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On a relaxing model for the flow of a mixture of gas 
with porous particles 

F. FEUILLEBOIS and A. LASEK (MEUDON). 

A suSPENSION of solid porous particles in a perfect gas is considered. The gas penetrates into 
the particles and its quantity contained in the pores may vary with the flow conditions. It is 
assumed that the flow within the particles obeys Darcy's law. The pressure of the gas in the 
particle pores does not follow immediately the outer conditions, and relaxation phenomena in 
the flow are taken into accpunt. One-dimensional analysis has been applied to the case of 
a shock wave in the considered suspension. 

Rozwazono zawiesinct porowatych c~teczek stalych w gazie doskonalym. Gaz przenika do 
C:z<lsteczek, a jego zawartosc w porach mo:Ze zmieniac si~ wraz z warunkami przeplywu. Zaklada 
si~, :le przeplyw gazu wewn~trz CZ<lsteczek jest zgodny z prawem Darcy'ego. Cisnienie lgazu 
w porach C:z<lsteczek nie nad~ za warunkami zewn~trznymi i w przeplywie bierze si~ pod uwag~ 
zjawiska relaksacyjne. Przeprowadzono anal~ jednowymiarow~ dla przypadku fali uderze­
niowej rozprzestrzeniaj~cej si~ w rozwai:anej zawiesinie. 

PaccMaTpimaeTcSI B3BecL rnep~IX nopHCThiX ~aC'I'WieK B H~ea.nLHOM raae. raa npoHHKaeT 
B ~aCTHUbi, a ero co~epmaHHe B nopax MO>KeT H3MeiDITL BMecre c yCJioBHSIMH Te~eHHSI. ~e~­
nonaraeTcSI, ~To Te~eHHe raaa BHYTPH ~aC'I'WieK npoHcxo~ cornacuo aaKOHY ,[(apcH. ,[(a­
BJieHHe raaa B nopax He nocneBaeT 3a BHeiiiHHMH YCJIOBHSIMH H B Te~eHHe ~biBaeTCSI 
SIBJieHHe penaKcarum. lloBe~eu o,w~opaaMepHbm aHaJIH3 MSI y~apuoii BOJIHbi, pacnpocr­
paumomelicSI B paccMaTpHBaeMOM B3BeCH. 

WE INTRODUCE a mixture of solid porous particles and a gas. The solid porous particles 
may contain a quantity of gas, varying with the flow conditions. The possible mass ex­
change between the solid porous particles and the gas flow creates conditions for pressure 
relaxation when the pressure of the gas inside the porous particles is not following imme­
diately the variations of pressure of the gas flow. 

We intend to consider~ mixture of a gas an.d of solid particles. The particles are sup­
posed to be porous; they may contain some quantity of the gas in their pores. The pressure 
of the gas in the pore is not necessarily always the same as the pressure of the gas outside 
the solid particles (in the "free" gas flow). The time needed to establish the equilibrium 
between the two pressures which, at the end, must become the same inside and outside 
of the solid particles may, be assimilated to a relaxation time. 

The solid porous particles considered are supposed to be all of the same spherical form 
and the same diameter. They are rigid, and neither their dimensions nor their porosity 
do change under the action of external forces. 

The dimensions of the particles are supposed to be large enough for the pores to con­
tain some amount of gas. In fact, the diameter Dm of a ,gas molecule being of the order 
of 1 A = I0-7 mm, and the diameter Dp of a smoke particle being of the order of 
1 11. = 10- 3 mm, we have Dp/Dm = 104

• 
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We suppose that collisions between particles do not take place; the effect of particles 
interaction is neglected. 

One can discern three types of gas-particles interaction. 
1) Supposibg that the particles flow velocity is at some instant different from the gas 

velocity, the viscous interaction between the gas and a particle tends to bring the two ve­
locities to their common equilibrium value. As arriving at this dynamic equilibrium needs 
some time, there exists a possibjlity of introducing the notion of the velocity relaxation 
time or velocity relaxation length [2, 4]. 

2) Supposing that at a given instant the particles temperature and the gas temperature 
are not the same, one may find the time necessary for these temperatures to arrive to equa­
lity. By the same, one introduces the temperature relaxation time and temperature re-
laxation length [2, 3, 4]. . 

3) Supposing that the particles · are porous, one may imagine that a mass exchange 
is realised between the particles and the external "free" gas. In fact if at a given instant 
the pressure of the gas inside the particle pores is different from the external gas pressure, 
a flow across the porous particle material will take place, and this till the two pressures, 
external and internal, become equal. In this way a pressure relaxation can exist in a mixture 
of gas and of porous particles. 

To simplify this case of relaxation, we suppose that the mixture is otherwise in equilib­
rium, that is, there do not exist temperature or velocity differences between the gas and 
the particles, the effects of an acceleration or of a temperature change being immediately 
transmitted to both. 

In what follows we establish the equations of motion of such a mixture. 
As in most problems of classical gas-dynamics the one-dimensional treatment of a mix­

ture of gas. and porous particles may furnish the characteristic features of the flow·. 
The fundamenta_l equations may be written as follows: 
The continuity equation 

(!geUgeSge = m11e' 

(! 11rU 11rSgt = mg, with Ugt = Ups ' 

e,~u,sSps = m,s, 

where the indices ge, gi, ps stand for external gas, internal gas, solid particle, respectively. 
There must be: 

S 9e+Sps = S, 

where S is the section surface of the flow, and 

s •• ~'s •• = K = ( v., :·v .. } ''' 
where K is characte~izing the porous material. 

Finally: 

where ex- solid mass fraction of the mixture. 
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The momentum equations are 

Fp represents the forces of interaction between the gas on the outside and in the inside 
of the pores : 

FP= J (Pue-Put)dS, 
Sp 

where SP represents the surface section of the pores. 
Energy equation: 

with Cs - specific heat of the solid. 

Supposing, as we do, that there is no slip between the particles and the gas (ug• = Ups) 

and no temperature difference (!ge = Tg1 = Tps), we get 

where 

(!geUS9e = mue with mue+m91 = mu, 

{!gtUSgi = mui 

du dpge 
(!geU dx +dX = F, 

is a characteristic coefficient relating the volwne of the pores to the volume of a whole 
porous solid particle. 

To complete this system we need a state equation. Or if the mixture is in equilibrium, 
the state equation is exactly the same as the state equation of a simple gas-solid particles 
mixture [3, 4]. In a ·general case, however, the gas in the interior of the pores may stay, 
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for some time at least, in conditions different from the conditions of the gas outside. It 
is convenient then to use two equations of state: 

Pge = RT 
{!ge ge' 

The two pressures p 11e and p 111 , different as they may be, are not independent. In fact, 
the exchange of the gas between the pores and the exterior "free" gas modifies the pressures 
inside and ~utside the particles. 

A flow across a porous material obeys Darcy's law [5], 

Vv = -CVp, 

where C is a coefficient characteristic of a given material. In our case we assume a similar 
law: 

V= C(pge-PgL) 

and the mass exchanged between the "free" gas and the particles is 

m = - f C(!11e(P11e-P11t)ds, 
s 

where the. integration is extended on the porous surface of the particle SP. 
For an isothermal process, when p "'(!,we have 

But the variations 6f the pressure with time must obey the equation 

dp111 RT dm RT . 
~ = V

11
r dt = - Y

11
r m 

For pressure differences which are not too large, one may write 

where 

as well inside as outside the particles. 
We do not search here for the dependence between C and -r, but it is obvious that they 

are interdependent. Integrating, we have for the external pressure 
t 

Pge = (pOge-Peq) e --; + Peq 
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and for the internal pressure 
t 

Pgt = (Pogt-Peq)e~'T+Peq 

where p 01e- initial external pressure, p 011 - initial internal pressure, Peq- equilibrium 
pressure, the equilibrium pressure Pe11. being the same for the two. 

Introducing these expressions into the preceding equation (and exchanging p and e 
for isothermal transformations) we get 

in - -S CRT[(n -n )e -+ + n ]
2 [1 _ (eogt -eeq)e -+ +eeq] - p c::Oge c:;eq c:;eq . t • 

(Po1e-(!eq)e --:r + (!eq 

For t = 0, one comes back to Darcy's law with 

mt = 0 = - s p C'R Teoge(eoge - e Ogt). 

For t --+ oo, one arrives at equilibrium 

the exchange between the gas outside the particles ·and inside ceases. 
For -r = 0, the equilibrium is instantaneous: 

mT=O = 0 

and the gas, internal and external, behaves like one and the same. 
For -r--+ oo, the gas in the interior of solid particles is no more in contact with the 

external gas; the porous surface Sp = 0 and the flow is frozen, 

mT-+00 = 0 with Sp = 0. 

The only parameter we still have to calculate is the equilibrium density (!eq. We have 

{!gt Vge + {!gt Vgt 
eeq = . 

Vge+ Vgt 

The single particle volume Vpo, the solid contained in the particle Vpso, and the void 
V,so are constant for given ·particles, 

Vpo = VpsO + VgsO = VpsO + VgtO • 

The mass of a particle being mso, the number of particles crossing a given flow section 
per second is 

and, as 

we have 

where Q,e and Qgi are the volume flows of gas (exterior and interior). 
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Finally, putting 

one gets: 

f!eq = - · • V. ( ) m9 + n 9 w (!9e- {!gt 

In this way we have established the equations describing the one-dimensional flow of 
a mixture of a gas with solid porous particles, taking into account the possible mass 
exchange between the extetnal gas and the gas in the pores. 

These equations show that in such a mixture the existence of porous particles intro­
duc.es a ·pressure (or density) relaxation of the flow which ·does not appear in mixtures 
of gas and solid, non-porous particles [1]. 

The most simple manifestations of this capacity of relaxation due to the porosity of 
the particles participating in the flow will be a sbock-wave flow and a flow through channels 
with a variable cross-sectional area. The case of a shock wave is particularly simple: the 
pressure inside the porous particles just after traversing the shock wave is the equilibrium 
pressure of the flow before the shock-wave. The gas in the interior of the pores having 
not been compressed by the· shock-wave passage, there will exist a pressure relaxation 
behind a shock-wave, and the final equilibrium gas pressure will be different from• the 
theoretically previsible pressure in a classical case. 

Before proceeding with this example, it is necessary to be sure that the mass of the 
solid material of the porous particles does not contribute to the pressure of the mixture [3]. 
To obtain an estimate of this contribution, the particles are considered as large molecules 
of a second gas; it is then possible to determine the conditions for which the particle 
pressure of this "gas" reaches some established level, say x percent' of the pressure of the 
whole mixture. We have 

and, proceeding after RUDINGER [3], treating the porous particles as regular spheres of 
a constant diameter D, we get 

x -cx-~ ·C 
3 1-ex (!ps 

D > ----~~~---
1-x 

where C is a numerical constant. 
One remarks, by the way, tqat for fixed conditions of the pressure and of the mass 

fraction of the mixture, the diameter of the porous particles acceptable is superior to the 
acceptable diameter of the solid, non-pprous particles, as the mass density of the porous 
particles is inferior to the mass density of the correspondjng solid non-porous particles. 

Consider now a shock-wave in a mixture of a perfect gas and of solid, porous par­
ticles. 

As we wish to make evident the effect of the porosity of the particles alone, we suppose 
that the temperature ·of the gas, external and internal to the porous particles, and the 
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temperature of the particles themselves are the same and are submitted to the same va­
riations. We suppose also that the velocity of the gas remains always the same as the ve­
locity of the particles (in fact, the problem of slip and of the velocity relaxation was treated 
by CARRIER [1], and by MARBLE [2]); the variation of the velocity caused by the shock-wave 
is assumed to be the same for both. 

As long as the porous particles are big enough, as compared with the gas particles, 
the shock-wave structure may be considered conventional. In our case the shock-wave 
will be followed by a relaxation zone where the gas parameters inside and outside the 
porous particles will tend to the equilibrium. Let us .denote by 1 - the conditions before 
the shock-wave; by 2- the conditions directly behind the shock-wave; by 3- the con­
ditions at some distance behind the shock-wave, where the mixture arrives at equilib­
rium. 

Treating this kind of flow, one may discern three different possible cases, depending 
on the value of the relaxation time -r. If -r-+ 0, the equilibrium is instantaneous, and we 
have to treat a mixture of perfect gas and solid particles, the mass of a particle being equal 
to the mass of solid from which it is formed. If -r-+ oo, the mixture is frozen, there is no 
gas exchange between the interior and the exterior of the porous particles; in fact, we have 
then to treat a mixture of a perfect gas and of particles, whose mass is equal to the mass 
of the solid, forming the particle, and the mass of the gas, contained inside a particle, 
taken together. The case which is interesting for us is the intermediary one, when 0 < 1: < 
< oo, the gas inside the porous particles remaining in contact with the external gas, 
though the equilibrium is not instantaneous. 

Given the pressure p 1 , the density e1 , the velocity u1 , the Mach number M 1 of the 
equilibrium flow before the shock-wave, the conditions immediately after the passage of 
the shock are the following: for the "free" gas, exterior to the porous particles, the con­
v~ntional formulas give 

e2. 
y-1 ' 

1 +~- (M~-1) 
y+1 

p 2- = l+__k_(M~-1), 
Pt y+ 1 · 

T2 1 [ 2y ( 2 ] [ I'_ -1 ( 2 1 )] 7; = Mi 1 + y + 1 M 1 -1) 1 + y + 1 M 1 - , 

For the gas which passed through the shock-wave in the interior of the pores of the par­
ticles, we have 

For simplicity, we have supposed here that the temperature of the whole mixture is 
establaisbed instantaneously behind the shock and is the same for the external gas, for the 
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internal gas and for the particles themselves. As, during the passage of the shock, there 
was no mass transfer, the density of the gas in the pores did not change: 

l!2t = (!u = l!te = l!t · 

The pressure in the interior of the pores changed only because· of the variation of the 
temperature: 

_P21 = (!21 T2 

Pt l!t Tt 

M2t 
P21 = ------~--------
Pt I +-y_-_I (M~-I) 

y+I 

It is easy to verify that in this way, immediately behind the shock wave, the external pres­
sure and density are superior to the internal pressure and density: 

P2e > P21 and 
Pt Pe 

To bring back the flow to equilibrium, a relaxation phenomenon will take place, due 
exclusively to the porosity of the solid particles. 

To find the final equilibrium state, we use the formulas introduced earlier and, for 
the equilibrium density, we get , 

Figures I and 2 represent the vari,ation of e3 /e2e for a flow with the volume concentration 
of solid particles equal O.OI, for M = const and A. variable, and for A. = const and M 
variable, respectively. 

0.5 

L-----------~------------~-.-
0 0.5 1.0 ~ 

FIG. 1. 
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As we supposed, the transformation at constant temperature, the equilibrium pressure 
is readily obtained when the equilibrium density is known: 

1.0 

0.5 

~. A=Q5 

~~ .. 0.9 ------------------

5 10 

FIG. 2. 

M 

With these results in mind, we get the following formulas for the shock-wave flow: 

Mf 

1 2y ( 2 +-- M 1 -1) 
P3 P2e e3 et y + 1 - = -- . -. -- = ----=-=--=-''-------:::--.=--------:::--

1 n Vgto [ Mf } ' +et---- -1 
m" 1+ y-1 (M2-1) 

y+1 1 

T3 T2 
Tt = Tt . ' 

u3 et --=--

In the case when the porous particles disappear (n = 0) or when the parameters of 
the gas in ~he pores are, without a time lag, the same, as the parameters of the gas outside 
the pores (pi = Pe; ei = ee), we get back the classical formulas of the shock-wave flow. 

In this way it is shown that the introduced model of a gas-particles mixture when applied 
to a shock-wave flow provokes a variation of the characteristic parameters of this 
flow: 

~ ~ 1!2_, 
Pt Pt 
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