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Bounds on system reliability employing marginal or joint component probabilities 
are useful approximations when exact solutions are costly or unavailable. Linear 
Programming (LP) can provide bounds for any series, parallel, or general system 
with any level or type of information available on the component probabilities. For 
given information, the LP bounds are the narrowest possible bounds that are not 
affected by the ordering of the components. The bounds can even utilize an incom­
plete set of component probabilities or any linear equality /inequality constraints 
on component probabilities. Numerical examples in this paper demonstrate the 
methodology and show how LP bounds can be used to estimate and improve the 
system reliability of electrical substations. 

1. Introduction 

This paper presents a summary of a new method for reliability analysis 
of systems by use of Linear Programming (LP), which is recently developed 
by the authors (Song and Der Kiureghian, 2003a). The method provides the 
narrowest possible bounds on the system failure probability for any given 
information on the marginal or joint component failure probabilities. The 
method is applicable to general systems, for which no bounding formulas ex­
ist. For series systems, the method provides narrower bounds than existing 
bounding formulas based on hi-component and tri-component failure proba­
bilities. After briefly describing the method, examples to series and general 
systems are presented to demonstrate the method. 

The state of a system composed of a set of components in general can be 
expressed as a Boolean or logical function of the component states. Consid­
ering two-state components and systems, let Ei denote the event of failure of 
component i, (i = 1, . . . , n), and Ei denote its complement, the survival of 
the component. Likewise, let Esystem denote the event of failure of the sys-
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tern and Esystem denote its survival. For three classes of systems, the relations 
between the component states and the system state are as follows: 

Series systems: 

Parallel systems: 

General systems: 

n 

Eseries system = U Ei, 
i=l 

n 

E parallel system = n Ei, 
i=l 

K 

Esystem = U n Ei · 
k=l iECk 

( 1.1) 

(1.2) 

(1.3) 

In the case of "general," i.e., non-series and non-parallel, systems, the system 
failure event is defined in terms of cut sets Ckl (k = 1, ... , K), where each 
cut set is a set of components, whose joint failure constitutes failure of the 
system. In this case, the system can be represented as a series of parallel 
sub-systems. An equivalent formulation is also possible, whereby the general 
system is represented as a parallel system of series sub-systems called link 
sets. 

Once the system state is formulated as in (1.1)-(1.3), the system failure 
probability, or its complement, the system reliability, can be expressed as the 
probability of the logical function. The exact computation of this probability 
is often costly or unavailable due to the complexity of the system or lack 
of complete probability information. For these reasons, theoretical bounding 
formulas have been derived in terms of marginal or joint component proba­
bilities. These include uni-component bounds for series and parallel systems 
(Boole, 1854), and hi-component (Kounias, 1968; Hunter, 1976; Ditlevsen, 
1979) and multi-component (Hohenbichler and Rackwitz, 1983; Zhang, 1993) 
bounds for series systems. The latter bounds can also be used for parallel sys­
tems after such systems are converted to series systems by use of de Morgan's 
rule. No theoretical bounding formulas are available for general systems. 

For the purpose of later comparison, here we present the hi- and tri­
component bounding formulas for series systems. The hi-component bounds 
by Kounias (1968), Hunter (1976) and Ditlevsen (1979) are 

PI+ ~max ( 0, P;- ~P;J) 

~ P (Eseries system) ~ P1 + t (pi- ~8.?' ~j)' (1.4) 
i=2 J<t 
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and the tri-component bounds by Hohenbichler and Rackwitz (1983), and 
Zhang ( 1993) are 

P(Eseries system) ~ P1 + P2 - P12 

+ t max (o, P; - ~ P;1 + max ~ P;Jk), (1.5a) 
. 

3 
. l kE{l,2, ···,t-1} _

1 
t= J= ~;k 

P(Eseries system) ~ P1 + P2- P12 

+ ~ [pi- max (Pik + Pij- Pijk)]. (1.5b) L...t kE{2,3 ,· ·· ,i-1} 
i=3 j<k 

In the above, Pi = P(Ei) denotes the failure probability of compo­
nent i (uni-component failure probability) , Pij = P(Eij) is the joint failure 
probability of components i and j (bi-cornponent failure probability), and 
Pijk = P(EiEjEk) is the joint failure probability of components i, j and k 
(tri-component failure probability). See Song and Der Kiureghian (2003a) for 
a detailed review of these and other theoretical bounding formulas. 

Although the uni-component bounds are guaranteed to be the narrow­
est possible bounds if only the marginal component probabilities are known 
(Frechet, 1935), they are often too wide to be of practical use. The bi- and 
tri-component bounds are widely used in reliability analysis of series sys­
tems due to their relative narrowness. However, these bounds depend on the 
ordering of the component events. Thus, in order to obtain the narrowest 
bounds, one must consider all n ! ordering alternatives of the components. 
Furthermore, as shown below, the ordering with the narrowest bounds does 
not necessarily produce the narrowest possible bounds for the specified prob­
ability information. 

The idea of using LP for computing bounds on system failure probability 
was first explored by Hailperin (1965) . Specialized versions of this approach 
were employed in operations research (Prekopa, 1988). However, it appears 
that this approach has never been used in the field of structural reliability 
or civil engineering. 

LP bounds are applicable to any type of system and any level of informa­
tion regarding the component probabilities. Equally important , these bounds 
are the narrowest possible bounds that one can obtain for any specified in­
formation regarding the marginal or joint component probabilities. Although 
the resulting LP problem can be large for a system with many components, 
with the enormous increase in the speed and capacity of computers in recent 
years, we believe the LP approach is viable and a powerful tool for many sys­
tem reliability problems. Furthermore, on-going work shows that a large LP 
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bounding problem can be decomposed into a number of smaller LP problems 
with a drastic reduction in size. 

After briefly describing the formulation of the LP bounds, we consider 
the reliability of a truss structure represented as a series system in order 
to compare probability bounds obtained by LP with those obtained by the 
theoretical bounding formulas in (1.4) and (1.5). The comparison demon­
strates that these theoretical bounding formulas do not necessarily produce 
the narrowest possible bounds. As an application to a general system, we 
consider the seismic reliability of an electrical substation previously reported 
in Song and Der Kiureghian (2003b). The electrical substation is an impor­
tant element within the power transmission lifeline. It consists of a complex 
set of interconnected equipment items, such as circuit breakers, transform­
ers, disconnect switches, surge arresters, etc. The continued functioning of 
an electrical substation and the power network after a major earthquake 
is essential for rescue and recovery operations. Major damages to electrical 
substation equipment and systems were caused by recent earthquakes in the 
United States, Japan and elsewhere. As a result, there is heightened interest 
in assessing and improving the seismic reliability of these systems. 

LP bounds can be useful for assessing the reliability of electrical substa­
tions, because these systems are usually too complex to be analyzed analyti­
cally and the probability information on equipment items is often incomplete 
or unavailable. This paper demonstrates the use of LP bounds for estimating 
and improving the system reliability of example electrical substations. The 
first example is a single-transmission-line substation, which is modeled as a 
series system. The influence of the reliability of a critical component on the 
system reliability is investigated. The second example explores the effective­
ness of adding redundancy to the weakest component of the series system 
in order to improve the system reliability. The third example deals with a 
two-transmission-line substation, designed to provide more redundancy. This 
is a general system and is formulated by use of cut sets. For this example 
we explore the case of incomplete probability information. In each case, the 
LP bounds are computed assuming knowledge of hi-component or hi- and 
tri-component probabilities. These results are compared with Monte Carlo 
simulation results assuming complete probability information to demonstrate 
the accuracy of the bounds. 

2. Linear programming theory 

LP solves the problem of minimizing (maximizing) a linear function, 
whose variables are subject to linear equality or inequality constraints. LP 
gained worldwide interests after G. B. Dantzig developed the simplex method 
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in 1947 (Dantzig, 1951) . Since then, encouraged by dramatic improvements 
in computing technology, many powerful algorithms have been developed and 
a profound mathematical understanding of the problem has been gained. 

Among various equivalent forms, the compact formulation of LP appro­
priate for our analysis has the form: 

minimize (maximize): eT p, 

subject to: a1p = b1, 

(2.1a) 

(2.1b) 

(2.1c) 

In the above, p = (Pl, P2, ... ) is the column vector of "decision" or "de­
sign" variables, c T p with c a vector of coefficients is the linear "objective" 
or "cost" function, and a1, bt, a2 and b2 are coefficient matrices and vectors 
that respectively define equality and inequality constraints. In (2.1c), the 
inequality between the vectors must be interpreted component-wise. A vec­
tor p is called "feasible" if it satisfies all the given constraints. The solution 
of the LP problem is a feasible p that minimizes (maximizes) the objective 
function. 

According to a key theorem in linear programming (Bertsimas and Tsit­
siklis, 1997), the optimal solution of LP, if it exists, is located at one of the 
extreme points (vertices) of the polyhedron defined by the given linear con­
straints. This fact led to the development of the simplex algorithm (Dantzig, 
1951), which moves from one vertex to another under a certain pivoting rule, 
until the requirements for the optimal solution are met. Since the simplex al­
gorithm appeared, LP has flourished and numerous algorithms (interior point 
method, ellipsoid method, etc.) have been developed, dramatically increasing 
our ability to solve large-scale problems. 

3. Bounds by linear programming 

Hailperin (1965) showed that the problem of finding bounds on the prob­
ability of a Boolean function is a LP problem. He first divided the sample 
space of then component events into 2n mutually exclusive and collectively 
exhaustive (MECE) events, each consisting of a distinct intersection of the 
component events Ei and their complements Ei ( i = 1, ... , n). We name 
these the 'basic' MECE events and denote them by ei (i = 1, ... , 2n). As 
an example, Fig. 1 shows the basic MECE events for n = 3 components. For 
example, e3 = E1E2E3. 

Let Pi = P ( ei) ( i = 1, ... , 2n), denote the probabilities of the basic MECE 
events. These probabilities serve as the design variables in the LP problem 
to be formulated. 
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s 

FIGURE 1. Basic MECE events ei for 3-event sample space. 

According to the basic axioms of probability theory, Pi (i = 1, ... , 2n) 
should satisfy the following linear constraints: 

(3.1) 

Pi~ 0, Vi. (3.2) 

The constraint (3.1) is analogous to (2.1b) with a 1 being a row vector of 
1's and b1 = 1, whereas (3.2) is analogous to (2.lc) with a2 being an identity 
matrix of size 2n and b2 a 2n-vector of O's. 

Due to mutual exclusivity of the basic MECE events, the probability of 
any subset made of these events is the sum of the corresponding probabilities. 
In particular, the probability of any component event Ei is the sum of the 
probabilities of the basic MECE events that constitute that component event. 
Similarly, the probability of any intersection of the component events is given 
as the sum of the probabilities of the basic MECE events that constitute the 
intersection event. Therefore, we can write 

P(Ei) =Pi= L Pr, (3.3a) 
r: er~Ei 

P(EiEj) = Pij = L Pr, (3.3b) 
r: er~EiEj 

P(EiEjEk) = Pijk = L Pr, (3.3c) 
r: er~EiEjEk 

and so on. 
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In most system reliability problems, the uni-, bi- and sometimes tri­
component probabilities (Pi, Pij, and Pijk) are known or can be computed. 
In that case, the above expressions provide linear equality constraints on the 
variables p in the form of (2.1 b) with a1 a matrix having elements of 0 or 
1 and b 1 a vector listing the known component probabilities. If, instead, in­
equality constraints on component probabilities are given, such as Pi ~ 0.01, 
0.01 ~ Pij ~ 0.03 or Pi ~ Pj, then the above expressions provide linear 
inequality constraints on the variables pin the form of (2.1c). 

Any Boolean function of the component events can also be considered 
as being composed of a subset of the basic MECE events. It follows that 
the probability of the system event Esystem can be written in the form 
P(Esystem) = c T p, where c is a vector whose elements are either 0 or 1. 

The lower bound of the system probability is obtained by minimizing 
the objective function, and the upper bound is obtained by maximizing the 
same function. For a system with n component events, the number of de­
sign variables is 2n; one equality and 2n inequality constraints result from 
the probability axioms (3.1) and (3.2), respectively, n equality or inequal­
ity constraints result from knowledge of uni-component probabilities or their 
bounds as in (3.3a), n!/[2!(n- 2)!] equality or inequality constraints result 
from knowledge of hi-component probabilities or their bounds as in (3.3b), 
and so on. Obviously the size of the LP problem quickly grows with the 
number of component events. 

The bounds by LP have many advantages over the existing theoretical 
bounding formulas. First, LP is guaranteed to provide the narrowest possible 
bounds, if a feasible solution exists for the given constraints (Hailperin, 1965). 
This is not the case for the theoretical bounds for series systems based on the 
multi-component probabilities, even for the best ordering of the component 
events. (Note that the LP formulation is independent of the ordering of the 
component events.) Second, the LP formulation is uniformly applicable to all 
systems, including general systems characterized by unions and intersections 
of component events (and their complements). Third, the LP formulation 
can incorporate general forms of information about the component probabil­
ities. Specifically, any linear equality or inequality expression involving uni­
or multi-component probabilities can be used. Finally, it is not necessary to 
have the complete set of probabilities for all the components at a particular, 
e.g., uni-, bi- or tri-component, level. Any partial set of the component prob­
abilities can be used. Of course, incomplete information will lead to wider 
bounds. 

The main drawback of the LP approach is that the size of the problem 
increases exponentially with the number of component events. For example, 
with n = 17 components, one has to solve for about 105 design variables. 
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There are a number of advanced LP algorithms for such large problems (see 
Chapter 6 in Bertsimas and Tsitsiklis, 1997). Moreover, with rapidly advanc­
ing speed and capacity of computers, these purely computational issues may 
not be a major hindrance in application of the approach to many systems 
reliability problems, even with large n. Finally, with the LP approach, it is 
easy to consider sub-systems of a large system as equivalent components, 
and thereby reduce the actual number of components that one has to work 
with. We note, in passing, that for n = 17 the number of orderings of the 
component events is 17! = 3.56 ·1014 . In using the bounding formulas in (1.4) 
and (1.5), it may not be possible to check all the possible orderings of the 
component events. In that case, bounds computed by these theoretical for­
mulas can potentially be far from the narrowest possible bounds. 

In summary, while the LP approach may become computationally de­
manding for systems with large number of component events, it has the 
following important advantages: 

• it provides the narrowest possible bounds for any given level of infor­
mation on component probabilities, 

• it is independent of the ordering of the component events, 

• it can incorporate general forms of information about component 
events, 

• it is uniformly applicable to all types of systems, 

• general-purpose software is widely available for solving the problem. 

Computational limitations of the approach are expected to diminish with 
increasing speed and memory capacity of computers. 

4. Application 1: Truss as a series system 

Consider the truss in Fig. 2, which is adopted from Ditlevsen (1979) and 
Song and Der Kiureghian (2003a). Since this is a statically determinate struc­
ture, the failure of any member constitutes failure of the truss. Therefore, the 
truss is a series system with its members representing the components. Let L 
denote the load acting on the truss. Neglecting the buckling failure mode, let 
xi, i = 1, 2, ... ' 7, denote the tensilejcompressive strength of the i-th mem­
ber. Based on the distribution of internal forces shown in Fig. 2, the failure 
events of the individual members are Ei = {Xi ~ L/(2/3)} for i = 1 and 
2, and Ei ={Xi~ Lj/3} fori= 3,4, ... , 7. Suppose the load has the de­
terministic value L = 100 and the member strengths Xi, i = 1, 2, · · · , 7, are 
jointly normally distributed random variables with X 1 and X2 having means 
100 and standard deviations 20 and x3- x7 having means 200 and standard 
deviations 40. Under these conditions, the members have equal probabilities 
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.J3b 
2 

L L 

2.J3 2.J3 

0 CD 

~ b b ~ 
FIGURE 2. Statically determinate truss as a series system 

of failure given by 

P;=P(E;)=~(l00/~- 200 ) =1.88·10-4
, i=1,2, ... ,7, (4.1) 

where <I?(·) denotes the standard normal cumulative probability. Further, sup­
pose Xi's have a Dunnet-Sobel (D-S) class correlation matrix, which is spec­
ified as Pii = rirj fori# j and Pii = 1. In that case, the m-component joint 
failure probabilities can be computed by the one-dimensional integral (Dun­
nett and Sobel, 1955): 

where <l?m (u1, ... , um; R) is the m-variate standard normal cumulative prob­
ability function with correlation matrix R = [Pii] at coordinates Ui = 
(100/v'3- 200)/40 and <p(·) denotes the one-dimensional standard normal 
probability density function. 
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First consider the case r1 = 0.90, r2 = 0.96, r3 = 0.91, r4 = 0.95, 
rs = 0.92, r6 = 0.94 and r7 = 0.93. The hi- and tri-component probabilities, 
Pij and Pijk, respectively, computed using ( 4.2) are ( x 10-5): 

p12 = 5.73, pl3 = 4.35, pl4 = 5.42, P1s = 4.59, 

pl6 = 5.13, pl7 = 4.85, p23 = 6.08, p24 = 7.79, 

p25 = 6.47, p26 = 7.42, p27 = 6.87, p34 = 5.75, 

p35 = 4.86, p36 = 5.43, p37 = 5.14, p45 = 6.10, 

p46 = 6.88, p47 = 6.48, Ps6 = 5.76, Ps7 = 5.44, 

p67 = 6.11, p123 = 2.81, p124 = 3.58, p125 = 2.99, 

p126 = 3.37, p127 = 3.17, pl34 = 2.66, pl35 = 2.25, 

pl36 = 2.52, p137 = 2.38, pl45 = 2.82, pl46 = 3.18, 

p147 = 2.99, p156 = 2.67, pl57 = 2.52, pl67 = 2.83, 

p234 = 3.80, p235 = 3.17, p236 = 3.58, p237 = 3.37, 

p245 = 4.04, p246 = 4.58, p247 = 4.30, p256 = 3.80, 

p257 = 3.58, p267 = 4.04, p345 = 2.99, p346 = 3.37, 

p347 = 3.18, p356 = 2.83, p357 = 2.67, p367 = 3.00, 

p456 = 3.58, p457 = 3.37, p467 = 3.81 , Ps67 = 3.18. 

These uni-, hi- and tri-component probabilities are used to compute the 
bounds on the series system probability by use of the theoretical formu­
las in (1.4) and (1.5). The same information is used to compute the bounds 
by LP. The LP formulation involves 27 = 128 design variables, 7 equality 
constraints for the uni-component probabilities, 21 for hi-component proba­
bilities, and 35 for tri-component_ probabilities. 

Table 1 compares the theoretical bounds and the bounds by LP. For 
the theoretical bounds all the possible 7! = 5 040 ordering alternatives are 
considered and the range of results for each bound is shown with the best 
result in bold. Considerable variation in the theoretical bounds is observed, 
depending on the ordering of the components. It is seen that for the hi­
component bounds, the best lower theoretical bound obtained from (1.4) is 

TABLE 1. Bounds for series system with equal component probabilities. 

Bounds ( x 10-3
) Lower Upper 

Hi-component 
Equation 4 0.344- 0.459 0.912-0.961 

LP 0.477 0.912 

Tri-component 
Equation 5 0.605- 0.631 0.809-0.833 

LP 0.631 0.796 
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smaller than the lower LP bound. For the tri-component bounds, the best 
upper theoretical bound obtained from (1.5) is found to be greater than the 
upper LP bound. These clearly show that the theoretical bounding formulas 
in (1.4) and (1.5) may not produce the narrowest possible bounds, even if all 
possible component orderings are considered. 

As a further example, consider the case where ri = JP in the D-S correla­
tion model, such that Pij = p for i =/:- j. This is the case of a series system with 
equi-probability and equi-correlated components. It is well known that this is 
the least favorable condition for bi- or tri-component bounds. Tables 2 and 3 
list the computed bi- and tri-component probabilities and the corresponding 
bounds by LP and the theoretical formulas in (1.4) andand (1.5) for p = 0.2, 
0.4, 0.6, 0.8 and 0.9. Obviously the theoretical bounds are independent of 
the ordering of the components in this case. It is seen that in several cases 
(highlighted in bold) the theoretical bounds are inferior to the LP bounds. 
This further demonstrates that the theoretical bounding formulas may not 
produce the narrowest possible bounds for a given probability information. 

TABLE 2. Si-component bounds for series system with equal component proba­
bilities and correlations. 

p 
Pij Bounds (X 10-3) 

(1 ~ i < j ~ 7) LP Equation 4 

0.2 4.11 . w- 7 1.3062 - 1.3063 1.3062- 1.3063 

0.4 2.56. w-6 1.26-1.30 1.26- 1.30 

0.6 1.10. w- 5 1.08- 1.25 1.08- 1.25 

0.8 3.87 . w- 5 0.606-1 .08 0.552-1.08 

0.9 1.20. w- 5 0.405- 0.883 0.347-0.883 

TABLE 3. Tri-component bounds for series system with equal component proba­
bilities and correlations. 

p 
P i jk Bounds (X w-3) 

( 1 ~ i < j < k ~ 7) LP Equation 5 

0.2 3.86. w-9 1.3062-1.3063 1.3062- 1.3103 

0.4 1.68. w- 7 1.26-1.27 1.26-1.29 

0.6 2.26. w-6 1.12-1.16 1.12- 1.20 

0.8 1.12. w- 5 0.761-0.927 0.761-0.975 

0.9 4.47. w- 5 0.514- o. 720 0.493- 0. 7 46 
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5. Application 2: Seismic reliability of electrical substation 

In this section, three numerical examples are used to demonstrate the ap­
plication of the LP bounds to estimating the seismic reliability of electrical 
substation systems. The first example deals with a single-transmission-line 
system with 5 equipment items, which is modeled as a series system with 
n = 5 components. The system is subjected to an earthquake ground motion 
with random intensity and local soil effects. Each component is assumed to 
have an uncertain capacity to base acceleration. For this system, the uni-, 
bi- and tri-component bounds are estimated by LP and are compared with 
simulation results. The effect of varying the capacity of a critical compo­
nent on the system reliability is investigated. The second example deals with 
the same system with the critical component replaced with a parallel sub­
system, hence introducing redundancy with respect to the state of the critical 
component. Systems with different number of redundant components are in­
vestigated by use of the cut-set formulation. LP bounds based on uni-, hi­
and tri-component probabilities are compared with simulation results. The 
final example deals with a two-transmission-line system, which is a variation 
of the first example with system redundancy. The system is modeled through 
a cut-set formulation. The uni-, bi- and tri-component bounds are computed 
by LP and compared with simulation results. The simplex algorithm and 
the primal-dual algorithm implemented in Matlab Optimization Toolbox are 
used to solve all the LP problems. 

For all the examples in this paper, let A denote the bed-rock peak ground 
acceleration (PGA) in the vicinity of the substation and Si denote a factor 
representing the local site response for equipment i, such that ASi is the 
actual PGA experienced by the i-th equipment item. Assume A is a lognor­
mal random variable with mean 0.15g (in units of gravity acceleration, g) 
and coefficient of variation (C.O.V.) 0.5, and Si, i = 1, ... , n, are indepen­
dent lognormal random variables, also independent of A, with means 1.0 and 
C.O.V. 0.2. Also let ~ denote the capacity of the i-th equipment item with 
respect to base acceleration in units of g, and assume it has the lognormal 
distribution. The means and C.O.V.'s of the equipment capacities are as­
sumed as follows: disconnect switch (DS) rv (0.4g, 0.3), circuit breaker (CB) 
rv (0.3g, 0.3), power transformer (PT) rv (0.5g, 0.5), drawout breaker (DB) rv 

(0.4g, 0.3), feeder breaker (FB) rv (l.Og, 0.3) and tie breaker (TB) rv (l.Og, 
0.3). The capacities of equipment items within each category are assumed 
to be equally correlated with a correlation coefficient of 0.3 except 0.5 for 
PT's. Equipment capacities in different categories are assumed to be statis­
tically independent. The statistics assumed above are rough approximations 
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based on Bayesian analyses of observed data on the performance of electrical 
substation equipment in past earthquakes (Der Kiureghian, 2002). 

5.1. Example 1: Single-transmission-line substation 

Consider the single-transmission-line substation system in Fig. 3, which 
is adopted from Brown (2002). The failure of any equipment item constitutes 
failure of the substation. Therefore, the single-transmission-line substation is 
a series system with its eauinment items renresentinlr the comnonents. 

CB fYf DB 

(R2,S2) (R3,S3) (R4,S4) 

FIGURE 3. A single-transmission-line system. 

The failure events of the individual equipment items are formulated as 

Ei = { ln ~ - ln A - ln Si ~ 0}, i = 1, .. . , 5. (5.1) 

Since the logarithm of a lognormal random variable is normal, Vi = ln ~ -
ln A -ln Si has the normal distribution. Therefore, the uni-component prob­
abilities are given by 

i = 1, ... '5, (5.2) 

where <I>(·) denotes the standard normal cumulative distribution function 
and J.-Li and ai are the mean and standard deviation of Vi, respectively, which 
are easily computed in terms of the statistics of A, Si and ~ given above. 
Furthermore, for any pair of components i and j, the random variables Vi 

and Vj are jointly normal and the hi-component joint probabilities can be 
computed from (Ditlevsen and Madsen 1996) 

(5.3) 

where ui = -J.-Ldai, Pij denotes the correlation coefficient between Vi and Vj, 

and c.p( ·, ·, p) represents the hi-normal probability density function with zero 
means, unit standard deviations and correlation coefficient p. 
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The above uni- and hi-component probabilities are used to compute the 
bounds on the series-system probability by use of LP. The LP formulation in­
volves 25 = 32 design variables, 5 equality constraints for the uni-component 
probabilities, 10 for hi-component, and 10 for tri-component probabilities. 
The uni-component bounds on the system failure probability are 0.0925 
and 0.202. The hi-component bounds are 0.122 and 0.147~ The tri-component 
bounds are 0.139 and 0.142. To check the accuracy of these results, Monte 
Carlo simulation is performed and the system failure probability is estimated 
as 0.138 with a 1% coefficient of variation. This result is bracketed by both 
the uni-, bi- and tri-component LP bounds. 

One may ask the need for LP bounds when Monte Carlo simulation can 
be performed. The point is that the Monte Carlo simulation method can be 
impractical when the failure probability is small, whereas LP bounds are not 
affected by the magnitude of the failure probability. In this application, by 
nature of the problem, the probability of failure is high. This, however, is not 
the case with all systems, including all electrical substations. 

An important observation to be derived from the above result is that the 
seismic reliability of a single-transmission-line substation is quite low, i.e., 
the failure probability is high. This is partly due to the vulnerability of the 
circuit breaker, which is a top-heavy item with tendency to fail by fracture of 
its ceramic bushings or oil leakage through its gaskets. In order to investigate 
the influence of the capacity of the circuit breaker on the reliability of the 
system, the failure probability of the single-transmission-line substation is 
computed for a range of mean values of its capacity, while maintaining a 
constant C.O.V. Table 4 shows the assumed mean values of the capacity 
of the circuit breaker and the corresponding component and system failure 
probabilities. Uni-, bi- and tri-component LP bounds as well as Monte Carlo 
simulation results are listed. Figure 4 presents the same results in a graphical 

TABLE 4. Failure probabilities of circuit breaker and corresponding system failure 
probabilities. 

E[Rcsl Pes Uni-comp. LP Bi-comp. LP Tri-comp. LP M.C. 
c.o.v. = 0.01 

0.1 0.704 0.704-0.813 0. 7048- 0. 7053 0.7052-0.7052 0.701 

0.2 0.261 0.261 - 0.371 0.272- 0.284 0.2818- 0.2824 0.280 

0.3 0.0925 0.0925- 0.202 0.122-0.147 0.139-0.142 0.138 

0.4 0.0349 0.0393-0.144 0.0853-0.114 0.0989- 0.103 0.0997 

0.5 0.0142 0.0393-0.124 0.0805- 0.0980 0.0886- 0.0908 0.0901 

0.6 0.00621 0.0393-0.116 0.0805- 0.0927 0.0858- 0.0868 0.0869 

0.7 0.00288 0.0393-0.112 0.0805- 0.0908 0.0850- 0.0855 0.0858 
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form. It is seen that a reduced capacity for the circuit breaker1) drastically 
increases the failure probability of the system, whereas increasing the mean 
capacity of the circuit breaker to 0.4g significantly enhances the reliability 
of the system. Further increases in the mean capacity of the circuit breaker, 
however, have little influence on the reliability of the system. This is because 
another component in the series system becomes the "weakest link." 

-e- Uni-component 
-----*- Hi-component 

--+- Tri-component 

~ - Monte Carlo Simulations (c.o.v=O.Ol) 

~ - P f (System) = P f (Circuit Breaker) 
IZl 

'0 
0 
:-3 
~ 
"8 10-1 

0:: ~===+===--r-== 

10-2 10-1 10 ° 
Failure Probability of Circuit Breaker 

FIGURE 4. System versus circuit-breaker failure probability. 

5.2. Example 2: Single-transmission-line with a parallel sub­
system of circuit breakers 

Another way to enhance the reliability of the single-transmission-line sub­
station is to install several circuit breakers in parallel. This provides redun­
dancy to the system, such that one or more circuit breakers can be taken out 
of service without affecting the operation of the substation (ASCE 1999). 

As shown in Fig. 5, this example replaces the single circuit breaker in 
the previous example with a parallel sub-system of k circuit breakers. As 
mentioned earlier, the capacities of the circuit breakers are equally correlated 
with a coefficient of variation of 0.3. Numbering the components from left to 
right in Fig. 5, the system failure event is described by the following cut-set 

I) Many circuit breakers in operation actually have mean capacities around 0.2g. 
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OS CBI' .. . CBk PT DB FB 

(RI,SI) ~2 -~Rk+)l. (Rk+2' Sk+2)(Rk+3 ,Sk+3) 
2 k+l 

FIGURE 5. A single-transmission-line substation with a parallel sub-system of 
circuit breakers. 

formulation: 

Esystem = E1 U (E2E3 · · · Ek+l) U Ek+2 U Ek+3 U Ek+4· (5.4) 

For a system with k circuit breakers in parallel, the LP formulation has 
2k+4 design variables, k+4 equality constraints for the uni-component proba­
bilities, (k+3)(k+4)/2 equalities for the hi-component, and (k+2)(k+3)(k+ 
4)/6 for the tri-component probabilities. Table 5 lists the uni-, bi-, and tri­
component LP bounds as well as Monte Carlo simulation results for selected 
numbers, k, of the circuit breakers in parallel. It can be seen that adding a 
second circuit breaker in parallel to the first one significantly enhances the 
reliability of the single-transmission-line system. However, addition of further 
circuit breakers in parallel does not provide significantly more improvement 
in the reliability of the system. 

TABLE 5. Failure probabilities of single-transmission-line substation with parallel 
sub-system of k correlated circuit breakers. 

k U ni-comp. LP Bi-comp. LP Tri-comp. LP M.C. 
c.o.v. = 0.01 

1 0.0925- 0.202 0.122-0.147 0.139-0.142 0.138 

2 0.0393- 0.202 0.0805-0.130 0.0992- 0.109 0.104 

3 0.0393- 0.202 0.0805-0.122 0.0874-0.104 0.0950 

4 0.0393- 0.202 0.0805-0.120 0.0847-0.100 0.0892 

TABLE 6. Failure probabilities of single-transmission-line substation with parallel 
sub-system of k uncorrelated circuit breakers. 

k Uni-comp. LP Bi-comp. LP Tri-comp. LP M.C. 
c.o.v. = 0.01 

1 0.0925- 0.202 0.122-0.147 0.139-0.142 0.138 

2 0.0393- 0.202 0.0805-0.125 0.0957-0.105 0.100 

3 0.0393- 0.202 0.0805-0.116 0.0847-0.100 0.0916 

4 0.0393- 0.202 0.0805-0.114 0.0847- 0.0961 0.0864 
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In the above example, the circuit breakers were assumed to be positively 
correlated. Such correlation is present when circuit breakers are of the same 
model or from the same manufacturer. One can increase the reliability of a 
parallel sub-system by reducing positive correlation between the components. 
To investigate this effect, the above example is repeated, while assuming the 
circuit breaker capacities are uncorrelated. In practice, such a case might 
be achieved by assembling circuit breakers of different make or model. The 
results in Table 6 show that this modification improves the reliability of 
the system, but only by a small amount. The reason is that the common 
random variable A still causes strong correlation between the component 
failure events. 

5.3. Example 3: Two-transmission-line substation 

Another way to increase the redundancy of the substation system is to 
add one or more transmission lines, such that the system has alternative 
paths for electric flow. Consider the two-transmission-line substation system 
shown in Fig. 6. As before, we assume a correlation coefficient of 0.3 between 
equipment capacities within each category (except 0.5 for PT's), and statis­
tical independence between equipment capacities in different categories. 

(5) CB2 (9) 082 
(7) PT2 

(II)FB 1 

(10) TB 

FIGURE 6. A two-transmission-line substation system. 

Using the component identification numbers shown in parenthesis in 
Fig. 6, the 25 minimum cut sets of the system are identified as follows: (1,2), 
(4,5), (4,7), (4,9), (5,6), (6,7), (6,9), (5,8), (7,8), (8,9), (11,12), (1,3,5), (1,3,7), 
(1,3,9), (2,3,4), (2,3,6), (2,3,8), (4,10,12), (6,10,12), (8,10,12), (5,10,11), 
(7,10,11), (9,10,11), (1,3,10,12), (2,3,10,11). The LP problem has 212 = 4096 
design variables. The uni-component probabilities introduce 12 equality con­
straints and the bi- and tri-component probabilities introduce additional 66 
and 220 equality constraints, respectively. 

The uni-, bi- and tri-component bounds obtained by LP, as well as the 
Monte Carlo simulation result, are listed in Table 7 as "Case 1." Compared 
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to the single-transmission-line substation, we observe a significant reduction 
in the tri-component LP bounds. The simulation result also confirms the 
improvement in reliability in account of the added system redundancy. 

TABLE 7. Failure probabilities of two-transmission-line substation system. 

Case Uni-comp. LP Bi-comp. LP Tri-comp. LP M.C. 
C.O. V. = 0.01 

1 1.13. w- 12
- 0.202 0.0436-0.146 0.0616- 0.0942 0.0752 

2 4.69 . w-9
- 0.202 0.0436-0.146 0.0615-0.0943 NA 

3 1.26 . w-9
- 0.202 0.0267-0.147 0.0395- 0.1360 NA 

4 5.19. w-9
- 0.120 0.0267- 0.0995 0.0395- 0.0701 NA 

To further demonstrate the usefulness of the LP bounds, suppose no in­
formation is available on one of the equipment items in the substation, say 
the disconnect switch DS3 (component 3) that connects/disconnects the two 
transmission lines. In that case, the uni-component probability and all the 
joint-component probabilities involving this equipment item are not avail­
able. With the LP bounds, we only need to remove the equality constraints 
corresponding to these unknown probabilities. For the present example, the 
result obtained by removing the equality constraints involving the discon­
nect switch DS3is shown in Table 7 as "Case 2." No appreciable change in 
the bi- or tri-component bounds of the system is observed for this case. This 
implies that DS3 may not have a critical role in the system. Note that with 
incomplete probability information, Monte Carlo simulation cannot be per­
formed and, for that reason, "N A" (not applicable) is indicated in the last 
column of Table 7. If, instead of DS3, the equipment item CB1 is assumed to 
lack probability information, the result for "Case 3" in Table 7 is obtained. 
The tri-component LP bounds show a significant widening of the bounds in 
comparison to Case 1. 

Now suppose that the equipment item CB1 (component 4 in the system), 
which has a marginal failure probability of 0.0925 (see Table 4, third row), is 
strengthened and it is estimated that its marginal probability of failure after 
strengthening is less than 0.01. Suppose no information on joint-component 
probabilities between this and other equipment items is available. The LP 
solution for this case, denoted "Case 4" in Table 7, is obtained by removing 
all equality constraints involving this component and adding an inequality 
constraint of the form P4 ~ 0.01. The result in Table 7 indicates a reduction 
in the upper bound, but no change in the lower bound. 
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6. Summary and conclusions 

LP can provide the best possible bounds on a system probability for any 
level of information on marginal or joint component probabilities. The infor­
mation can be in the form of equality or inequality expressions involving uni­
or multi-component probabilities. The method is applicable to any system 
state defined as a logical expression of component states. This includes series 
and parallel systems, as well as general systems that are characterized in 
terms of cut sets or link sets. 

The LP methodology is applied to assessing the seismic reliability of three 
example electrical substation systems. For a single-transmission-line substa­
tion modeled as a series system, it is shown that the LP bounds bracket 
the system failure probability with a width dependent on the level of avail­
able probability information. No ordering of the components is necessary to 
achieve the narrowest possible bounds. The influence of the mean capacity 
of a critical component system reliability is investigated. The second exam­
ple involves a single-transmission-line system with a parallel sub-system of 
circuit breakers. The uni-, bi- and tri-component probability bounds using 
LP are computed and compared with Monte Carlo simulation results for 
different numbers of circuit breakers in the parallel sub-system. It is found 
that adding one ·circuit breaker in parallel significantly increases the reliabil­
ity, but further additions are not effective. The influence of the correlation 
between equipment capacities is also investigated. The third example is a 
two-transmission-line substation, which is endowed with redundancy in the 
electric flow paths. The system is modeled with 12 components and 25 cut 
sets. The uni-, bi- and tri-component bounds are computed by LP and com­
pared with the Monte Carlo simulation result. This example also shows how 
the LP bounds can be obtained when the information on a certain component 
is incomplete or in the form of an inequality. 
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