitions of spectral moments Aijk· Since mz = 0 and 
u = 0 the constants in Lemma 4 can now be written: 

mu =0, s({3) = J A2oo>.o2o 
2 

, 

J >.o2o cos2 ({3) + >.200 sin ({3) 

A101 Ao11 . ;>..
2 

;>..
2 

m({3) = - cos({3) + ~ s1n({3), a 2 = Aoo2- __lQl- _Qll. 
~00 A~ A~ )..~ 

Now, let ygr be the speed of the velocity ygr, i.e. ygr = ygrn({3). The speed 
can be computed as follows 

Since on the zero level contour, J Z1(q)2. + Z2(q)2 has the same distribu­

tion as the length of the vector Zu which is s(f3u)R, and Y(q) as Yu = 
m(f3u)s(f3u) R +a U, the speed has the following distribution 

V,f" = - s(::::)R = -m((3,.) + s(;,.) ~ = -m((3,.) + s(;,.) T, (5.16) 

where J3T is t-distributed with three degrees of freedom and is indepen­
dent of f3u which has density (5.14). Note that the distribution of VJr is 
independent of the level u. 

Example 18. Let W(x, y, t) be the sea surface observed at time t at 
the location q = ( x, y). As it is common in oceanography we shall assume 
that W(x, y, t) is a homogenous Gaussian field with mean zero and some 
directional power spectrum, see Baxevani et al. (2003) for definition of the 
spectrum. Let u = 0 then the contour represents the edges of the wave crests. 
The formula (5.16) gives us the means to study the velocity the crest moves. 

For a typical spectrum, presented in Fig. 18(a) (the same as used to simu­
late velocities in Fig. 17), the contours of the density of (f3u, VJr) are given in 
Fig. 18(b) . From the plot of spectrum we can see that the main direction of 
wave propagation (most energy) is parallel to the x axis. This is the reason 
why the joint density has its highest values for f3u = 0. Next the directional 
spectrum is concentrated for azimuth close to angle 0 which means that waves 
travels from that direction and hence the speeds are negative. This can also 
be seen in Fig. 17. The velocity of individual waves has practical implications 
for wave surfing, both for pleasure and in analysis of the safety of vessels 
sailing in the following sea. 
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FIGURE 18. The directional spectrum with H ., = 7 meters (a), and contour lines 
of the joint density of velocity direction f3u and the speed Vtfr (b) . 
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A. Appendix 

A.l. Random Variables and their properties 

Often in engineering and physical sciences, outcomes of random experi­
ments are numbers associated with some physical quantities. We shall often 
consider random experiments with numerical outcomes. Such experiments 
will be denoted by capital letters, e.g. U, X, Y, N, K. The set S of possible 
values of a random variable is a sample space which can be all real numbers, 
all integer numbers, or subsets thereof. Statements about random variables 
have truth sets (events) which are subsets of S. 

A statement of the type "X ::; x" for any fixed real value x, plays an 
important role in computation of probabilities for statements on random 
variables. More precisely, denote by 

Fx(x) = P(X ::; x), x E R, 

and call the function Fx (x) the probability distribution or cumulative dis­
tribution function ( cdf). 

The importance of the probability distribution function lies in the follow­
ing fact: 

Theorem 4: The probability of any statement about random variable X 
is computable (at least in theory) when the distribution function F x ( x) is 
known. 0 

For simplicity we write F(x) for Fx(x). Now, if the distribution function 
F(x) is differentiable then the derivative 

f(x) = d~~), 
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called probability density function (pdf), has the following interpretation 
P(X ~ x) ~ f(x) dx. 

The density f(x) is not only a property of the distribution but it can also 
be used to define a distribution function, since any non-negative function that 
integrates to one is a density of some distribution. Actually, the distribution 
of a standard Gaussian or standard normal random variable is defined by 
means of its density function. The density of a standard normal variable has 
its own symbol <j;(x) and is given by 

A-( ) = _1_ -x2/2 
"P x ~e . 

v27r 
(A.1) 

The r.v. X having this density is often denoted as X E N(O, 1). The distri­
bution function of the variable, F(x), has its own symbol <P(x), 

(A.2) 
-oo 

Another useful function is W defined as follows 

+oo 

W(x) = j (1- <I>(z)) dz = </>(x)- x(l- <I>(x)). (A.3) 
X 

Note that both <P and w functions can not be computed analytically. Very 
precise approximations exist and they are included in most of numerical 
toolboxes. In the special case when x = 0, we have that <P(O) = 1/2 and 
\11 (0) = 1/ ~. Using the introduced functions we can write the following 
formulas: Let f(x) be the norn1al density with mean m and variance a2 , then 

+oo 

j xf(x)dx =all! (-;) , 

0 
(A.4) 

+oo 

j lx If ( x) dx = a (Ill (-;) + Ill (;)) . 
-oo 

A.2. Dependent observations 

When the outcome of an experiment is numerical we call it a random 
variable. Obviously, for one and the same outcome, many properties can be 
measured, for example at a meteorological station weather is described by 
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temperature, pressure, wind speed etc., i.e. is a vector of random variables 
X I, ... , Xn, say, defined on the same outcome. For simplicity only, let us 
consider first the case n = 2. The function 

is called the distribution function of a pair of random variables. The proba­
bility of any statement about x~, x2 can be computed (at least in theory) if 
the distribution function Fx1 ,x2 (xi, x2) is known, for example by means of 
formula (A.lO). The distribution of a vector of n random variables is defined 
in a similar way. 

We say that two events (statements) A, B about the same outcome are 
independent if 

P(A n B) = P(A)P(B). 

For random variables XI and X 2 , we say that, if any statement about XI 
is independent of a statement about X2, then they are independent. The 
following theorem gives the conditions for independence: 

Theorem 5: The variables X I, X 2 with distributions Fx 1 ( x), Fx 2 ( x), 
respectively, are independent if for all values XI, x2: 

Similarly for any n, we have that the distribution of n independent r.v. 
should satisfy 

Fx1 , ... ,Xn (xi, ... , Xn) = P(XI ::; XI, ... , Xn ::; Xn) 

= Fx1 (xi) · Fx2 (x2) · .. . · Fx" (xn) · (A.5) 

Theorem 6: Law of large numbers: Let X 1, ... , Xk be a sequence of 
iid (independent identically distributed) variables all having the distribution 
Fx(x) . Denote by X the average of Xi, i.e. 

(A.6) 

(Obviously, X is a random variable itself.) Let us also introduce a constant 
called the expected value of X, defined by 

+oo 

E(X) = j xfx(x) dx, (A.7) 

-oo 
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if the density fx(x) = d~Fx(x) exists, or 

E(X) = LxP(X = x), 
X 

where summation is over those x for which P(X = x) > 0. If the expected 
value of X exists and is finite then, as k increases (we are averaging more 
and more variables), X ~ E(X) with equality when k approaches infinity. 

For the most common distributions, the expectations have been calculated 
and can be found in tables. 

A.3. Some properties of two-dimensional distributions 

In this section, we shall assume that we have only two random variables, 
n = 2, and, in order to simplify the notation, we shall denote Xt, X2 by 
X, Y. The distribution function Fx1,x2 (xb x2) will be also denoted by 

Fx,y(x, y) = P(X ~ x, Y ~ y), 

which we shall often simplify to F(x, y). The distributions of the variables 
X and Y will be denoted by F(x) = P(X ~ x) and F(y) = P(Y ~ y), 
respectively. From the definition of F(x, y), it follows immediately that 

F(x) = F(x, +oo), F(y) = F( +oo, y). 

If the distribution F(x, y) is differentiable with respect to x and y, the deriva­
tive 

f ( ) = 82 F (X' y) 
x,y . 8x8y 

is called the probability density function (pdf). If f(x, y) is known, then 

X y 

F(x,y) = j j f(X,Y)dXdiJ. 

-oo -oo 

Any non-negative function f(x, y) that integrates to one 

+oo+oo 

j j f(x,y)dxdy = 1 

-oo -oo 

is a density of some random variables (X, Y). Often one specifies the density 
and computes the distribution function. The one-dimensional densities of X, 
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Y can be computed from the joint density by means of the following integrals 

+oo +oo 

f(x) = j f(x, Y) dfj, f(y) = j f(X, y) dX. 
-oo -00 

It is easy to prove that for independent X, Y 

f(x, y) = f(x)f(y). (A.8) 

Example 19. Two-dimensional Gaussian distribution. Suppose that X 
and Y are Gaussian r.v., with distributions N(mx,a'i), N(my,a~), respec­
tively. This means that their probability density functions are written 

1 -~(x-mx)2 

f(x) = e 2"'x , 
../2-ITax 

!( ) 
1 -g(y-my)2 

y = e Y 
../2-ITay 

If X and Y are independent, their joint probability density f(x, y) is given 
by 

1 _! ( (x-mx)2 + (y-my)2) 

f(x, y) = f(x)f(y) = e 2 "i "'~ . 
2traxay 

The variables X and Y can also be dependent. Then, there is a parameter 
-1 ~ p ~ 1, called correlation (to be introduced later on), that measures the 
degree of dependence between X and Y. If p = 0 then X and Y are inde­
pendent. Consequently, five parameters define the two-dimensional Gaussian 
distribution. These are mx, my, al, a~, and p, and the statement that X, Y 
is Gaussian, 

X, YE N(mx,my,al,a~,p), 

means that the joint density of X, Y is given by 

1 _ 1 ( (x-mx)
2 + (y-my)

2 
2 (x-mx) (y-my)) 

!( ) 2 2 2 p ,. X "'Y x,y = e "'x "y 
2traxay~ 

(A.9) 

An illustration of the two-dimensional Gaussian distribution will now be 
given. Let mx = 3, ax = 0.5, my = -2, ay = 1. First, let p = 0. In 
Fig.19(a), the density function is shown, and in Fig.19(b), the corresponding 
contour lines are shown. Introducing a dependence between the variables by 
p = 0.2, the corresponding plots are shown in Fig. 20. D 

Finally, for any events A, B 

P(X EA and YE B)= J J f(x,y)dydx, 

A B 

(A.10) 
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FIGURE 19. Two-dimenaional Gaussian distribution: mx = 3, ax = 0.5, my = 
-2, ay = 1. Independent variables: p = 0. (a) Density function. (b) Contour 
lines. 

(a) (b) 

0.4 .· 0 

0.3 

>- -2 ............ . 

. · 

..• /~\ :·· 
-1 

0.2 

0.1 
-3 

-4 .......... . 
5 

-5~----------------~--~ 
0 2 3 4 5 

y 0 X X 

FIGURE 20. Two-dimenaional Gaussian distribution: mx = 3, ax = 0.5, my = 
-2, ay = 1. Dependent variables: p = 0.2. (a) Density function. (b) Contour 
lines. 

http://rcin.org.pl



316 l. RYCHLIK 

Quite often, the last formula has to be computed numerically, even for simple 
sets A, B. For example, this is the case when X, Y are Gaussian. 

Consider a function z = h(x, y). Define a new random variable Z as 
a value of h computed at results of a random experiment X, Y, i.e. Z = 
h(X, Y). For example, Z = X+ Y or Z = X· Y. We want to find the 
expected value of Z. Obviously if the distribution of Z was known, we could 
use (A.7) to compute the expectation of Z. However, it can also be done 
directly by means of the following formulas: 

+oo +oo 

E(Z) = E(g(X, Y)) = J j g(x, y)f(x, y) dx dy (A.ll) 

-00-00 

or 
+oo +oo 

E(Z) = E(g(X, Y)) = L Lg(j, k)Pjk, 
j=O k=O 

where Pjk = P(X = j, Y = k). 

A.3.1. Covariance and correlation It is also easy to check (Eqs. (A.8) 
and (A.ll)) that for independent variables X and Y, 

E(X · Y) = E(X) · E(Y). 

Actually, it can happen that the last equality holds even for dependent vari­
ables. Such variables are called uncorrelated. (All independent variables are 
uncorrelated but not conversely.) Now, if the equation does not hold, the dif­
ference between the terms is a measure of dependence between the variables 
X and Y. This measure is called covariance and is defined by 

Cov(X, Y) = E(X · Y)- E(X) · E(Y), (A.l2) 

obviously Cov(Y, Y) = V (Y). 
When one has two random variables, one often represents their variances 

and covariances in form of a matrix 

[ 
V(X) Cov(X, Y) ] 

Cov X Y·X Y -
( ' ' ' ) - Cov(X, Y) V(Y) . 

Since Cov(aX, bY) = ab· Cov(X, Y), this means that by changing the 
units in which the variables X and Y are measured, one can make the eo­
variance very close to zero. This could be misinterpreted as X and Y being 
only weakly dependent. Consequently, one is often scaling the covariance so 
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that it becomes independent of the units in which the variables are measured. 
Such a scaled covariance is called correlation and is defined as follows 

Cov(X, Y) 
PXY = D(X)D(Y)' (A.13) 

where D(X) = y'V(X). The correlation is always between one and minus 
one. 

Theorem 7: Let X, Y be two random variables such that IPxY I = 1. 
Then there are constants a, b (both not equal zero) such that aX +bY = 0 
with probability one. 

However, not all functionally dependent variables X, Y are perfectly cor­
related (IPxYI = 1). For example, for X E N(O, 1), define Y = X 3 . Obviously, 
if we know the outcome of the random experiment, then X = x while Y = x 3 . 

Now the correlation between X, Y is given by p XY = 3/ JI5 < 1. 

A.4. Conditional distributions and densities 

Suppose we are told that the event A, such that P(A) > 0, has occurred, 
then the sample space of possible outcomes of an experiment reduces from 
S to A and the probability that B occurs, given that A has occurred, is 

P(BIA) = P(A n B) 
P(A) . 

Consider now variables X, Y having continuous distributions. We wish to find 
the conditional distribution F(xiY = y) = P(X ~ xiY = y). However, we 
face a problem since for continuous variables Y, P(Y = y) = 0 for ally. An 
easy solution to this problem can be found if X, Y have the density f(x, y). 
In such a case we can define 

!( I ) 
= f(x,y) 

xy f(y) . (A.l4) 

Since, for a fixed value y, f(xly) as a function of x integrates to one, it is a 
probability density function. Let denote by F(xly) a distribution having as 
density f(xly), i.e. for any x 

X 

F(xiy) = j f(Xiy) dX. (A.l5) 

-oo 
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Now, combination of Eqs. (A.lO), (A.14) and (A.l5) leads to the following 
important result 

+oo 

P(X ~ x) = F(x) = J F(xly)J(y) dy. (A.16) 

-00 

The last equation is a special case of the law of total probability given next. 

Theorem 8: Assume that a random experiment renders values of a r. v. 
Y and that we, in addition, are interested in any statement B, say, about 
the outcomes of the experiment. Then, for each y, there exists a probability 
P(BIY = y) (for d~fferent y the probabilities P(BIY = y) may take different 
values), such that 

+oo 

P(B) = j P(BIY = ·y)Jy(y)dy. (A.17) 

-oo 

If X, Y have joint density f ( x, y), then 

P(BIY = y) = j f(xly) dx, 
B 

where f (xI y) is the conditional probability density defined by (A .14). 

A.5. Some properties of Gaussian vectors 

Consider a vector of r.v. X = (X1 , X2 , ... , Xn)r, which consists of n 
different random variables. We say that X is a Gaussian vector if 

n 

Y = LaiXi, 
i=l 

(A.l8) 

where a1, a2, ... , an are arbitrary real constants, has a Gaussian distribution. 
Let denote the means by mi = E(Xi), the variances by aii = Cov(Xi, Xi) 

and the pairwise covariances by aij = Cov(Xi, Xj ). Obviously for any i, 
Xi E N(mi, aii)· 

Let us introduce the notation 

I:= 
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If the determinant det(I:) > 0, then the distribution X has a density given by 

(A.l9) 

where x = (x1, x2, ... , xn)T. The statements "X is a Gaussian vector" or"! 
is a Gaussian density" will be written as X E N(m, :E), f(x) E N(m, :E), 
respectively. 

From (A.l8) it follows that for any real-valued (k, n)-matrix A the vector 
Y = AX is a k-dimensional Gaussian vector too. If X E N(m, :E) then 
YE N(Am,A:EAT). 

One more useful result about the conditional densities. Let X be factor­
ized into two vectors Z = (X1, ... , Xk)T and Y = (Xk+l, ... , Xn)T. With 
obvious notation we write 

m= [ ::] ' 
I: = ( I: Z Z I: ZY ) . 

I:yz I:yy 

Now the conditional density fzly(zly) of Z given Y = y is Gaussian with 
the mean 

mziY = mz + I:zyi:y~(y- mz), 

and covariance function 

i.e. fzly(zly) E N(mzly, I:ziY ). 

A.6. Infinitely many r.v. - random processes 

(A.20) 

(A.21) 

A stochastic process is a family of random variables {X ( t), t E A}, de­
fined on the same sample space S, i.e. infinitely many functions defined on 
the outcome of an experiment. The parameter t can be one-dimensional, 
and is then often called "time", but it can also be two- or multidimensional. 
A stochastic process with multidimensional parameter is called a stochastic 
field. A random function is a realization x(t), t E A of a stochastic process 
{X(t), t E A}. We shall also use the vector-valued processes which will be 
denoted by {X(t), tEA}, i.e. we have a collection of random processes. 

Since every value of a stochastic process is a random variable X(t), one 
can study its moments, like expectation, variance, and these generally depend 
on the specific time point t at which we observe the process: 

• mean function: m(t) = E(X(t)), 
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• covariance function: r(s, t) = Cov(X(s), X(t)), 
• variance function: v(t) = V(X(t)) = r(t, t). 
Similarly as there are random variables for which expected value (and 

variance) do not exist, e.g. Z = X/Y, where X, Y are independent N(O, 1) 
variables, not all processes have finite moments. However, here we shall only 
discuss processes with finite variance. 

The moments only partially specify the properties of the random process, 
e.g. in the case of random variables one may have two variables having the 
same expectation and variance but different distributions. In order to specify 
the distribution of a stochastic process one needs to specify the joint distri­
bution of all finite collections of variables that constitute the process, e.g. 
X(ti), X(t2), ... , X(tn)· In particular one needs the marginal distributions, 
i.e. the distribution of each X ( t). This is very difficult in general. 

In the following we shall mostly study processes and hence we assume 
that A = R. (The tools needed for study vector valued processes or random 
fields can be introduced in a similar way.) We shall assume that the process 
is smooth, i.e. the probability of each of the statements "random function 
has continuous n-th derivative', is one. The value n will be taken as high as 
one needs for convenient discussion of particular applications. Discussion of 
regularity of random functions as well as existence of the distribution of the 
random process can be found in Cramer and Leadbetter (1967). 

The process is called stationary if for any T the vectors 
X(ti), X(t2), ... , X(tn) and X(t1 + T), X(t2 + T), ... , X(tn + T) have 
the same distribution. Obviously, for stationary processes, the mean and 
variance functions are constant m(t) =m, v(t) = a 2 and there is a function 
rx(T) such that r(t, s) = rx(s- t). Obviously rx(O) = a 2 . 

Now if rx(O) > 0 and the function rx(T) is continuous at zero then one 
can define the so-called spectral measure a(A), such that 

If the spectral measure is absolutely continuous, then there exist the spectral 
density S(A) such that rx(T) = J eir>.S(A) dA. Some properties of the process 
can be expressed using the so-called spectral moments which are defined as 
follows 

00 00 

A;= 2 J Aida(A) = 2 J AiS(A)dA, 
0 0 

where the last equation is true if the spectral density exists. In this notation 
we have that V(X(O)) = Ao, V(X(O)) = A2 and V(X(O)) = A4. 
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Here we shall study a special class of processes, namely Gaussian processes 
and their functions. Only the Gaussian processes have the property that every 
linear operation produces a normal random variable, and one can use this 
fact to provide with a formal definition of a Gaussian process. 

Definition 4: A stochastic process X ( t) is called a Gaussian process (or 
normal process) if all linear combinations 

of the process values at fixed but arbitrary time points, have a normal distribu­
tion. Here t1, t2, ... , tn are arbitrary time points and a1, a2, . .. , an arbitrary 
real constants. 

We shall now generalize the presented results for the case that t is mul­
tivariate. 

A. 7. Gaussian fields 

Let T = (p, t) = (x, y, t) be a point in R3 , and let, for every T, a real 
valued random variable X ( T) be given. Such a collection {X ( T), T E R3 } 

of random variables is referred to as a random field. A random field is 
called Gaussian if all its finite dimensional distributions, i.e. distributions 
of (X(r1), ... , X(rn)), n E N, Ti E R3 , are multivariate Gaussian (nor­
mal). We call {X(r), T E R3 } homogeneous if its finite dimensional dis­
tributions are invariant under shift in T. The covariance function R( T) = 
Cov(X(ro + r), X(ro)) of a homogeneous random field is positively definite 
and thus it follows from Bochner's theorem that it can be written in the form 

R(-r) = j exp(i>.T -r)da(>.), (A.22) 

R3 

where a( A) is a finite measure on Borel sets of R 3 which is called the spectral 
measure of X(r) . 

It follows from the theory of Hilbert spaces that the field X ( T) has the 
following spectral representation 

X(-r) = j exp(i>.T -r)d((>.), (A.23) 

R3 

where the field ((A) is complex valued with orthogonal increments defined 
up to an additive constant. If this is fixed by (( -oo, -oo, -oo) = 0 , we also 
have E(((A)) = 0 , and such that E(I((A)I2 ) =a( -oo, A], E(I((I)I2 ) = a(I), 
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where I C R3 is an interval. The spectral measure is also symetric with 
respect to the origin of R3 ; see, for example, Cramer and Leadbetter (1966) 
or Kree and Soize (1986) for reviews. 

Example 20. Assume that the spectral measure a is discrete, i.e. has 
discrete support at points { Aj} = {( AJj, A2j, A3j)}, j E N, of which none is 
equal to zero, with masses a(Aj)· For a real valued random field the support 
of a has to be symmetric, i.e. if Aj is in the support, then also -Aj is in the 
support and both frequencies have equal masses a(Aj) =a( -Aj ). It follows 
from the spectral representation (A.23) that 

X(r) = L J2a(Aj)Rj cos(AJ T + Ej), 
AjEA+ 

where A+ is any set in R3 such that -A+ n A+ has volume zero and -A+ U 

A+ = R3 . For example, one possible choice of A+ is 

Moreover, ( Rj) and ( Ej) are two independent sequences of independent iden­
tically distributed random variables, the first one distributed according to 
the Rayleigh density 

r > 0. (A.24) 

This density was derived by Rayleigh (1880) in connection with some problem 
in acoustics. The second one is distributed uniformly on [0, 21r]. 

By (A.22), the covariance of this field is a sum of cosines 

If the covariance function R( T) decreases sufficiently fast at infinity, so 
that JR3 IR(r)idr < oo, then a has the density S(A) and the covariance 
function can be represented as its Fourier integral 

R(r) = j exp(i~T r)S(~)d~. (A.25) 

R3 

The spectral density S(A) is real, non-negative, bounded and symmetric, i.e. 
S(A) = S( -A) for all A E R3 . 

The spectral moments Aij k, if they are finite, are defined as 

>..ijk = 2 j >..f >..~>..~ da(~), (A.26) 

A+ 
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where A= (A1, A2, A3 ). The variance of the field can be expressed in terms 
of spectral moments as the zero moment Aooo increased by the weight of 
the spectral measure at zero a(O). Higher moments are used to compute the 
covariances between the process and its derivatives. For example, · 

E [ ax~~y, t) ax~~y, t)] = J iA1( -iA2) da(~) = Auo, 

R3 

where the last condition follows from the fact that because of the symmetry 
of a we have Aijk = fn3 AlA~ A~ da(A), whenever i + j + k is even. This 
and similar formulas for the covariances between the derivatives follow from 
the spectral representation of the Hilbert space spanned by X ( T), T E R3 . 

Namely, if Y = fn3 j(A)d((A), Z = fn3 g(A)d((A), where f and g are both 
complex functions square integrable with respect to a, then 

Cov(Y, Z) = J f(~) · g(~)du(~). 
R3 

Often it is customary to write the covariances using the spectral moments 
Aijk as defined by (A.26). We give two examples: The covariances between 
the first order derivatives are given in the covariance matrix of the gradient 
vector X= (Xx, Xy): 

A= [ A2oo Ano ] . 
A110 Ao2o 

(A.27) 
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