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Topology of surface shear-stress lines 

M. GERMANO (TORINO) 

THE TOPOGRAPHY of surface shear-stress lines on a three-dimensional · body topologically equiv­
alent to a sphere has been studied on . the basis of simple. topological rules. The main points 
discussed and the concepts introduced are the topological similarity among different patterns 
and their standard representations on a plane, the structural-stability as a discriminating principle 
of selection among different patterns and the gradual metging principle. as an intuitive way _of 
constructing sequences of patterns connected to the variation of external conditions. A brief 
discussion of some theoretical and experimental ·patterns deduced from the literature has 
been done in order to illustrate these points. 

Na podstawie prostych zasac;J topologicznych przea.nalizowano topografi~ linii powierzehnio­
wych napr~:ien 8cinaj~cych dla ciala tr6jwytniarowego topologicznie r6wnowa:inego sferze. 
Podstawowe problemy tu om6wione i wprowadzone koncepcje to podobienstwo topologiczne 
r6:inych struktur i ich standardowych r~prezentacji na plaszczyznie, statecznosc strukturalna 
jako kryterium wyboru sposr6d r6:inych struktur i zasada stopniowej fuiji jako intuicyjny 
spos6b konstruowania ci~g6w struktur zwi~nych ze zmianami warunk6w zewn~trznych. Po 
om6wieniu tych zagadnien przedstawiono kr6tk~ dyskusj~ teoretyc:z;nych i obliczeniowych 
aspekt6w pro61emu wy~ikaj~cych z literatury. 

Ha oCHoBe npoCTbiX rononorn1:1eCKHX npHHIUUIOB npoauaJIH3HJ><)BaHa ronorpa$HH noBepx­
HOCTHbiX :JIHHHH. HanpH>KeHHH C~BHra ~H l'peXM€pHoro TeJia TOllOJIOrH'lleCKH 3I<B~aJieHTHOrO 
c<~Jepe. OCHoBHbie a~eCb o6~eHHbie npo6neMbi H BBe~eHHbie I<oHQem.um 3TO Tonono­
rH'lleci<oe no~o6He paaHbiX CTPYI<TYP H HX ~apTHbiX npe~C1'aBnemm Ha nnoci<oCTH, CTPYI<­
TypHaH YCTOH'liHBOCTh I<ai< I<pHTepHH Bbi6opa cpe~ pa3HbiX Cl'pYI<Typ H npmnum nocrene­
HHOro CHHTe3a I<ai< HHTYHTHBHbiH cnoco6 noCl'poeHmi noCJie~OBaTeJU.HOCTeH Cl'pyHTyp, CBH­
aaHHbiX c H3MeHeHHHMH BHeii.DIHX yCJioBIIH. TioCJie o6cy~eHHH 3THX :BonpocoB npe,ncra­
BJieHa I<OpOTI<aH ~CJ<YCCHH TeOpeTH'lleCI<HX H paC'lleTHbiX acnei<TOB npo6JieMbi, BbiTei<aK>IIUfX 
Ha JIHTepaTyp&I. · 

1. Introduction 

DURING the last years interest for the structure of complex flows has in~re~sed consider­
ably. This is due not only to the large interest that phenomena like coherent structures, 
separation, vortex breakdown have practically,, but also to a new way of thinking ~bout 
flows. The urgency for quantitative analyses has very often been th~ reason why qua~ 
litative inspections have been neglected: it is more and more evident that in ·ma~y cases 
and particularly when the flow is very complex, the fi~st objective is to sketch in outline 
the pattern of the motion. 

Qualitative analysis means essentially topology on the theoretical side and . flow 
visualization on the experimental side, and the interest .for these old _and newly re_visit~d 
tools for the physical inspection of complex flows is testified. by 'the _growing number of 
articles dedicated both to topology applied. to fluid motions and to new methods of visual­
ization. The ana,lysis of surface shear-stress . lines on a surface invested by an external 
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606 M. G ERMANO 

flow is a powerful tool for studying the separation. The structure of these patterns is 
determined by the nature and the location of the critical points, usually saddles and nodes, 
and their number is subjected to rules related to the topological kind, the genus, of the 
surface. 

Apart from the pioneering works of LIGHTHILL [1] and LEGENDRE [2], we notice at 
present the need for a systematic development of the subject and fundamental in this 
respect is the recent work of PEAKE and ToBAK [3] where the task of providing a flow 
grammar based on simple singular points by which to create sequences of plausible flow 
structures has been tackled. In our work we have in view some main objects. First of all 
we stress the importance of a clear description of the patterns, preserving their main top­
ological properties, and we propose a standard representation based on simple symbols 
for the singular points and on projections on the plane. In many cases the representation 
of patterns are obscure and conceal symmetries or similarities with other patterns. 

Second we discuss the static topological properties of the patterns, based on the index 
theorem and on the criteria of structural stability, and we discuss the concept of topological 
similarities between patterns. The third point ·is relative to the topological dynamics of 
patterns, and we consider the bifurcations from one structure to another with reference 
to the variation of some parameter like the incidence or the Reynolds number of the ex­
ternal flow. We introduce the concept of local gradual merging of new singular points 
in ·a pattern and finally we discuss some examples in order to iiiustrate all these points. 

2. General remarks. Standard representation 

Let us consider a surface in three-dimensional space, and let us introduce on it a system 
of curvilinear coordinates IX, {3. If we indicate with 't'a and Tp the shear stress components 
parallel to the coordinate lines, the pattern of the surface shear stress lines is given at 
a fixed instant t by the system 

(2.1) 
df3 
{[f = Tp(ri., {3, t), 

where A. is a parameter, so that the solutions are curves on the given surface. When at 
least one of the two components of the shear stress is different from zero, we say that 
the point is regular; on the contrary, we are in presence of a critical, or singular, point. 
The nature of a critical point is given by its topological index which is defined in the 
following way. Let P be a singular point (Fig. 1) and ~ a circle around it such that no 

FIG. 1. 
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other singular point lies within Cl · or on the boundary. At each point Q of CC we consider 
the angle cfJ fornied by the· local vector "T = (T«, Tp) and a· fixed direction of reference (fj. 

If we move around CC, 4> will vary and ·when we return to the starting point its "initial value 
will be increased or decreased by a multiple of 2n, say 2kn, where k, the index, is an in­
teger, positive or negative. 

There are global index theorems relative to the sum of indices of singular points [4, 5] 
and depending on the topological genus of the surface [6. 7]. In particular, if g is the 
genus of the surface, (its degree of connection), the sum s of the indexes of the singular 
point is given by the expression 

(2.2) s = 2-2g, 

where g = 0 for a surfa9e topologically equivalent to a sphere, g = I for a surface top­
ologically equivalent to a torus, and so on. With regard to the nature of the singular points 
on a surface we can classify them starting from the simplest ones as saddles (Fig. 2), 
index -1, and focuses, nodes and centers (Fig. 3) index I. 

saddle focus 

FIG. 2. 

node center 

FIG. 3. 

FIG. 4. 

The index of a regular point is zero (Fig. 4) and we stress the fact that the index is always 
an integer characterizing from a topological point of view more and more complex, (de­
generated), singularities. 

Let us now consider a three-dimensional body topologically equivalent to a sphere 
invested by an oncoming uniform external flow. In this case the genus g of the surface 

S* 
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is zero, and from the relation (2.2) we have s = 2., At a very low angle of attack and 
Reynolds number the pattern of the skin friction lines is the simplest one, characterized 
by only two singular points with index 1. According to the definition stated in [3], we call 
this flow an attached flow, which generally is characterized by two nodal points, an at­
tachment one and a separation one (Fig. 5), or two focuses or centers (Fig. 6). 

FIG. 5. 

A s 

FIG. 6. 

This last case would perhaps be verified in a swirling flow at a very low Reynolds 
number, but from the structural point of vi~w centers are unstable singular points, and 
we will always consider flows which do not produce centers on the body, but only saddles 
and nodes or focuses. By applying the principles of structural stability we neglect also 
singularities of higher indices because they are structurally unstable, so that they split 
in simpler types for a slight perturbation of the pattern. 

It is now important to have a good representation of these patterns and to this end 
we make a projection of the shear stress lines on a plane whose point at infinity corresponds 
to a selected node, an attachment or a separation one (Fig.-?), s0 that in the c~se of the 
attached flow we obtain the very simple pattern (Fig. 8) which preserves the peculiar top­
ological features of the shear stress lines. 

In order to simplify further the pattern representation, we can also use the symbols des­
cribed in Fig. 9 where attachment and separation nodes or focuses are respectively reduced 
to white and black circles, and a saddle is characterized by its peculiar separation lines. 

A 

Fto. 7. 
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These symbols and the projection of shear stress lines a on plane constitute what we 
call a standard representation, and we will · always assume that in this representation the 
point at infinity is a node. One standard representation of the attached flow is given in 
Fig. 10, where the attachment node is at infinity, and the following patterns, composed 
of three nodes and one saddle are represented in Fig. 11, where we notice that a separation 
line is represented by an interrupted line when it goes to infinity, and where the point 
at infinity is always an attachment node . 

• 
FIG. 10. 

• • C7-------
FIG. 11. 

We notice that in some cases different standard representations could be useful, for 
example when there are two symmetric attachment points on the body. In such cases 
it would be better to project at infinity a different node, for example a ·. separation one, 
and we obtain topologically equivalent representations of the given pattern. 
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610 M . GERMANO 

3. Structural stability of the patterns and local gradual JDerging of new singularities 

Taking into account these topological rules and descriptive norms, we can start studying 
the separation on a three-dimensional body. One way of discussing the problem is very 
simple: we start from the simplest topological pattern, the attached flow (Fig. 10) and by 
assuming the gradual merging of new nodes and saddles, we generate and classify more 
and more complex patterns. It is easy to verify that two simple patterns follow the simplest 
one of the attached flow, and they are represented in Fig. 11, but it is also easy to realize 
that the number of patterns increases in an overwhelming way when another couple of 
saddle and node merges from the · patterns of Fig. 11. We can name this set of structures 
N4S2

, because they are composed of four nodes and two saddles, whereas the two patterns 
of Fig. 11 are the structures N 3 S, and the fundamental pattern of the attached flow is 
the N 2 structure and another important distinction is relative to the nature of the nodes, 
that can be attachment or separation ones. Obviously the N 2 structures can only be of 
the form NaNs, when~ the pedices a and s in9icate respectively attachment and separation, 
but internally to the N 3 S structures we have NaN'i S and Nt !Vs S structures, and as subsets 
of the N 4 S 2 structure we have patterns constituted by N:NsS2

, NtN';S2 and NaNiS2
• 

We notice that it is very important to select those patterns that are structurally stable [8]. 
As a matter of fact, from the physical point of view we must discard patterns which contain 
centers, higher order (degenerated), singularities, non-isolated sin~ular . points and con­
nections saddle to saddle (Fig. 12), and particular attention must be given to this last 
source of instability, as we will see . in the following. 

uns tabl e connect i on saddle- to- s addle 

FIG. 12. 

It is interesting also to classify these new structures in accordance with some generat­
ing rule, by specifying some mechanism by which the pattern changes its structure. The 
problem is studied in detail in [3] by PEAKE and TOBAK, and following their 
suggestions we postulate a simple rule of local gradual merging of new structures. We simply 
define as local gradual merging of new patterns the merging of saddles and nodes such 
that the topology of the structure is continuously changed from one type of pattern to 
another, and we illustrate with some examples what we mean. In Fig. 13a Pis a regular 
point, and if we consider the simplest way of local gradual merging of a couple saddle 
and node such that externally the pattern does not change, we have the new pattern of 
Fig. 13b. 

In Fig. 14a Pis a nodal point, and on the same assumption as before we have the new 
pattern of Fig. 14b or the one sketched in Fig. 14c, .and finally in Fig. 15a we consider 
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a 

FIG. 13. 

a b c 

FIG>. 14. 

a saddle point P, and also in this case the local gradual merging of a couple saddle and 
node gives place to the structure (j)f Fig. 15b. 

A less intuitive way of stating the principle of gradual merging could be based on the 
value of the index connected to a circle: if we as~ume that this index can only change 
when a singular point cross((s the boundary of the circle, no matter how little the radius 
is, we arrive to a more precise definition. Obviously .many other types of gradu~lmergi~ 
can be supposed. We have analysed the. simplest way in which one couple of saddle and 
node merges from a regular or a singular point, (node or saddle), but more and more 
complex situations could occur, and as an example in Fig. 16b we have represented the 
merging o.f two couples of S'addles and nodes from the regular point P of Fig. 16a. 

a b 

_) ~ _), .\__ 

~ r ~ ( 
FIG. 15. 

a 

~ 
FIG. 16~ 
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612 M. GERMANO 

Another point must be stressed. In, many cases a particular symmetry of the body 
can induce symmetric merging in the pattern, and in many,cases we could have the simul­
taneou~ merging of new saddles and nodes from ~ifferent points. In Fig. 17b we have 
represented such a situation, where the axis of symmetry, d_ue for example to some sym­
metry of the body, is ·the dotted separation line of the primitive pattern 17a. 

Finally we notice ·that in some cases patterns that apparently are very different have 
the same topological structure. This similarity between patterns is very interesting and 
introduces a new and fundamental criterion of similitude between flows. 

a b 

FIG: 11: 

4. Topography of shear-stress lines. Selected examples 

We will now analyse, with the support of these general considerations, some cases of 
practical interest. We will consider typical three-dimensional bodies of aerodynamic 
interest, simply connecte'd, without emphasizing excessively the con~tion of analyticity 
of their surface. Pointed protuberances or ·sharp edges violate effectively analyticity, but 
the topology of the patterns can be in many cases deduced on · the basi$ of the previous 
sitnple ass~mptions. We have extracteo our standard representations from a large humber 
of experimental and computational works on the subject, and particularly interesting and 
stimulating in this respect is the Agardograph of PEAKE and TOBAK previously cited [3]. 

After some general remarks on the patterns of shear-stress lines on a body of revolu­
tion, we will analyse, as particular examples, shear-stress patterns on spheroids, on cylinder­
flare bodies and on slanted afterbodies. 

4.1. Shear-stress lines on bodies of revolution. General remarks 

Let us first of all consider the--characteristic types of separation around a two-di­
mensiohal symmetric body without incidence. Starting from the attached flow (Fig. 18a) 
we have tail separation (Fig. 1.9a) or bubbles (Fig. 20a). 

If we now consider the body of revolution obtained by revolving around its axis this 
two-dimensional symmetric body, we have, in the standard representation with the at­
tachment point A at infinity, the patterns respectively of Fig. 18b, Fig. 19b, and Fig. 20b. 

We notice that the , particul_ar symmetry · of this body of revoJution without incidence 
introduces in our analysis something very strange and till now not considered in the 
literature: one or more whole lines of . singular points. Non-isolated critical points are 
highly unstable from the structural' point of view. : A slight asymmetry or incidence breaks 
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this kind of pattern, preserving its peculiar nature, for example by substituting the line 
of singular points with. a sequence of nodes and saddles, as in Fig. 19c. 

In the case of the pattern of Fig. 20b, the three-dimensional equivalent of the separa­
tion bubbles on the two-dimensional body of Fig. 20a, it is more difficult to conjecture 
what happens when this unstable structure breaks down. As a ma-tter of fact two different 
arrangements preserve this peculiar nature, the one sketched in Fig. 20c and the alternat­
ing one of Fig. 20d, but the first one must be rejected on the basis of its structural instability, 
due to the fact that there are connections saddle to saddle. We will ~eturn to the stable 
pattern of Fig. 20d when we will discuss the shear-stress lines on cylinder-flare bodies. 

4.2. Shear-stress lines on spheroids 

In our considerations of the flow separation on spheroids we have analysed the works 
of _COOKE and BREBNER [9], WANG [10] and HAN and PATEL [11]. In [9] the situation 
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is exposed according to EICHELBRENNER [12], and in our standard representation, with 
the node of attachment at infinity, we have for low in~idence, IX <: ·9o, the pattern of 
Fig. 21, and the pattern of Fig. 22 for high incidence, IX > 9°. Wang apparently postulates 
the same pattern both at low and at high incidence, IX = 3° and IX. = 12°, ~nd this pattern 
is the same assumed by Eichelbrenner for high incidence, (Fig.22). Finally, in their recent 
experimental work Han and Patel observe at low and moderate incidences, IX = 5° and 10°, 
th.e surface flow pattern of Fig. 21, and at high incidence, IX = 30°, a new flow pattern, 
the one depicted in Fig. 23. 

It is in~resting to notice that Lighthill in his classical work about topography of skin­
friction lines and vortex lines [1] illustrates a possible pattern of skin-friction Jines on 
a smooth sulface, (Fig. 11, 12 at page 79. of Ref.' [1]). The relative standard representation 

FIG. 21. 
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Leeward 

Windward 

FIG. 22. 

FIG. 23. 

FIG. 24. 

with the main attachment node placed at infinity is sketched in Fig. 24, and a possible 
sequence starting from the fundamental attached flow and based on the gradual merging 
of new singularities is presented in Fig. 25. 

4.3. Shear-stress lines on cylinder-flare bodies 

Very interesting is the pattern of skin friction lines of cylinder-flare bodies (Fig. 26) 
at an angle of attack in supersonic flow, conjectured by Peake and Tobak on the basis 
of experimental and numerical werks, (see [3], pp.l00-102 for references). 

In our standard representation it looks like Fig. 27 for an angle of attack of 4° and 
a Mach number 2.8. It is probable that for zero incidence the asymmetry between the 
leeward and the windward sides disappears, giving place to the pattern of Fig. 28, where 
there is a reabsorption of the saddle A and of the two nodes B, and it is interesting to 
notice that this structure is the stabl~ one represented in Fig. 20d and already discussed 
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when speaking of bodies of revolution. As a matter of fact, if we consider a section of 
the cylinder..;flare body, we have a situation like that presented in Fig. 29, and we can 
connect this kind of separation with that presented in Fig. 20a. 

FIG. 29. 

4.4. Shear-stress Unes on slanted afterbodies 

Let us now consider the separation around a. body with a slanted rear-surface, see 
Fig. 30. It has been noted that the flow is greatly influenced by changing the angle of the 
slanted rear surface, (this kind of surface is significant for experiments on vehicle~like 

bodies), and two regimes have been identified [13], the first one for ex ranging from 10° 
to nearly 45° and the second one for ex ranging from 45° to 90°. At 45° there is a sudden 
decrease in the drag coefficient, revealing a new structure of the flow. 

---+ 
wind 

direction c--~~0( 
FIG. 30. 

We think that in the first case we have a topological structure of the shear-stress lines 
like the one sketched in Fig. 31 a, while in the second case there is a gradual merging of 
the type described in Fig. 15b, that interests the saddle A, giving place to the pattern of 
Fig. 31 b. further studies on visualizations would be very useful in this regard. 

5. Concluding remarks 

Other examples of surface shear-stress line patterns could be given, extracted from 
the numerous publications on the subject, but it is'better now to resume some main points. 
First of all we stress the importance of the standard representation of the pattern in order 
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a b 

FIG. 31. 

to clearly establish what we can call the topological criteria of similitude between flows: 
two patterns can be topologically equivalent notwithstanding apparent big differences 
provided that they have the same critical points connected in the same way. 

A systematic study of these patterns, starting from the simplest one with due attention 
to particular subsets subjected to some properties of symmetry and selected on the basis 
of the structural stability, would be very rewarding, but little or nothing has been done 
on this subject that is deeply connected with the mathematical qualitative methods of 
solving differential equations, (see ARNOLD [8]). 

These probletns and the index t~eorems and the criteria of structural stability consti­
tute what we· can call the topological statics of patterns. By increasing some external par­
ameter like the angle of incidence, or the Reynolds number of the flow, we observe a gradual 
merging of new patterns. On the basis of the local gradual merging principle, and with 
due attention to particular symmetries of the body, the topological dynamics of the patterns 
can be inferred from experiments. This point is very crucial: we need better and better 
visualizations obtained on carefully selected bodies in order to feed and test theory. 

Finally we must stress the fact that the final aim is the study of the structure of the 
external flow. What we can deduce in this respect by the analysis of the shear-stress lines 
is an open problem. 
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Note added in proof 

Some points of the article deserve a little comment. First of all the author stress the fact that the 
idea of constructing sequences of topological patterns by using the topological rule of the indices 
and based on the merging of singular points is a fundamental result contained and deveJop~d in detail. 
in the cited Agardograph of Peake and Tobak. The principle of structural stability has been discussed 
by the same authors in a recent article (M. ToBAK and D. J. PEAKE, Topology of three-dimensional 
separated flows, Annual Review of .Fluid Mech., 14, 61-85, 1982), and particularly interesting is the 
distinction between structu·ral and asymptotic stability, where the asymptotic stability is defined 
as the stability in time to small perturbations. 

http://rcin.org.pl




