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Inelastic buckling of plate
G. RIO (GUIDEL)

THis PAPER concerns the inelastic stability of a thin plate under in-plane loading. In Love-KirchhofT's
approxirnation, using Hencky’s relations and Von Mises criterion, we can obtain the particular stress
distribution across the plate thickness for elastic and clastic-plastic prestress fields. The principle of
virtual work is used to study the equilibrium of the bifurcated solution. This leads to the energy
relations where explicit dependence between the stability equation coefficients and the solution is
carried out. We obtain, in the equilibrium equation, two non-quadratic additional terms, which are
neglected in the classical equation. Some applications are made using Ramberg-Osgood’s formula
to show the importance of the additional terms.

Notations
Superscripts
T total value,

() the value calculated at bifurcation point,
p  plastic value.

Subscript
a, f=12 y
i =13 for a tensor component,

€ij, €;j strain components and deviatoric ones,
0;j,S;; stress components and deviatoric ones,
U, displacement components,
z coordinate across the plate thickness,
t charge parameter,
E, G, o, v parameters of constitutive relations,
o, € effective stress and strain,
7€ = f(€) strain-stress curve.

1. Introduction

INELASTIC stability of plates and shells has been intensively studied for the last 40 years
(see, for example, BUSHNELL, HUTCHINSON, RERKSHANANDANA, GALLAGHER, and their
bibliography [1, 4]). The stability can be investigated by a variational method like the
virtual work principle. We can establish that the eigenvalue problem has the same form as
that in the elastic case, but with coefficients depending on the bifurcated solution which
complicates the resolution. This paper concerns the bifurcation load for a thin plate under
in-plane loading. The objective is to show explicitly this dependence between the stability
equation coeflicients and the bifurcated solution in the case of elastic-plastic behaviour.
We shall take into account the particular stress distribution across the plate thickness and
obtain two additional non-quadratic terms, as compared with the classical equation.

To obtain the explicit energy relations it is necessary to integrate the incremental
constitutive relations, and here Hencky’s relations will be used. This approximation is
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justified by the well known fact that the deformation theory of plasticity gives bifurcated
loads which are in reasonable agreement with the experimental results [2, 5]. Under this
assumption, equilibrium relations are obtained with different expressions depending on
whether the pre-stress field is elastic or elastic-plastic.

Applications are made to the case of uniform in-plane loading with the Ramberg-
Osgood’s material stress-strain curve. The result shows the importance of the additional
terms.

2. Kinematics

2.1. Assumptions concerning buckling of thin plates

Classical assumptions are adopted [3, 5, 6]. We assume that the plate thickness is very
small as compared with other dimensions. We study the beginning of the deflection. During
this phase, strains and displacements are considered to be small and are obtained by
means of Love-Kirchhoff’s approximation. Under these assumptions, in a general system
of coordinates, total deformations are [7]:

(2.1) eTs=chp+ (—2Us0p) + 1/2(Uap + Up o + Uso + Us ).

Here with 23 = z:
Ist term = pre-buckling deformation,
2nd term = pure bending deformation,
3rd term = deformation of middle surface.

At the beginning of the deflection process, stretching of the middle surface is supposed
to be negligible as compared with other strains,

(2.2) Uo,,g + Uﬁ‘a = -—Ug,‘a . U3”@ (Of,ﬁ =1,2).

2.2. Deformation

At the beginning of buckling, parameters which lead to a certain bifurcated geometric
form are nearly constant; hence, the general form of the deflection surface is assumed to
be constant, only its intensity varies.

(2.3) Us(t,za) = 1+ Us(za).

Loading parameter ¢ varies from 0 to 1.

3. Material relations

Classical elastic-plastic behaviour is modelled by the Prandtl-Reuss relations. The ob-
jective of this study is to obtain explicit energy relations according to the particular stress
distribution across the thickness. So we need to integrate the stress-strain relations. Since
the calculations based on the deformation theories of plasticity lead to a reasonably good
agreement with the experiments [2, 5], proportionality between the deviatoric components
of stress and strain is assumed.
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The Prandtl-Reuss equations can be integrated and lead to HENCKY’s relations [8],

(3.1) e;; = (go + %)Sﬁ and ¢;; = (I—-%Uii .
The Von Mises yield criterion is used [9],

3.2) 7= \/g(sij - 8i) 2 < 7

and isotropic hardening rule is assumed,

(3.3) ¢ = f(eP).

Since the plate is loaded in its plane (no out-of-plane shear forces), plane stress conditions
are assumed, and

g13 = 0.

NB: In general, if we take an incremental behaviour law like
° o
S=ke,

the following expressions have the same form but for a step of time.

4. Stress distribution

Two different cases are obtained, depending upon whether the pre-stress field is elastic
or elastic-plastic.

4.1. Elastic pre-stress

With precedent assumptions we obtain the transversal deformation £33 in the plate.
s B (1 —2v)(en +e2) ‘
B(l—v) + ¢FE)
Simple calculation yields the deviatoric and later the stress tensor components,
E(-z)-t

on=——n-@+ 20E) + Us 2(3v + pE)]
(4.1) Tk ) .2 _ 01 _
+ det[o;(3(1 — v*) + 2 — v)pFE) + 05(1 — 2v)pF],
012 = (1 + ) + E)'[E - Us a(=2)t + a3,(1 + 1],
with

det=(1+v+¢E)-(3(1-v)+ ¢FE).

4.2. Elastic-plastic pre-stress

At the bifurcation point, an initial plastic deformation appears.
For example, in direction 1

1 o o
(4.2) oy = et e
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and during the deflection growth

Y0
cr = ~(2_ +eb)+ o
11 2 o u
the expressions for stresses differ slightly from those in (4.1).
E(—2)t
o = ZEN0, 03+ 208) + Uy alBv + 0B

-1
+ det[o}),(3(1 = ) + (2 — v)pE) + aby(1 — 2v)¢E]

(] 0
[ _‘P_}*‘U[ﬂ‘(p—a
@

©

=z o (] (}]

4.3) ol = &Ua 5 & a"'z[_.(i_”)__(l _ "9_) PN
l+v+el) ™ (1+v+ k) @ %)

REMARKS

In the second term of Eqs. (4.1) and (4.3) the first parts are due to bending, and the
second parts due to the pre-stress field.

For example, a simplified expression of stress is
(4.4) o= (-2)-t-(A- U3‘11 +B. U3’22) +C. Ull)l +D. 0'(2’2

with (4, B, C, D) = function of (¢, F).

We note that coefficients A, B, C, D are dependent or ,coupled” by the material
behaviour, and because of elastic-plasticity, they are not symmetric with respect to the
middle surface in 23. Compared with elastic relations, the new aspect is a coefficient '
different from 1 and a coefficient D different from 0. In elasticity ¢ = 0 — C' = 1.

4.3. Governing equations

We use the principle of virtual work to study the equilibrium of the bifurcated solution
and the exact solution is approached by a linear combination of kinematic admissible
functions,

[ ap-beapde — [To-8Usds =0.

Using the assumption that there is no stretching of the middle surface for strain and
the local equilibrium equation for the stress, the virtual work of applied loading can be
obtained only by means of the bifurcated shape Us, which then remains the only un-
known.

[ TabUads = — [ 00p-ng-6Uads

=~ [Gapa-0Uadv— [0ap-8Uspdv=+ [0ap-Use-6Usgs-tdv.
v v v
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This leads to the total virtual work

(4.5) [ 0ap(@Usap—t+Us o - 8Us g)dv = 0.

With assumption (2.3) and global discretization,
(4.6) Us(t) = fi-t-Us,

we obtain a virtual displacement expression which is a variation of (4.6), so that 6U;(t)
and 6U, g are expressed by the functions:

(4.7) U13 and l/Zf;-Ui3-Uj3.

Finally, f; parameters are the unknowns of the problem.

We introduce stress expression (4.1) or (4.2) in (4.5), and with the help of (4.6) we
obtain the equation system

(4.8) > Wi =0, d,j=1,...,n
J

In this system there appear two classical terms §W;; and §W;3, quadratic in U3, and
two additional non-quadratic terms 6 W;; and 6 W,.

The quadratic term of bending
oWy = f [ai(Uisn - Ujan + Uiz« Uz 2) + 01(Uizn - Uz ;p + Uz ia - Uiz 22)
+2¢; - Uizgz2- Ujzpa] - fj - ds,
with
a = fE c22 et 3+ 2¢FE)det ' dz dt,
b= [E-2* 130 + pE)det " dzdt,
JE-2 100+ v+ pE) 'dzdt.

1
The non-quadratic term of bending:
0 0
Wi = [[0Uis -0 + U - o)
+b2(Ui3,11 . U(Z)Z + U,‘3,22 . 0"1’1) + 2¢; - U,‘3,12 . (7‘1)2] ds >

with, for the elastic pre-stress,

a= [(-2)0B01- )+ @2-v)pE)der dzdt,
b= [ (=2)((1- w)pE)det™ dz dt,
= [(+v)(=2)(1+v+pE)dzdt
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and for the elastic-plastic pre-stress

a= [ (—z)[(3(1 1Y) + (2= v)pE)det™! (1 . %) ";”] dt dz
b= [ (~2)(1—2W)pE - det™ (1 = %) dtdz,
e = f (—z)((l +v+ LpE)_l(l - %) ";“) dtdz

The quadratic term of the applied loads

(0
§Wis = [las(of - Usy - Upsa + 0% - Ui - Ujs )
0 )
+03(0% Uz Ujsz + 03y - Uiz Uja )
+es - 0(Uisg - Ujsa + Uin g - Ujz )1 ds

with, for the elastic pre-stress,

az = f(3(1— )+ 2 -v)pE)-t-det™! dzdt,
by = f(l—Zu)-z,o-E-t~det"dzdt,
e = f(1+u)-t(1+u+cpE)_1dt,

and for the elastic-plastic pre-stress

f((3(1—V2)+(2—1/))-<,9-E-det"' (1—%) ";“)z dzdt,

as =
by = f(1—2u)-<,9-E-det"(1 "’")t dz dt,
@
ey = 1+0)(1+v+ E—‘(l—ﬂ) (P")t dzdt .
o= [(arnaeveen(1-2)+ 2

A non-quadratic term of applied loads:

Wiy = f [aa(Uisn - Ujsp» Uisg + Uz » Uja - Uiz 2)
+ba(Uks 2 Ujsy - Uisp + Upsn - Ujaa - Uiz 2)
+cg - Uk 2(Ujsg » Uinp + Ujap - Uiz I f fre ds

with, for the elastic pre-stress:

a = [ E(-2)f(3 + 2pE)det'dz dt
by f E(-2)t*(3v + pE)det 'dzdt ,
= f E(=2)t*(1 + v + pE) 'dz dt ,
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and for the elastic-plastic pre-stress

M:Jimﬁw6+u£ma40—%gwﬁ,

by f E(-2)t*(3v + pE)det ! (1 - —?) dzdt,

Cy4

f E(-2)t*(1+v + ¢E)™! (1 - ﬂ)dz dt .
@
NB: ¢ is a function of z and ¢.

SOME REMARKS

These expressions can also be used with the virtual power principle, but in this case
integration over ¢ disappears.

In the classical equation non-quadratic terms don’t appear, because the C and D terms
in the stress expression (4.4) are always set respectively at 1 and 0. Coupling between A,
B, C, D terms of (4.4) disappears.

In the case of elasticity or constant plasticity through the plate thickness, for example
with a tangent modulus, non-quadratic terms also vanish.

The plane configuration can lose its uniqueness but not its stability, because of non-
quadratic terms.

Additional terms are linear and cubic in f;. We can expect that the absolute value
of the linear term must be greater than the cubic one, which is confirmed by numerical
results.

5. Equation of yield surface, determination of plastic part

When pre-stress is in elasticity, evolution is governed by @ < @° = elasticity; & >
7 = elasto-plasticity, with & denoting the effective stress.
Using stress distribution (4.1), we obtain an equation in (2, t)

At = Bzt +C =0,
with

C =@y - @),

E

B = (1—_1/7)[0"1)1 (2 = I/)U3’11 + (2[/ — 1)U3,22) + 0'(2)2((2 — I/)U3’22 + (211 - 1)U3,1])
+60"1)2 1-— U)U3,1z] y

A= L[(Uszn + U )1+ v —v)

(1—222" > y
+U3'11 . U3,22(—I/2 +4v - 1) + 3U32'12(1 — I/)2] :
=T\2

NB: Term A is always positive for the reason that it corresponds to (E{F)— when the

pre-stress field is null.
Term C' is always negative because the pre-stress point is elastic

@) < (@°).
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The solution of the equation gives limits z(t) where plastic deformation occurs. These
limits can be out of plane and are generally not symmetric with respect to the middle-plane
in x3.

When the pre-stress point is in elasto-plasticity, evolution is governed by

da > 0 = elasto-plasticity, d@ < 0 = elasticity .

We suppose that the strain-stress curve (¢ = f(Z)) always increases,

dc*

> 0.
dz

So, variations of effective stress and effective strain are equivalent. The development
of dg gives: z°tA + (—2z)B = 0, with

A= (Usyy +Us)’QF + 1) + U_f,“ + U_f’zz + 2[732,12,

B = (5[])| = Egz)(?.F + 1) . (l]3711 + U_'g,zy_) + U}Y“ . Eil)l + U3,22 . Elz'z + 25'],2 . U3,]z 3
and

(1 -2r2-v+ey E)
(B(1 — v) + py)?

NB: In this equation, we don’t take into account the variation of elastic voluminal de-
formation during the growth of the bifurcated solution. Voluminal deformation is then

calculated at the bifurcation point. The solution of the equation gives limits z, () with
the same remarks as for the elastic pre-stress.

6. Numerical solution technique

Non-quadratic terms in the equilibrium equation are set to perturb the principal
quadratic one. In reduced form, the bifurcation equation is

Aij'fj+’\Bl+’\C'z'j'fj+Di_jk'f_j‘fk=0

which is transformed to

8! B;
(Aij + Diji - fi) + ’\(Cij + lf- )}

fi=0.

1
Nontrivial solution implies
det(I) = 0.
We use the iterative resolution
det(;[ij(’\(n)vfgnl) _ A)\(Tl+l)cij(')\(n)y f;n])) — 0,

with
A0, f) = AO®, [0 + Di A, £ - £
n 4 n ] Bi()‘(n) 'f(”))
T, £ = €™, M) + 6] - T)] ,
and

A(n+l) = A/\(n+l) = )‘(n) .
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In fact, in order to have a simple solution, just quadratic terms are used for the first
iterations to localize the solution with nearly 10% of error. Then, non-quadratic terms
are introduced to obtain the correct solution.

7. Applications

To show the influence of non-quadratic terms, rectangular plates with uniform in-
plane loading are considered. All four edges are simply supported against out-of-plane
displacements (Fig. 1). Initial deplanation with amplitude é;, can be simulated.

| ) 5
. - ~ ][
_ >
B f«e—| @
-
A -
—_— -

Fic. 1.

To have a diflerent stress-strain curve, we adopt the RAMBERG-OSGOOD’s formula
[10]; o, ¢ — uniaxial stress and strain, ' — Young’s modulus, «, n, o, — factors,
o ao, ( o

—) Ramberg-Osgood formula.
Oa

e =

E E

Discretization is made with only 3 functions,

3
Us=)_ fi-Us.
1=1

Figure 2 shows the influence of initial deplanation compared with the incremental
finite element result, in which it is necessary to initiate the bifurcated shape. Despite all
approximations (simple behaviour law, no stretching of the middle surface), the results
comply with the reference. We note that the influence of additional terms increases with
the value of 4.

The maximum effect of additional terms is nearly 3.6% and is much less important
than the initial deplanation, here of a factor of 4.

Figure 3 shows a comparison with Shrivastava’s results. The maximum difference be-
tween the two curves is 2%. The influence of additional terms increases when critical
stress approaches elastic limits (~ 400 MPa). Let us note the rapid variation of critical
stress related to the ratio b/h.

To see the curvature effect of the stress-strain curve, we study two different cases,
n =5 and n = 20 in Ramberg-Osgood’s formula. Figure 4 shows the difference between
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FiG. 3. Critical stress as a function of b/h for square plates simply supported on all sides.
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the two curves and we note that the coefficient n decreases as the nonlinear part of the
curve increases. For these two stress-strain curves, we indicate in Fig. 5 additional energy
evolutions in the loading level.

The loading level is measured by the ratio between the current load and the critical
load. Additional energies are measured by the ratio between their value and the value of

the principal energy.

We notice that at the bifurcation point, the maximum difference is 5% and the difter-
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F1G. 5. Influence of Ramberg-Osgood’s factor n on the value of non-quadratic terms
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Square plate simply supported, b/h = 24, h = 1 mm.
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ence between the two energies, quadratic and non-quadratic, either internal or external, is
nearly constant. So, if additional terms are neglected, we make a systematic error almost
constantly.

For the critical loading, the effect of additional terms is twice as great for n = 5 than
for n = 20, which points out the influence of n.
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8. Conclusion

In the classical equation of stability we have shown, for simple stress-strain relations,
the explicit expression of residual membrane-bending terms which act in a non-quadratic
manner. The influence of these terms is small but depends on the curvature of the stress-
strain curve. We note that the critical stress predicted by all terms is always greater than
the one predicted by the principal quadratic terms.
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