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Boltzmann equation on a lattice global solution
for non-Maxwellian gases

A. PALCZEWSKI (WARSZAWA)

WE sTuDY the nonlinear Boltzmann equation in which the spatial variable is replaced by an
infinite lattice. We prove the existence of a global strong solution in the case of non-Maxwellian
molecules (unbounded collision kernel).

Rozwazono nieliniowe réwnanie Boltzmanna, w ktOorym zmienna przestrzenng zastapiono
nieskonczong siatkag. Udowodniono istnienie silnego rozwigzania globalnego w przypadku
czasteczek niemaxwellowskich (nieograniczone jadro zderzen).

PaccmarpuBaeTcsi HenuHeliHOe ypaBHeHHe BosblMaHa, B KOTOPOM TIPOCTDAHCTBEHHAsA IIepe-
MeHHadA 3aMeHAeTCH OeCKOHEYHOi ceTKoil. JIOKaskIBAETCA CYIIECTBOBAaHHE CHIIBHOTO IJ100aikb-
HOTO peIlIeHHsI B CIIy4ae HEMAKCBE/UIOBCKHX YaCTHI (HEOrpaHMUEHHOE SAOpPO CTOJIKHOBEHMIT).

1. Introduction

IN THIS PAPER we prove the global existence of a solution of the Boltzmann equation on
a lattice. The Boltzmann equation on a toroidal lattice was considered recently by many
authors [2, 3, 7]. We consider this equation on an infinite lattice and for non-Maxwellian
molecules. A similar problem was treated in [3] and under the assumptions that the initial
distribution has finite energy and entropy the existence of a weak solution was proved.
In this paper we assume that the fourth moment of the initial data exists and we prove
that the solution constructed is a unique strong solution of the Boltzmann equation on
a lattice. The question of the existence of the lattice limit, i.e. the limit of solutions as the
lattice spacing tends to zero, is in the case of an unbounded domain much more compli-
cated than for a bounded domain (cf. [3]) and will be treated later on.

2. Formulation of the problem

The Boltzmann equation we consider is the following:

fu
%%""(Af)(u =J(fwy> fy)-

(2.1)
Here the index (i) = (j, k, /) is a three-dimensional multi-index denoting the i-th lattice
point in the three-dimensional infinite lattice. We assume the lattice spacing is 1 which
assures the identity of multi-indices with coordinates of lattice points.
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The operator 4, which is a finite-difference approximation to the streaming term in the
original Boltzmann equation, is defined as in [2, 3]. Namely, if

%o, 00— fu-1.60l2, ©:>0,

%lfuri,en—fuenl2, 0. <0

and A4,, 4, are given by similar expressions, then A4 is given by tensor products:
A=A, QIRI+IRA,RQI+IRIRVA,.

The collision term is given by

22) J(fw fw) = f fk(|ﬂ—f’1|s (v—21)u) @) f (@) ~fiy @) fr(@1)ldudo; ,
R §2
ueS?= {ueR3:u|l =1}.

Here v, v, are initial velocities and o', v; velocities after collision related to v, v; by the
well-known relations.
We assume that the scattering kernel k is a measurable, non-negative function with

(2.3) k(lv—vll’ (v—2y)" “) < KA +o]+]og]), 0<ry,r<2.

Throughout the rest of the paper we write k(v,7v,) instead of the full expression

k(lo—2,1, (0—2y) - u).
We seek solutions of Eq. (2.1) in the Banach space

B = Ll(RS, I1)

(Axf)u.k,l) — {

with ‘the norm

24) Il = [ Xlfw@ldo.

B0
We also use the space B%, which is the space B with the weight w = (1+ |v|?)*/? and norm
2.5) 11l = [ D) wlfw(@)lde.

R M)

We summarize now the properties of the collision operator J which we need in the sub-
sequent sections.
For g € B> we have

26) [ I, g)dv =0,
R3

@7 [ 1012 (g, g)dv = 0
R3

and for g€ B®, s > 2 and a scattering kernel satisfying the inequality (2.3) we have
2.8) QA +10>*2I(g, &Il < CKilllgllssr, —allgllat11glls-dllgllrsa]  for 0<d<2

(the last inequality is due to PovzNERr [5]).

The plan of the paper is as follows. In Sect. 3 we consider the semigroup generated by
the operator 4. We find an explicit expression for this semigroup and prove that it is
a contraction semigroup invariant on the cone of positive functions in B (Proposition 3.1).
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In Sect. 4 the case of a bounded scattering kernel is investigated. The existence of a global,
unique solution of Eq. (2.1) is proved. Section 5 is devoted to the general case (unbounded
scattering kernel). Following ARKERYD [1], we construct a monotone sequence of approxi-
mations to the solution of an integral form of the Boltzmann equation. We prove that this
sequence is bounded and by the Levy property convergent. We prove then that the limit
function is a generalized solution of the Boltzmann equation. The last step is the proof
of the strong differentiability of the limit function. This proves the existence of a global
strong solution of Eq. (2.1) for non-Maxwellian molecules.

3. Semigroup properties

The operator A4 described in the previous section with
D(A) = {feB:|v|fe B}
is a closable operator. Its closure A generates in B the semigroup
U(t) = e 4

Our aim is to prove this and investigate the properties of this semigroup. We collect the
main results in the following proposition:

ProrosiTION 3.1

There is in B a contraction semigroup U(#) invariant on the cone of non-negative
functions B* < B. The generator of this semigroup is a closure of A.

Proof

The plan of the proof is as follows. First by “illegal operations” we find a good candi-
date for the semigroup. We prove that it is in fact a semigroup and that on a dense subset
its generator is identical with A. It proves that the generator of the semigroup is a closed
extension of A.

The “illegal operation” mentioned earlier is the Fourier transform with respect to the

position variable. (For simplicity we present all calculations for the one-dimensional case.)
o0

If f= {f;}o-w then fo= 3 exp(2zijc)fjy and

J=—w

Af = {0:12(fiy—fu-1)}8y= - = Af = v[2[1 —exp2aic]f.
Using the inverse Fourier transform we find
1

U®DNw = (1)) = fexp( —2mikc) exp[ —v,/2(1 —exp2mic)t]

« Y epiofu®ic= 3 1) f exp {~0./2(1 —exp2aic) }
J=-o J==00

x exp[27i(j—k)clde = Z Ji(0) exp(—v,1/2) —l— f exp(v.1z[2)z/~*-1dz

j=—o x(o 1

Z fin@exp(—vytfn) D

J==w (
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Hence

k .
(3.1) (O = (s = exp(=0ct12) D) 1) L

J=—w

By standard calculations we find
U(t+s) = U)U(s)
and
NWo@f-fll -0 as t-0.
Hence U(¢) is a strongly continuous semigroup. By direct inspection of Eq. (3.1) we see
that U(t)f is differentiable and

d
S UOf = AU f

provided U(t)f € D(A). Since D(A) is invariant under U(t#), the generator of U(t) is the
closure of A ([6] Th. X. 49). Inspection of formula (3.1) shows also that U(¢) is invariant
on the cone of non-negative functions B* and is norm preserving on this cone. To prove
that U(¢) is a contraction we decompose f€ B as f = f, —f,, f; € B*, then

NHo@fIl < WOOAIN+NT®LN = [IAN+1L0 = 11
This ends the proof of the proposition.

4. Existence in the bounded case

In this section we assume that the scattering kernel k(v, »,) is bounded:
4.1 0 < k(v,#4]) < G,
Under this assumption we prove existence, uniqueness and some regularity conditions of
the solution of the Cauchy problem for the equation (2.1). We do that in a series of pro-
positions:

ProrosITION 4.1

Let f, € D(A)NB* and T, < 1/9C||foll. Then for t € [0, T,] there exists a function
f(t) € B* strongly continuously differentiable in B, which is a unique solution of Eq.
(2.1), with initial value f(0) = fo.

The proof of this proposition is similar to that given in [4] for the continuous case
with the additional assumption of essential boundedness of f, with respect to the position

variable, which is automatically fulfilled in the discrete case (suplgu,(@)| < 2 12w ®)|Y).
() ®
PROPOSITION 4.2

Suppose fo(l +|v|?)¥? € B* with s > 2, then there exists a unique solution f(#) of
(2.1) for t € [0, oo[ which satisfies

f()(1+|2|*)"? e B,
NI = lIfll,
DIz = [l foll2,
HfOlls < Crllfolls for t< T.
Here Cr depends on ||fy]l2, T, Kk and s only.
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Proof
The solution constructed in Proposition 4.1 satisfies

[1ADI = 11foll-

This follows from Eq. (2.6) and direct integration of Eq. (2.1).

Then we can take f(T,) as the new initial value and obtain the solution for ¢ € [T, 27T,].
By this procedure we can extend the solution on the whole semi-axis [0, col.

We prove now that f(t)(1+|v]?)*? € B*.

It is easy to repeat the proof of Proposition 4.1 in the space B®. This guaranties the
local existence of a solution. This solution satisfies

1Az = I foll2-

For-s > 2 we apply Eq. (2.8) following ARKERYD [l].
For 2 < 5 < 4 we take d = s/2 and Eq. (2.8) gives

[11ls < exp(CKl|foll2 DI folls-

Using the result for s = 4 we prove this for 4 < s < 6 taking d = 2 and then by induction
for all s > 2 we have

1f1ls < Crll folls-
The local existence of a solution together with this estimate gives a possibility of extention
for every t € [0, oo[. g.e.d.
We summarise the results for the bounded case in the following:
THEOREM 1.
Let fo, € D(A)NB™, then there exists a unique global solution f(t) € B* of Eq. (2.1) with
the initial distribution f, and
I1ADI = llfoll-

If fo has finite higher moments (i.e. fo(1+|v|?)*? € B* for s > 2) then f(t) has the same
higher moments finite and

HfOll2 = lfoll2,  for all t =0,

1/Olls < Crllfolls  for s > 2, for 0<t< T,
where Cr depends on Ky, T, ||foll. and s only.

5. The unbounded case

The proof of existence and uniqueness will be done following ARKERYD [I] by the
method of monotone operators. We start by recalling some general ideas.

All our investigations will be made in a Banach space X which has the Levy property,
i.e. X is a partially-ordered Banach space in which every non-negative, monotone bounded
sequence is convergent. Namely, if {f'}2, issuch that 0 < f! < ... < f¥ < f**! < ...
and sup ||f|| < + 00, then }imf; = f exists and f > 0.

An operator F in X is called positive and monotone if
OS<Ff<Fg for 0<f<g.
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Consider in X the following Cauchy problem:

Se+hf = G(f),

f(0) = fo,

where 4 is a linear operator which generates in X the semigroup Z(¢) = e~ and all Z(¢)
are positive, monotone contractions, and G is a nonlinear, positive and monotone oper-
ator.

We construct the solution of Eq. (5.1) by the method of successive approxima-
tions:

(5.1)

fi) =0,
@) = ZO fo+ [ Z@-9G(f) (ds, n=1,2, ...
0

If fo > 0, then {f*} form a monotone, positive sequence. Suppose we can prove bounded-
ness of ||f7||, then, according to the Levy property, there exists f = lim f* which is a solu-

i—=co0
tion of the following integral equation (generalized solution):

(52) f(t) = Z()fo+ i! Z(t=5)G(f) (s)ds.

If we prove that f(¢) is continuously differentiable, as can be done under suitable conditions
on G, then f(¢) is a strong solution of Eq. (5.1). Let us observe that if g(¢) is another non-
negative solution of Eq. (5.2), then f(¢) < g(¢#) due to the construction of the series /.
Let us consider a pair of Cauchy problems of the type (5.1) characterized by (Z(¢), G, f,)
and (Z'(t), Go,fo). This pair is called a monotone pair if

Z’(g< Z()g, G'(@)<G(@), fo<sfo for g=0.

The important property of a monotone pair is the following. If the problem (Z(), G, f,)
has a solution f(¢), then (Z'(¢), G',f,) has a generalized solution f’(#) which satisfies
0<f'(t) < f(1).

We are now able to prove our main result:
THEOREM 2.
Let k(v,v,) be given by Eq. (2.3) with 0 < ry,r, < 2 and fo(1+|0|?)*? € Bt with
s > 4. Then there exists a unique strong solution f(t) of Eq. (2.1) for t € [0, co[ such that
f(t) (1+|0*)** e B,
AN = [Ifoll, 1Az = | foll2,
DIy < Crllfolls for t< T
Here Cy depends on || foll2, T, K and s only.
Proof.

a. Construction of a monotone sequence of approximations

We approximate the kernel k(v, v,) by the bounded functions
k,,.(U, Ul) = min [k(ﬂ! Ul)’ m]
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and let J, be the corresponding collision operator. According to the Proposition 4.1,
the Cauchy problem
fl+Af =J m(f!f)s

(5:3) 0 = fo
has a solution which we denote by f,(?).
Let us introduce

h(v) = K(1+0]?) (Z,‘ [ a1 +1241%) Fo)or @) dos,
)
Tulfof) = Julf, KA+ 121 @) D, [ (1410112 fen(00) doy,
(U]
then

(5.4) Set Af+hf = Ju(f. 1),
S (0) = fo
is the Cauchy problem of the type (5.1) as 4 +h generates the positive, monotone semi-
group U(t)e~™ and J,, is positive and monotone for K sufficiently large.

Since the solution of Eq. (5.3) is a solution of Eq. (5.4), a sequence of successive
approximations of Eq. (5.4) is bounded by f,.

Let us introduce now

Tulf.1) = [ kn(®, ) f0) f(@}) dudo, + K1+ 192 f©) D [ (1 +0412) fr(@y) doy
0)

— [ k@, ) f@)f(@;) dudo,,
Jm is positive and monotone for sufficiently large K and
In(£, ) 2 Iu(f.f), f20,
J;(f’f) = J;’(fsns mz k and f; 0.
Consider the Cauchy problem:

fi+ Af+hf = T(£, 1),
J0) = fo.

Then Egs. (5.4) and (5.5) constitute a monotone pair. Hence there exists a generalized
solution f,, of Eq. (5.5) and

(5.5

S < fms
1 fmlls < |1 fmlls < Crllfolls-
Since (U(t)e™™, Ju,fo) and (U(t)e™™, J;’, fo) constitute a monotone pair too, then
R &fy if Egwm.
Hence we have a monotone sequence {f;’}/2, and since

fm@ll2 < Lfa(®ll2 = 1l oll2,

the sequence is bounded, this implies convergence

f() = lim fu (1)

m-o0
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We have also
AN < Crllfolls
as for fi(1).

b. £ is a strong solution of Eq. (5.5)

Let us consider the equation (we write for simplicity f, f! instead of £, (fin)):

1 = Ut)e " fo+ J' U(t—s)e " =9J5(f%, £ (s)ds.
0

i
We show now that if f* is continuously differentiable and H—d{— is bounded, then the
same holds for f+1,
Let us observe that
L d ‘
gzt < o | L] st
2

Hence J,,(f%, fY) is continuously differentiable and f'*! is continuously differentiable
as well. We have in addition

Y+ A+n) S = Ta(f Y
and

1Fi* 12 < A+2K) Coll follall foll2 -

We conclude now that since f; are uniformly bounded, all f* are equicontinuous with
respect to 7. Since {f*}2, is a pointwise convergent sequence of equicontinuous functions,
it is convergent uniformly in C([t,, #,], B?) on every bounded interval [¢,, 7,]. We have

ILE=Fill < NAG*=FON+ RS =+ WA, =T S
< |1f*=f112(1+ Kl foll 2+ 2K]| foll2)-

Hence {f/}2, converges uniformly on every bounded interval and the function f(t) =
= lim f%(¢) is differentiable. This ends the proof since if f;, is differentiable it is a strong

=00

solution of Eq. (5.5).

€. {fm}P-1 converges to f(r)

Let us consider integral equations which describe f,, and f,,:
Inl) = U@ fot [ V=) Wi fus o) —HFad ) ds,

fult) = Ut)fo+ [ Ut —s) [Talfad, ful) —hf) (s)ds.
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Then for s, = fu—fm we have

sw(Oll2 < [ 1LaComs fo) =hfullzds+ [ Wn(frs £2) =hF2 2 ds
i] 0

= | 3 [ InUnars G A+ 10 dods+ [ D [In((fidars Fada) A +10l?) dods

[ ) 0 (i)

+ J Z f [k(v, v;) —kn(®, )] (fm(©; )y (fm (@1, 5) )y A0y dv ds

0 0

+K [ D [ (410120 + 10,07 (fr@, 9o [(fo@1. 9))ay— (@1, )] dos dvds

)
< 0+0+o0(1)+ rKCT||ft'.-||405|»1l3'HSm(s)”z
<s<

and
lim ||sm(#)|l; =0 for ¢ sufficiently small.
In the estimates above we have utilized the fact that (1 + |o|?) is the collision invariant and
k(v,v,)—kn(v,v,) =0 for max(lo|,|v,]) < (mKg'—1)"2.

If lim ||sm(2)|], = O for small ¢, we can prove step by step that this is true for every ¢ and
hence

ORS J’lnl In(2).

d. f(z) is a strong solution of Eq. (2.1)

It is easy to see that f(¢) is a solution of the following integral equation:
t
f@) = U fo+ [ UG=9)I(f, f)ds
/]

hence a generalized solution of Eq. (2.1).

We are now able to prove that f(t) is continuously differentiable and is a strong sol-
ution of Eq. (2.1).

To this end let us observe that {f,}=_, form an equicontinuous family of functions
with respect to 1, as

‘ df,,
ar

L < 2K+ 1) Cqllfollsll foll2-

Hence fn(t) converge to f(¢) uniformly on every bounded interval. Considerations anal-

ogous to that in b. show that -%1 — %‘? uniformly. This ends the proof.
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