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On a relaxing model for the flow of a mixture of gas
with porous particles

F. FEUILLEBOIS and A. LASEK (MEUDON)

A suspENSION of solid porous particles in a perfect gas is considered. The gas penetrates into
the particles and its quantity contained in the pores may vary with the flow conditions. It is
assumed that the flow within the particles obeys Darcy’s law. The pressure of the gas in the
particle pores does not follow immediately the outer conditions, and relaxation phenomena in
the flow are taken into account. One-dimensional analysis has been applied to the case of
a shock wave in the considered suspension.

Rozwazono zawiesing porowatych czasteczek stalych w gazie doskonalym. Gaz przenika do
czasteczek, a jego zawarto$¢ w porach moze zmienia¢ si¢ wraz z warunkami przeplywu. Zaklada
sig, ze przeplyw gazu wewnatrz czasteczek jest zgodny z prawem Darcy’ego. Cisnienie gazu
w porach czasteczek nie nadaza za warunkami zewnetrznymi i w przeplywie bierze si¢ pod uwage
z_mw:ska relaksacyjne Przeprowadzono anahz@ Jednowym:arowa dla przypadku fali uderze-
niowej rozprzestrzeniajacej si¢ w rozwazanej zawiesinie.

PaccmaTpuBaeTcA B3BeCh TBEDIBIX NOPHCTHIX YacTHYEK B HMIealbHOM rase. I'a3 mpoHmKaer
B YaCTHIIBI, 4 €r0 COJIEPIKAHNE B IIOPAX MOYKET H3MEHATH BMECTE C YCJIOBHAMM Teuenus. Ilpen-
[oJlaraeTcA, YTO TeueHHe rasa BHYTPH YacTHMUYeK IPOMCXOAMT coryiacHo saxoHy [MHMapcm. Ila-
BJIGHHE Ta3a B Mopax He IIOCHEBaeT 33 BHEIIHAMH YCJIOBHAMH M B TeUeHHE YUHTLIBAETCH
siBnenue penaxcanuu. IloBefieH omHOpasMepHBIN aHaiaM3 NS YAApHOH BONHBI, PacmpocT-
PAHMIONIEHCA B PAcCMATPHBAEMOM B3BECH.

WE INTRODUCE a mixture of solid porous particles and a gas. The solid porous particles
may contain a quantity of gas, varying with the flow conditions. The possible mass ex-
change between the solid porous particles and the gas flow creates conditions for pressure
relaxation when the pressure of the gas inside the porous particles is not following imme-
diately the variations of pressure of the gas flow.

We intend to consider a mixture of a gas and of solid particles. The particles are sup-
posed to be porous; they may contain some quantity of the gas in their pores. The pressure
of the gas in the pore is not necessarily always the same as the pressure of the gas outside
the solid particles (in the “free” gas flow). The time needed to establish the equilibrium
between the two pressures which, at the end, must become the same inside and outside
of the solid particles may, be assimilated to a relaxation time.

The solid porous particles considered are supposed to be all of the same spherical form
and the same diameter. They are rigid, and neither their dimensions nor their porosity
do change under the action of external forces.

The dimensions of the particles are supposed to be large enough for the pores to con-
tain some amount of gas. In fact, the diameter D,, of a gas molecule being of the order
of 1 A =10-7 mm, and the diameter D, of a smoke particle being of the order of
1 w =103 mm, we have D,/D,, = 10*.
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We suppose that collisions between particles do not take place; the effect of particles
interaction is neglected.

One can discern three types of gas-particles interaction.

1) Supposing that the particles flow velocity is at some instant different from the gas
velocity, the viscous interaction between the gas and a particle tends to bring the two ve-
locities to their common equilibrium value. As arriving at this dynamic equilibrium needs
some time, there exists a possibility of introducing the notion of the velocity relaxation
time or velocity relaxation length [2, 4].

2) Supposing that at a given instant the particles temperature and the gas temperature
are not the same, one may find the time necessary for these temperatures to arrive to equa-
lity. By the same, one introduces the temperature relaxation time and temperature re-
laxation length [2, 3, 4].

3) Supposing that the particles are porous, one may imagine that a mass exchange
is realised between the particles and the external “free” gas. In fact if at a given instant
the pressure of the gas inside the particle pores is different from the external gas pressure,
a flow across the porous particle material will take place, and this till the two pressures,
external and internal, become equal. In this way a pressure relaxation can exist in a mixture
of gas and of porous particles.

To simplify this case of relaxation, we suppose that the mixture is otherwise in equilib-
rium, that is, there do not exist temperature or velocity differences between the gas and
the particles, the effects of an acceleration or of a temperature change being immediately
transmitted to both.

In what follows we establish the equations of motion of such a mixture.

As in most problems of classical gas-dynamics the one-dimensional treatment of a mix-
ture of gas and porous particles may furnish the characteristic features of the flow.

The fundamental equations may be written as follows:

The continuity equation

Qgellge Sge = ﬁiu,
Opilg1 Sor = My, With  uy = u,,,
ewupssps = r.npss
where the indices ge, gi, ps stand for external gas, internal gas, solid particle, respectively.
There must be:
S¢e+ Sps = S,

where S is the section surface of the flow, and

Sa  _ k- ( Vo )2;3

‘-Snl + Sp\s_ - Vgl e Vgs
where K is characterizing the porous material.
Finally:
h
i Hge = 1 d —— = a,
Mg +Mmg, = My  an o

where « — solid mass fraction of the mixture.
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The momentum equations are

dug dp,
Qaeun_d):_"'ﬁ = F,,

( QNV;I‘}'QMVD! )d“n = =
Var+ Vs dx 3

F, represents the forces of interaction between the gas on the outside and in the inside
of the pores:

F,= J’(Pw_Pﬂ)ds’
Sp

where S, represents the surface section of the pores.
Energy equation:

dT,, d [u. dT, d [u,
Quctlen [c, F i (5 )]“’"“"[C" &t ( 2 )]
dT, d [u3s
et [C= & T a (“z“‘)] =2
with C; — specific heat of the solid.

Supposing, as we do, that there is no slip between the particles and the gas (v, = u,,)
and no temperature difference (T, = T,; = T,;), we get

QoeltSge = ’hn with g+ = my,
Qi Syr = Mgy
ﬁ'”

e TR T CODSf,
Mps+m,

e musw - ’hps and

du  dpge _
Coett Gt ax —

du
[Qwi'a"i'gpu(l - ;')] E = —F,
dT . d [u? aT  d [w?
(Qd'e + Qﬂl) le __dx + "—dx (T)] + 055 [C, —dx + —-dx (T)] = 0’

Voet Vs

where

A

is a characteristic coefficient relating the volume of the pores to the volume of a whole
porous solid particle.

To complete this system we need a state equation. Or if the mixture is in equilibrium,
the state equation is exactly the same as the state equation of a simple gas-solid particles
mixture [3, 4]. In a general case, however, the gas in the interior of the pores may stay,



256 F. FEUILLEBOIS AND A. LASEK

for some time at least, in conditions different from the conditions of the gas outside. It
is convenient then to use two equations of state:

Loe _ RT,,
Oge
Pai
—— = RT,.
le gi

The two pressures p,. and p,;, different as they may be, are not independent. In fact,
the exchange of the gas between the pores and the exterior “free” gas modifies the pressures
inside and outside the particles.

A flow across a porous material obeys Darcy’s law [5],

Vv= —-CVp,

where C is a coefficient characteristic of a given material. In our case we assume a similar
law:
v = C(ppe _Pﬂ)

and the mass exchanged between the “free” gas and the particles is
m= — J. Coge(Pge—Po)ds,
iy

where the integration is extended on the porous surface of the particle S,.
For an isothermal process, when p ~ p, we have

m = —S,CoZ (1 —%) RT.

ge
But the variations of the pressure with time must obey the equation

dpy _ RT dm RT

it~ V, ar - v, "

RT Pl S,CoaRT
— 2 _— Lt = B TR — .
(SpCQg'IRT) V, " (l Dye ) V,g (pﬂe pﬂl)

For pressure differences which are not too large, one may write

dp _ 1
_dT — ——(P Pae)s

T
where

| __Va
SpCo,eRT SpCDge
as well inside as outside the particles.

We do not search here for the dependence between C and 7, but it is obvious that they
are interdependent. Integrating, we have for the external pressure

T =

1

Pge = (Pone_Pee) e_7+PN
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and for the internal pressure
it

Pgt = (P(Jyl "'Peq)e‘:?'hpu
where pg,. — initial external pressure, po,; — initial internal pressure, p., — equilibrium
pressure, the equilibrium pressure p., being the same for the two.
Introducing these expressions into the preceding equation (and exchanging p and p
for isothermal transformations) we get

t

o (9091_924)2 T +0eq
T

(Poae_eeq)e T+ Qe

. ik 2
m = _SpCRT[(QDee—Qu)e ¥ +Qeq] 1

For t = 0, one comes back to Darcy’s law with
o = —SpCRT00ge(00ge —Lo0g1)-

For t — co, one arrives at equilibrium

My =0
the exchange between the gas outside the particles and inside ceases.

For 7 = 0, the equilibrium is instantaneous:

M,_o =0

and the gas, internal and external, behaves like one and the same.

For 7 — oo, the gas in the interior of solid particles is no more in contact with the
external gas; the porous surface S, = 0 and the flow is frozen,

M, =0 with §,=0.
The only parameter we still have to calculate is the equilibrium density g.,. We have

Dl Qg Vaet 001 Vai
eq V“ + 'V“ =

The single particle volume Vo, the solid contained in the particle ¥}, and the void
Vyso are constant for given particles,
Vpo = Vpso+ Vo.so = Vpso+ Vam-

The mass of a particle being m;o, the number of particles crossing a given flow section
per second is

n= Ty
Myo
and, as
Cge Voet 0ot Vor = my,
we have

= mgy o ’.”c
e = Yt Ve~ Gt 0y

where Q,. and Q,; are the volume flows of gas (exterior and interior).
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Finally, putting
— ﬁ'ﬂ "Qalxgﬂ
Los Oge

one gets:

i MoQge
ﬁn"""“m(@we_gﬂ) '

In this way we have established the equations describing the one-dimensional flow of
a mixture of a gas with solid porous particles, taking into account the possible mass
exchange between the external gas and the gas in the pores.

These equations show that in such a mixture the existence of porous particles intro-
duces a pressure (or density) relaxation of the flow which does not appear in mixtures
of gas and solid, non-porous particles [1].

The most simple manifestations of this capacity of relaxation due to the porosity of
the particles participating in the flow will be a shock-wave flow and a flow through channels
with a variable cross-sectional area. The case of a shock wave is particularly simple: the
pressure inside the porous particles just after traversing the shock wave is the equilibrium
pressure of the flow before the shock-wave. The gas in the interior of the pores having
not been compressed by the shock-wave passage, there will exist a pressure relaxation
behind a shock-wave, and the final equilibrium gas pressure will be different from the
theoretically previsible pressure in a classical case.

Before proceeding with this example, it is necessary to be sure that the mass of the
solid material of the porous particles does not contribute to the pressure of the mixture [3].
To obtain an estimate of this contribution, the particles are considered as large molecules
of a second gas; it is then possible to determine the conditions for which the particle
pressure of this “gas™ reaches some established level, say x percent of the pressure of the
whole mixture. We have

Oeq =

Pe o &

p

and, proceeding after RUDINGER [3], treating the porous particles as regular spheres of
a constant diameter D, we get

_*
I
1—x E

where C is a numerical constant.

One remarks, by the way, that for fixed conditions of the pressure and of the mass
fraction of the mixture, the diameter of the porous particles acceptable is superior to the
acceptable diameter of the solid, non-porous particles, as the mass density of the porous
particles is inferior to the mass density of the corresponding solid non-porous particles.

Consider now a shock-wave in a mixture of a perfect gas and of solid, porous par-
ticles.

As we wish to make evident the effect of the porosity of the particles alone, we suppose
that the temperature of the gas, external and internal to the porous particles, and the
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temperature of the particles themselves are the same and are submitted to the same va-
riations. We suppose also that the velocity of the gas remains always the same as the ve-
locity of the particles (in fact, the problem of slip and of the velocity relaxation was treated
by CARRIER [1], and by MARBLE [2]); the variation of the velocity caused by the shock-wave
is assumed to be the same for both.

As long as the porous particles are big enough, as compared with the gas particles,
the shock-wave structure may be considered conventional. In our case the shock-wave
will be followed by a relaxation zone where the gas parameters inside and outside the
porous particles will tend to the equilibrium. Let us denote by 1 — the conditions before
the shock-wave; by 2 — the conditions directly behind the shock-wave; by 3 — the con-
ditions at some distance behind the shock-wave, where the mixture arrives at equilib-
rium.

Treating this kind of flow, one may discern three different possible cases, depending
on the value of the relaxation time z. If T — 0, the equilibrium is instantaneous, and we
have to treat a mixture of perfect gas and solid particles, the mass of a particle being equal
to the mass of solid from which it is formed. If T — oo, the mixture is frozen, there is no
gas exchange between the interior and the exterior of the porous particles; in fact, we have
then to treat a mixture of a perfect gas and of particles, whose mass is equal to the mass
of the solid, forming the particle, and the mass of the gas, contained inside a particle,
taken together. The case which is interesting for us is the intermediary one, when 0 < 7 <
< oo, the gas inside the porous particles remaining in contact with the external gas,
though the equilibrium is not instantaneous.

Given the pressure p,, the density g,, the velocity u,, the Mach number M, of the
equilibrium flow before the shock-wave, the conditions immediately after the passage of
the shock are the following: for the “free” gas, exterior to the porous particles, the con-
ventional formulas give

Q2. Mi

@ 1+—(M2—1)

P2 2
- =l+———M—I,
o F ( )

Py

_Tz_ s 1 2 Y= 2_ ]
Tl-—- M {l+y (M7 l)][ + (M

. P 8

u, 02

For the gas which passed through the shock-wave in the interior of the pores of the par-
ticles, we have

Tu = Tze = Tz-

For simplicity, we have supposed here that the temperature of the whole mixture is
established instantaneously behind the shock and is the same for the external gas, for the
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internal gas and for the particles themselves. As, during the passage of the shock, there
was no mass transfer, the density of the gas in the pores did not change:
021 = 011 = Q1e = Q1.

The pressure in the interior of the pores changed only because of the variation of the
temperature:

P1 - y—1 2_ '
l+—}’+1 (M3-1)

It is easy to verify that in this way, immediately behind the shock wave, the external pres-
sure and density are superior to the internal pressure and density:

Pze  Pu q Q2  Qa
P Pe €1 01

To bring back the flow to equilibrium, a relaxation phenomenon will take place, due
exclusively to the porosity of the solid particles.

To find the final equilibrium state, we use the formulas introduced earlier and, for
the equilibrium density, we get '

?':'1992¢ — Oz2e
Ty +nV10(02¢ —021) 1 Voo 0, (I w81 )

02e

@3 =

my

Figures 1 and 2 represent the variation of g;/g,. for a flow with the volume concentration
of solid particles equal 0.01, for M = const and A variable, and for 4 = const and M
variable, respectively.

psfpze b
10
M. o
23
a5 -
1 -
0 05 10 3

FiG. 1.



ON A RELAXING MODEL FOR THE FLOW OF A MIXTURE OF GAS WITH POROUS PARTICLES 261

As we supposed, the transformation at constant temperature, the equilibrium pressure
is readily obtained when the equilibrium density is known:

Pae
P3 = 3.
Q2¢e ¢
Ps/pze b
ar : A=05
A=09
05 -
1 | L o
1 5 10 M
FiG. 2.

With these results in mind, we get the following formulas for the shock-wave flow:

M3
y—1
1+ (M3-1
o _ gl 2
L - ":‘"’ Mi 1]’
o | 1+2=L az-1)
y+1
2y
1+ Mi-1
Ps _ P2 0 01 _ A Rl
P1 P 01 Ore 1+0, “r:glo - fl;i' il )
o Y=l o
L+ (3-D)
I; T
& T
M3 _ @&
Uy @3

In the case when the porous particles disappear (n = 0) or when the parameters of
the gas in the pores are, without a time lag, the same, as the parameters of the gas outside
the pores (p; = p.; 0: = 0.), we get back the classical formulas of the shock-wave flow.

In this way it is shown that the introduced model of a gas-particles mixture when applied
to a shock-wave flow provokes a variation of the characteristic parameters of this
flow:

Q2 P3 < P2 Uj > Us

——ﬁ—, ]

21 21 Pi  Pu Uy Uy
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