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BRIEF NOTES 

A few properties of the resonant frequencies 
of a piezoelectric body 

J. s. YANG (PRINCETON) 

THiS PAPER PRESENTS a constraint variational formulation for the resonant frequencies of a piezoelec­
tric body. The formulation is in a nonnegative form which is then used to prove a few properties of 
the lowest resonant frequency. 

1. Introduction 

THE RAYLEIGH QUOTIENT for the eigenvalue problem for the resonance of a finite piezo­
electric body is an indefinite form which has stationary values with saddle point behaviour 
(2]. This has hindered many theoretical approaches. In this paper, it is proved that on 
a properly chosen subspace of the admissible functions, the Rayleigh quotient assumes 
a nonnegative form which immediately leads to a few useful conclusions on the proper­
ties of the lowest resonant frequency of the piezoelectric body. These properties can be 
considered as the generalization of the corresponding properties in classical elasticity. 

2. Governing equations 

Let the finite space region occupied by the piezoelectric body be il, the boundary 
surface of n be S, the unit outward normal of S be ni, and Scan be partitioned in the 
following way · 

Su uSa = S¢ u Sv = S, 
Su n Sa = S¢ n s D = 0. 

For the free vibration of a piezoelectric body, the governing equations and boundary 
conditions are [ 1] 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

-Ci jklUk ,lj - ekji</>,kj = pw2
Ui in fl, 

-eiklUk,li + Ei k</>,k i = 0 in fl, 
Ui = 0 on Su, 

aji(ui, </>)nj = (cjikluk,l + ekji</>,k)nj = 0 on Sa, 
</> = 0 on S<J> , 

Di(ui, </>)ni = (eikluk,l- f i k</>,k)ni = 0 on Sv, 

where p is the mass density, Cijkl, e i jk, f i j are material constants, Ui is the displacement, 
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and ¢ is the electric potential. The material constants satisfy 

Cj i kl = Cijkl = Cj i lk = Cklji, 

ekji = ekij, 

fij = fji, 

CijklUi ,,jUk,l 2: 0, fij</>,i</> ,j 2: 0. 

]. S. YANG 

Values of w (resonant frequencies) are sought corresponding to which nontrivial solu-
tions of Ui and ¢ exist. · 

3. The Rayleigh quotient 

The Rayleigh quotient for the variational formulation of the above eigenvalue problem 
is known [2]. Let 

H(fl) = { ui, </>lui = 0 on Su, </> = 0 on S¢}, 

where ui and ¢ are assumed to be smooth enough for all the differentiation on them. 
Then, the expression for the Rayleigh quotient is [2] 

(3.1) R(ui, ¢) = In(CijklUi,jUk,l- fij</>,i<l>,i + 2eiklUk,l¢,i) dfl. 
In puiui dfl 

When ui, ¢ E H ( fl), the stationary values of R( ui, 4>) are the eigenvalues w 2 in Eqs. 
(2.1)-(2.6), and the stationary values are assumed when Ui and ¢are the corresponding 
eigenfunctions. The stationary values of the R(ui, ¢)in Eq. (3.1) are generally not simple 
minima but are of saddle pomt nature [2]. 

It has been shown [2, 3] that for the stationary solutions, with Eqs. (2.2), (2.6) and 
integration by parts, the value of the Rayleigh quotient is 

(3.2) W2 = In(Ci jklU i, jUk,l + fij</>, i </> ,j ) dfl. 
In pui u i dfl 

4. A constraint variational formulation 

The derivation from Eqs. (3.1) to (3.2) suggests a constraint variational formulation 
of the eigenvalue problem· (2.1)-(2:6). First Eqs. (2.2) and (2.6) can be put directly on 
the admissible functions for the Rayleigh quotient (3.1). To be exact, let 

H'(fl) = { Ui, </>lui = 0 on Su, </> = 0 on S4>, -eikluk ,l i + f i k<l>,k i = 0 in fl, 

eiklUk,l - f i k<l> ,k)n i = 0 on S D}. 
Then, on H'(fl), after integration by parts, the Rayleigh quotient assumes the follow­

ing form 

R'(ui, ¢) = In(C i jklUi,jUk,l + fij</> ,i</>,j) dfl. 
In puiui dfl 

Here R'(ui , ¢)is nonnegative, hence it has minima on H'(fl). We therefore have the 
following constraint variational formulation 

w2 = min R'(ui , </>). 
Ui ,¢ EH'(D) 
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The advantage of the above constraint formulation is that it is a minimum principle 
which can be used to prove the properties of its minima, for example, the lowest resonant 
frequency. 

5. The effect of Su 

S u is the part of the boundary of the piezoelectric body on which Ui is prescribed. 
All the admissible functions for R 1(ui, ¢>)must vanish on Su. Consider a new eigenvalue 
problem which differs from Eqs. (2.1)-(2.6) only in that Su shrinks a little to S~ such 
that S~ c Su. Denote the eigenvalues of this new problem by (w0)2 • Since u = 0 on Su 
implies Ui = 0 on S~, we have 

H 1(f2) c H 0 (f2), 

where 

H 0(f2) = { ui, </>lui = 0 on S~, </> = 0 on S¢n -eikluk,li + fik<l>,ki = 0 in J2 
( eikluk,l - fik<l>,k)ni = 0 on S D}. 

Therefore 

6. The effect of Cijkl and p 

If two materials differ in their elastic constants and densities in the following way 

Cijkl ~ Cijkl' 

p ?:. p, 
and everything else remain the same, then, on H 1 

( il) 

1 f g( Ci jklUi,jUk,l + fij</>,i</>,j) d{2 
R (u i , </>) = 

fn pui ui dil 

Equation ( 6.1) immediately implies the following 

w2 = min R
1
(ui, </>) ~ min R(ui, </>) = (w)2

• 
Uj ,¢EH'(il) Uj ,¢EH'(D) 
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