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Topology of surface shear-stress lines
M. GERMANO (TORINO)

THE TOPOGRAPHY of surface shear-stress lines on a three-dimensional body topologically equiv-
alent to a sphere has been studied on the basis of simple topological rules. The main points
discussed and the concepts introduced are the topological similarity among different patterns
and their standard representations on a plane, the structural stability as a discriminating principle
of selection among different patterns and the gradual merging principle as an intuitive way of
constructing sequences of patterns connected to the variation of external conditions, A brief
discussion of some theoretical and experimental patterns deduced from the literature has
been done in order to illustrate these points.

Na podstawie prostych zasad topologicznych przeanalizowano topografig linii powierzchnio-
wych naprezefi $cinajgcych dla ciala tréjwymiarowego topologicznie réwnowainego sferze.
Podstawowe problemy tu oméwione i wprowadzone koncepcije to podobiefistwo topologiczne
roznych struktur i ich standardowych reprezentacji na plaszczyZnie, stateczno$¢ strukturalna
jako kryterium wyboru sposréd réinych struktur i zasada stopniowej fuzji jako intuicyjny
sposdb konstruowania ciggéw struktur zwigzanych ze zmianami warunkow zewngtrznych. Po
oméwieniu tych zagadniefi przedstawiono krotkRa dyskusje teoretycznych i obliczeniowych
aspektéw problemu wynikajacych z literatury.

Ha ocHOBe IpOCTBIX TONOJIOTHYECKHX NPHHIMIIOB NpOaHAJMSHPOBaHA Tomorpacdus MoBEpxX-
HOCTHBIX JIMHHI HANPSAYKEHUIi COBHra [IJIA TPEXMEPHOIO TEJI2 TOMOJIOTHUECKH 3KBHBAJIEHTHOTO
cpepe. OcHoBHble 3aech oGCyaeHHbIe NpobieMbl M BBE[CHHbIE KOHLENLMH 3TO TOMOJIO-
rudecKoe 1noxobue pasHbIX CTPYKTYD M HX CTaHIAPTHBIX NpeCTaBJIeHHH HA IUIOCKOCTH, CTPYK-
TYPHad YCTOMYMBOCTE KaK KpHTepHii BeIGOpa cpely PasHBIX CTPYKTYP H NPHHIMII ITOCTere-
HHOrO CHHTE3a KaK HHTYHTHBHBIH c1ocol MOCTPOeHHA MOC/IeNOBaTENbHOCTER CTPYKTYD, CBA-
3aHHBIX C HM3MEHCHHAMHM BHemmHmX ycnoBmit. Ilocne obcyyaeHMsA 3THX BOIPOCOB NpejcTa-
BJIEHA KODOTKAasd JUCKYCCHA TEOPETHUECKMX M PACUETHBIX ACTEKTOB MpoGJieMbl, BLITEKAIOMIAX
H3 JIMTEpPaTyphl.

1. Introduction

DURING the last years interest for the structure of complex flows has increased consider-
ably. This is due not only to the large interest that phenomena like coherent structures,
separation, vortex breakdown have practically, but also to a new way of thioking about
flows. The urgency for quantitative analyses has very often been the reason why qua-
litative inspections have been neglected: it is more and more evident that in many cases
and particularly when the flow is very complex, the first objective is to sketch in outline
the pattern of the motion.

Qualitative analysis means essentially topology on the theoretical side and flow
visualization on the experimental side, and the interest for these old and newly revisited
tools for the physical inspection of complex flows is testified by the growing number of
articles dedicated both to topology applied to fluid motions and to new methods of visual-
ization. The analysis of surface shear-stress lines on a surface invested by an external
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flow is a powerful tool for studying the separation. The structure of these patterns is
determined by the nature and the location of the critical points, usually saddles and nodes,
and their number is subjected to rules related to the topological kind, the genus, of the
surface.

Apart from the pioneering works of LIGHTHILL [1] and LEGENDRE [2], we notice at
present the need for a systematic development of the subject and fundamental in this
respect is the recent work of PEAKE and ToBAK [3] where the task of providing a flow
grammar based on simple singular points by which to create sequences of plausible flow
structures has been tackled. In our work we have in view some main objects. First of all
we stress the importance of a clear description of the patterns, preserving their main top-
ological properties, and we propose a standard representation based on simple symbols
for the singular points and on projections on the plane. In many cases the representation
of patterns are obscure and conceal symmetries or similarities with other patterns.

Second we discuss the static topological properties of the patterns, based on the index
theorem and on the criteria of structural stability, and we discuss the concept of ropological
similarities between patterns. The third point is relative to the topological dynamics of
patterns, and we consider the bifurcations from one structure to another with reference
to the variation of some parameter like the incidence or the Reynolds number of the ex-
ternal flow. We introduce the concept of local gradual merging of new singular points
in a pattern and finally we discuss some examples in order to illustrate all these points.

2. General remarks. Standard representation

Let us consider a surface in three-dimensional space, and let us introduce on it a system
of curvilinear coordinates e, f. If we indicate with 7, and 7, the shear stress components
parallel to the coordinate lines, the pattern of the surface shear stress lines is given at
a fixed instant ¢ by the system

(2.1) %— = 1.(a, f,1), jﬁ = 73(a, B, 1),

where 1 is a parameter, so that the solutions are curves on the given surface. When at
least one of the two components of the shear stress is different from zero, we say that
the point is regular; on the contrary, we are in presence of a critical, or singular, point.
The nature of a critical point is given by its topological index which is defined in the
following way. Let P be a singular point (Fig. 1) and € a circle around it such that no

Ko

€ @

Fic. 1.



TOPOLOGY OF SURFACE SHEAR-STRESS LINES 607

other singular point lies within € or on the boundary. At each point Q of € we consider
the angle ¢ formed by the local vector 7 = (7,, 75) and a fixed direction of reference @.
If we move around €, ¢ will vary and when we return to the starting point its initial value
will be increased or decreased by a multiple of 2, say 2kn, where k, the index, is an in-
teger, positive or negative.

There are global index theorems relative to the sum of indices of singular points [4, 5]
and depending on the topological genus of the surface [6. 7]. In particular, if g is the
genus of the surface, (its degree of connection), the sum s of the indexes of the singular
point is given by the expression
2.2 s=2-2g,
where g = 0 for a surface topologically equivalent to a sphere, g = 1 for a surface top-
ologically equivalent to a torus, and so on. With regard to the nature of the singular points
on a surface we can classify them starting from the simplest ones as saddles (Fig. 2),
index —1, and focuses, nodes and centers (Fig. 3) index 1.
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The index of a regular point is zero (Fig. 4) and we stress the fact that the index is always
an integer characterizing from a topological point of view more and more complex, (de-
generated), singularities.

Let us now consider a three-dimensional body topologically equivalent to a sphere
invested by an oncoming uniform external flow. In this case the genus g of the surface
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is zero, and from the relation (2.2) we have s = 2. At a very low angle of attack and
Reynolds number the pattern of the skin friction lines is the simplest one, characterized
by only two singular points with index 1. According to the definition stated in [3], we call
this flow an attached flow, which generally is characterized by two nodal points, an at-
tachment one and a separation one (Fig. 5), or two focuses or centers (Fig. 6).

Fi1G. 5.

FiG. 6.

This last case would perhaps be verified in a swirling flow at a very low Reynolds
number, but from the structural point of view centers are unstable singular points, and
we will always consider flows which do not produce centers on the body, but only saddles
and nodes or focuses. By applying the principles of structural stability we neglect also
singularities of higher indices because they are structurally unstable, so that they split
in simpler types for a slight perturbation of the pattern.

It is now important to have a good representation of these patterns and to this end
we make a projection of the shear stress lines on a plane whose point at infinity corresponds
to a selected node, an attachment or a separation one (Fig. 7), so that in the case of the
attached flow we obtain the very simple pattern (Fig. 8) which preserves the peculiar top-
ological features of the shear stress lines.

In order to simplify further the pattern representation, we can also use the symbols des-
cribed in Fig. 9 where attachment and separation nodes or focuses are respectively reduced
to white and black circles, and a saddle is characterized by its peculiar separation lines.

A
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These symbols and the projection of shear stress lines a on plane constitute what we
call a standard representation, and we will always assume that in this representation the
point at infinity is a node. One standard representation of the attached flow is given in
Fig. 10, where the attachment node is at infinity, and the following patterns, composed
of three nodes and one saddle are represented in Fig. 11, where we notice that a separation
line is represented by an interrupted line when it goes to infinity, and where the point
at infinity is always an attachment node.

Fic. 10.

Fic. 11.

We notice that in some cases different standard representations could be useful, for
example when there are two symmetric attachment points on the body. In such cases
it would be better to project at infinity a different node, for example a separation one,
and we obtain topologically equivalent representations of the given pattern.
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3. Structural stability of the patterns and local gradual merging of new singularities

Taking into account these topological rules and descriptive norms, we can start studying
the separation on a three-dimensional body. One way of discussing the problem is very
simple: we start from the simplest topological pattern, the attached flow (Fig. 10) and by
assuming the gradual merging of new nodes and saddles, we generate and classify more
and more complex patterns. It is easy to verify that two simple patterns follow the simplest
one of the attached flow, and they are represented in Fig. 11, but it is also easy to realize
that the number of patterns increases in an overwhelming way when another couple of
saddle and node merges from the patterns of Fig. 11. We can name this set of structures
N*S?2, because they are composed of four nodes and two saddles, whereas the two patterns
of Fig. 11 are the structures N3S, and the fundamental pattern of the attached flow is
the N2 structure and another important distinction is relative to the nature of the nodes,
that can be attachment or separation ones. Obviously the N? structures can only be of
the form N,N,, where the pedices a and s indicate respectively attachment and separation,
but internally to the N3S structures we have N,N2 S and N2 N, S structures, and as subsets
of the N*S? structure we have patterns constituted by N2N,S?, N2N2S? and N,N;S2.
We notice that it is very important to select those patterns that are structurally stable [8].
As a matter of fact, from the physical point of view we must discard patterns which contain
centers, higher order (degenerated), singularities, non-isolated singular points and con-
nections saddle to saddle (Fig. 12), and particular attention must be given to this last
source of instability, as we will see in the following.
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It is interesting also to classify these new structures in accordance with some generat-
ing rule, by specifying some mechanism by which the pattern changes its structure. The
problem is studied in detail in [3] by PEAKE and ToBak, and following their
suggestions we postulate a simple rule of local gradual merging of new structures. We simply
define as local gradual merging of new patterns the merging of saddles and nodes such
that the topology of the structure is continuously changed from one type of pattern to
another, and we illustrate with some examples what we mean. In Fig. 13a P is a regular
point, and if we consider the simplest way of local gradual merging of a couple saddle
and node such that externally the pattern does not change, we have the new pattern of
Fig. 13b.

In Fig. 14a P is a nodal point, and on the same assumption as before we have the new
pattern of Fig. 14b or the one sketched in Fig. 14c, and finally in Fig. 15a we consider
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a saddle point P, and also in this case the local gradual merging of a couple saddle and
node gives place to the structure of Fig. 15b.

A less intuitive way of stating the principle of gradual merging could be based on the
value of the index connected to a circle: if we assume that this index can only change
when a singular point crosses the boundary of the circle, no matter how little the radius
is, we arrive to a more precise definition. Obviously many other types of gradual merging
can be supposed. We have analysed the simplest way in which one couple of saddle and
node merges from a regular or a singular point, (node or saddle), but more and more
complex situations could occur, and as an example in Fig. 16b we have represented the
merging of two couples of saddles and nodes from the regular point P of Fig. 16a.
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Another point must be stressed. In many cases a particular symmetry of the body
can induce symmetric merging in the pattern, and in many-cases we could have the simul-
taneous merging of new saddles and nodes from different points. In Fig. 17b we have
represented such a situation, where the axis of symmetry, due for example to some sym-
metry of the body, is the dotted separation line of the primitive pattern 17a.

Finally we notice that in some cases patterns that apparently are very different have
the same topological structure. This similarity between patterns is very interesting and
introduces a new and fundamental criterion of similitude between flows.

a b i

Fic. 17.

4. Topography of shear-stress lines. Selected examplés

We will now analyse, with the support of these general considerations, some cases of
practical interest. We will consider typical three-dimensional bodies of aerodynamic
interest, simply connected, without emphasizing excessively the condition of analyticity
of their surface. Pointed protuberances or sharp edges violate effectively analyticity, but
the topology of the patterns can be in many cases deduced on the basis of the previous
simple assumptions. We have extracted our standard representations from a large number
of experimental and computational works on the subject, and particularly interesting and
stimulating in this respect is the Agardograph of PEAKE and TOBAK previously cited [3].

After some general remarks on the patterns of shear-stress lines on a body of revolu-
tion, we will analyse, as particular examples, shear-stress patterns on spheroids, on cylinder-
flare bodies and on slanted afterbodies.

4.1. Shear-stress lines on bodies of revolution. General remarks

Let us first of all consider the characteristic types of separation around a two-di-
mensional symmetric body without incidence. Starting from the attached flow (Fig. 18a)
we have tail separation (Fig. 19a) or bubbles (Fig. 20a).

If we now consider the body of revolution obtained by revolving around its axis this
two-dimensional symmetric body, we have, in the standard representation with the at-
tachment point 4 at infinity, the patterns respectively of Fig. 18b, Fig. 19b, and Fig. 20b.

We notice that the particular symmetry of this body of revolution without incidence
introduces in our analysis something very strange and till now not considered in the
literature: one or more whole lines of singular points. Non-isolated critical points are
highly unstable from the structural point of view. A slight asymmetry or incidence breaks
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this kind of pattern, preserving its peculiar nature, for example by substituting the line
of singular points with a sequence of nodes and saddles, as in Fig. 19c.

In the case of the pattern of Fig. 20b, the three-dimensional equivalent of the separa-
tion bubbles on the two-dimensional body of Fig. 20a, it is more difficult to conjecture
what happens when this unstable structure breaks down. As a matter of fact two different
arrangements preserve this peculiar nature, the one sketched in Fig. 20c and the alternat-
ing one of Fig. 20d, but the first one must be rejected on the basis of its structural instability,
due to the fact that there are connections saddle to saddle. We will return to the stable
pattern of Fig. 20d when we will discuss the shear-stress lines on cylinder-flare bodies.

4.2. Shear-stress lines on spheroids

In our considerations of the flow separation on spheroids we have analysed the works
of CookEe and BREBNER [9], WANG [10] and HAN and PATEL [11]. In [9] the situation
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is exposed according to EICHELBRENNER [12], and in our standard representation, with
the node of attachment at infinity, we have for low incidence, « < 9°, the pattern of
Fig. 21, and the pattern of Fig. 22 for high incidence, « > 9°. Wang apparently postulates
the same pattern both at low and at high incidence, & = 3° and « = 12°, and this pattern
is the same assumed by Eichelbrenner for high incidence, (Fig.22). Finally, in their recent
experimental work Han and Patel observe at low and moderate incidences, « = 5° and 10°,
the surface flow pattern of Fig. 21, and at high incidence, « = 30°, a new flow pattern,
the one depicted in Fig. 23.

It is interesting to notice that Lighthill in his classical work about topography of skin-
friction lines and vortex lines [1] illustrates a possible pattern of skin-friction lines on
a smooth surface, (Fig. 11, 12 at page 79 of Ref. [1]). The relative standard representation

FiG. 21.
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with the main attachment node placed at infinity is sketched in Fig. 24, and a possible
sequence starting from the fundamental attached flow and based on the gradual merging
of new singularities is presented in Fig. 25.

4.3. Shear-stress lines on cylinder-flare bodies

Very interesting is the pattern of skin friction lines of cylinder-flare bodies (Fig. 26)
at an angle of attack in supersonic flow, conjectured by Peake and Tobak on the basis
of experimental and numerical works, (see [3], pp.100-102 for references).

In our standard representation it looks like Fig. 27 for an angle of attack of 4° and
a Mach number 2.8. It is probable that for zero incidence the asymmetry between the
leeward and the windward sides disappears, giving place to the pattern of Fig. 28, where
there is a reabsorption of the saddle 4 and of the two nodes B, and it is interesting to
notice that this structure is the stable one represented in Fig. 20d and already discussed
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when speaking of bodies of revolution. As a matter of fact, if we consider a section of
the cylinder-flare body, we have a situation like that presented in Fig. 29, and we can
connect this kind of separation with that presented in Fig. 20a.

FiG. 29.

4.4. Shear-stress lines on slanted afterbodies

Let us now consider the separation around a.body with a slanted rear-surface, see
Fig. 30. It has been noted that the flow is greatly influenced by changing the angle of the
slanted rear surface, (this kind of surface is significant for experiments on vehicle-like
bodies), and two regimes have been identified [13], the first one for « ranging from 10°
to nearly 45° and the second one for « ranging from 45° to 90°. At 45° there is a sudden
decrease in the drag coefficient, revealing a new structure of the flow.

——
wind
direction o

Fic. 30.

We think that in the first case we have a topological structure of the shear-stress lines
like the one sketched in Fig. 31a, while in the second case there is a gradual merging of
the type described in Fig. 15b, that interests the saddle A4, giving place to the pattern of
Fig. 31b. Further studies on visualizations would be very useful in this regard.

5. Concluding remarks

Other examples of surface shear-stress line patterns could be given, extracted from
the numerous publications on the subject, but it is 'better now to resume some main points.
First of all we stress the importance of the standard representation of the pattern in order
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to clearly establish what we can call the topological criteria of similitude between flows:
two patterns can be topologically equivalent notwithstanding apparent big differences
provided that they have the same critical points connected in the same way.

A systematic study of these patterns, starting from the simplest one with due attention
to particular subsets subjected to some properties of symmetry and selected on the basis
of the structural stability, would be very rewarding, but little or nothing has been done
on this subject that is deeply connected with the mathematical qualitative methods of
solving differential equations, (see ARNOLD [8]).

These problems and the index theorems and the criteria of structural stability consti-
tute what we can call the topological statics of patterns. By increasing some external par-
ameter like the angle of incidence, or the Reynolds number of the flow, we observe a gradual
merging of new patterns. On the basis of the local gradual merging principle, and with
due attention to particular symmetries of the body, the topological dynamics of the patterns
can be inferred from experiments. This point is very crucial: we need better and better
visualizations obtained on carefully selected bodies in order to feed and test theory.

Finally we must stress the fact that the final aim is the study of the structure of the
external flow. What we can deduce in this respect by the analysis of the shear-stress lines
is an open problem.
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Note added in proof

Some points of the article deserve a little comment. First of all the author stress the fact that the
idea of constructing sequences of topological patterns by using the topological rule of the indices
and based on the merging of singular points is a fundamental result contained and developzd in detail
in the cited Agardograph of Peake and Tobak. The principle of structural stability has been discussed
by the same authors in a recent article (M. ToBak and D. J. Peake, Topology of three-dimensional
separated flows, Annual Review of Fluid Mech., 14, 61-85, 1982), and particularly interesting is the
distinction between structural and asymptotic stability, where the asymptotic stability is defined
as the stability in time to small perturbations.





