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Boltzmann equation on a lattice global solution 
for non-Maxwellian gases 

A. PALCZEWSKI (WARSZAWA) 

WE STUDY the nonlinear Boltzmann equation in which the spatial variable is replaced by an 
infinite lattice. We prove the existence of a global strong solution in the case of non-Maxwellian 
molecules (unbounded collision kernel). 

Rozwazono nieliniowe r6wnanie Boltzmanna, w kt6rym zmienn~ przestrzenn~ zas~iono 
nieskonczon~ siatk~. Udowodniono istnienie silnego rozwi'lZClnia globalnego w przypadku 
c~steczek niemaxwellowskich (nieograniczone j~dro zderzen). 

PaccMaTIJHBae-rc.a HeJIHHemme ypaBHeHHe EoJILUMaHa, s I<oTopoM npoCTIJaHCTBeHHa.a nepe· 
MeHHaH 3aMeHHeTCH 6eCI<OHeq}{OH CeTI<OH. ,Iloi<a3biB3eTCH cymeCTBOBaHHe CHJILHOI'O rJio6a.m,­
Horo peiiieHHH B c.nyqae HeMai<CBeJIJIOBCI<HX 'Q3CTHI.l (HeorpaHH"leHHoe H,ZWO CTOJJI<HOBeHHH). 

1. Introduction 

IN' THIS PAPER we prove the global existence of a solution of the Boltzmann equation on 
a lattice. The Boltzmann equation on a toroidallattice was considered recently by many 
authors [2, 3, 7]. We consider this equation on an infinite lattice and for non-Maxwellian 
molecules. A similar problem was treated in [3] and under the assumptions that the initial 
distribution has finite energy and entropy the existence of a weak solution was proved. 
In this paper we assume that the fourth moment of the initial data exists and we prove 
that the solution constructed is a unique strong solution of the Boltzmann equation on 
a lattice. The question of the existence of the lattice limit, i.e. the limit of solutions as the 
lattice spacing tends to zero, is in the case of an unbounded domain much more compli­
cated than for a bounded domain (cf. [3]) and will be treated later on. 

2. Formulation of the problem 

The Boltzmann equation we consider is the following: 

(2.1) 

Here the index (i) = U, k, I) is a three-dimensional multi-index denoting the i-th lattice 
point in the three-dimensional infinite lattice. We assume the lattice spacing is 1 which 
assures the identity of multi-indices with coordinates of lattice points. 
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The operator A, which is a finite-difference approximation to the streaming term in the 
original Boltzmann equation, is defined as in [2, 3]. Namely, if 

(
A f) = {vx[JCI,k,l)-fu-l,k,l)]/2, Vx > 0, 

X U.k,l) [1' {' ]/2 0 
Vx JU+l,k,O-JU,k,l> ' Vx < 

and Ay, Az are given by similar expressions, then A is given by tensor products: 

A = Ax®l®l+l®Ay®l+l®I®Az. 

The collision term is given by 

{2.2) J(fc1h f{l)) = J J k(lv -v1 1, (v -v1) ·U) [fm(v~)fm(v') -fm(v)fm(v1 )]dudvt, 
Rl S2 -

u e S 2 = {u eR3
: lul = 1}. 

Here v, v1 are initial velocities and v', v~ velocities after collision related to v, v1 by the 
well~known relations. 

We assume that the scattering kernel k is a measurable, non-negative function with 

(2.3) k(lv -v1 1, (v -v1) • u) ~ Kk(l + lvlr1 + lv1 lr2
), 0 ~ r 1 , r2 ~ 2. 

Throughout the rest of the paper we write k(v, v1) ins~ead , of the full expression 
k(lv-v1l, (v-vl) · u). 

We seek solutions of Eq. (2.1) in the Banach space 

B = L1 (R3,lt) 

with "the norm 

(2.4) 11/11 = J 2; 1/m(v)l dv. 
Rl (i) 

We also use the space B8
, which is the space B with the weight w = (1 + lvl 2

)
812 and nor~ 

(2.5) llflls = J 2; wlfm(v)l dv. 
Rl (I) 

We summarize now the properties of the collision operator J which we need in the sub­
sequent sections. 

For g e B 2 we have 

(2.6) J J(g, g)dv = 0, 
Rl 

(2.7) J lvl 2i(g, g)dv = 0 
Rl 

and for g e B~, s > 2 and a scattering kernel satisfying the inequality (2.3) we have 

(2.8) 11(1 + lvi 2Y12J(g, g)ll ~ CKkfiiKIIs+r1 -dllglld+ HK11s-d11KIIr2 +~] for 0 ~ d ~ 2 

(the last inequality · is due to PovZNER [5]). 
The plan of the paper is as follows. In Sect. 3 we consider the semigroup generated by 

the operator A. We find an explicit expression for this semigroup and prove that it is 
a contraction semigroup invariant on the cone of positive functions in B (Proposition 3.1 ). 
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In Sect. 4 the case of a bounded scattering kernel is investigated. The existence of a global, 
unique solution of Eq. (2.1) is proved. Section 5 is devoted to the general case (unbounded 
scattering kernel). Following ARKERYD [1], we construct a monotone sequence of approxi­
mations to the solution of an integral form of the Boltzmann equation. We prove that this 
sequence is bounded and by the Levy property convergent. We prove then that the limit 
function is a generalized solution of the Boltzmann equation. The last step is the proof 
of the strong differentiability of the limit function. This proves the existence of a global 
strong solution of Eq. (2.1) . for non-Maxwellian molecules. 

3. Semigroop properties 

The operator A described in the previous section with 

D(A) = {f E B: lvlf E B} 

is a closable operator. Its closure A generates in B the semigroup 
U(t) = e-tA~ 

Our aim is to prove this and inve~t!gate the properties of this semigroup. We collect the 
main results in' the following proposition: 

PROPOSITION 3.1 
There is in B a contraction semigroup U(t) invarjant on the cone of non-negative 

functions B+ c B. The generator of this semigroup is a closure of A. 
Proof 
The plan of the proof is as follows. First by "illegal operations" we find a good candi­

d~te for the semigroup. We prove that it is in fact a semigroup and that on a dense subset 
its gener~tor is identical with A. It .proves that the generator of the semigroup is a closed 
extension· of A. 

The "illegal operation" mentioned earlier is the Fourier transform with respect to the 
position variable. (For simplicity we present all calculations for the one-dimensional case.) 

00 

If f = {.fcJ> }~ _ oo then ](c) = ~ exp(2nijc )j(i> and 
1=-00 

Af = {v;r;/2(/(J)-fu-o)}(j>=-oo ~ Af = V;r;/2[1-exp2nic]]. 
Using the inverse Fourier transform we find 

1 

(U(t)f)<k> = (f(t) )<k> =I exp( -2nikc) exp[ -v;r;/2(1-exp2nic)t] 
0 

00 00 1 

x 2 exp(2nijc)fu>(O)dc = ,2; f<J>(O) I exp { -v;r;/2(1-exp2nic)t} 
1=-00 1=-00 0 

00 

xexp[2n'i(j-k)c]dc = 2 /c1>(0)exp( -v;r;t/2) 2~i I exp(v;r;tzf2)zl-k- 1dz 
}=- oo K(O,l) 

k 

_ ~ (v;r;t/2)k-J 
- .L..J f<J>(O) exp( -v;r; t /2) (k _ ') . 

J=-00 J 
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Hence 
k 

"' (v"t/2)k-i 
(U(t)f)<k> = (f(t))<k> = exp( -vxt/2) ~ f(})(O) (k-j)! . 

J=-00 

(3.1) 

By standard calculations we find 

U(t+s) = U(t)U(s) 
and 

IIU(t)f~fll ~o as t~o. 

Hence U(t) is a strongly continuous semigroup. By direct inspection of Eq. (3.1) we see 
that U(t)f is differentiable and 

d dt U(t)f = AU(t)f 

provided U(t)f E D(A). Since D(A) is invariant under U(t), the generator of U(t) is the 
closure of A ([6] Th. X. 49). Inspection of formula (3.1) shows also that U(t) is invariant 
on the cone of non-negative functions B+ and is norm preserving on this cone. To prove 
that U(t) is a contraction we decompose /E B as f = / 1 -f2 ,fi E B+, then 

IIU(t)fll ~ IIU(t)f1ll + IIU(t)f2ll = llf1ll + llf2ll = 11!11. 
This ends the proof of the proposition. 

4. Existence in the bounded case 

In this section we assume that the scattering kernel k(v, v 1) is bounded: 

(4.1) 0 ~ k(v, v11) ~ ck. 
Under this assumption we prove existence, uniqueness and some regularity conditions of 
the solution of the Cauchy problem for the equation (2.1). We do that in a series of pro­
positions: 

PROPOSITION 4.1 
Let / 0 E D(A)nB+ and T0 ~ 1/9Ckll/oll· Then for t E [0, T0 ] there exists a function 

f(t) E B+ strongly continuously differentiable in B, which is a unique solution of Eq. 
(2.1), with initial value /(0) = fo. 

The proof of this proposition is similar to that given in [4] for the continuous case 
with the additional assumption of essential boundedness of / 0 with respect to the position 

variable, which is automatically fulfilled in the discrete case (supig0 >(v)l ~ ~ lg<i>(v)l !). 
(i) (i) 

PROPOSITION 4.2 
Suppose / 0 (1 + lvl 2)''2 E B+ with s > 2, then there exists a unique solution f(t) of 

(2.1) for t E [0, oo [ which satisfies 

f(t)(1 + lvl 2)'12 E B+, 

llf(t)ll = llfoll, 
llf(t)ll2 = llfolb' 

llf(t)lls ~ CTIIfolls for t ~ T. 

Here Cr depends on ll/oll 2 , T, Kk and s only. 
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Proof 
The solution constructed in Proposition 4.1 satisfies 

11/(t)ll = llfoll · 

This follows from Eq. (2.6) and direct integration of Eq. (2.1). 
Then we can take/(T0 ) as the new it;titial value and obtain the solution forte [T0 , 2T0 ]. 

By this procedure we can extend the solution on the whole semi-axis [0, oo [. 
We prove now that f(t)(1 + I'DI 2

)"'
2 e B+. 

It is easy to repeat the proof of Proposition 4.1 in the space B". This guaranties the 
local existence of a solution. This solution satisfies 

llf(t)lb = llfoll 2 • 

For•s > 2 we apply Eq. (2.8) following ARKERYD [1]. 
For 2 < s ~ 4 we take d = s/2 and Eq. (2.8) gives 

11/11.~ ~ exp(CKkllfolb T)llfolls· 

Using the result fors = 4 we prove this for 4 < s ~ 6 taking d = 2 and then by induction 
for all s > 2 · we have 

11/lls ~ CTIIfolls· 
The local existence of a solution together with this estimate gives a possibility of extention 
for every t e [0, oo [. q.e.d. 

We summaris,e the results for the bounded case in the following: 
THEOREM 1. 
Let foe D(A)nB+, then there exists a unique global solution f(t) e B+ of Eq. (2.1) with 

the initial distribution fo and 
llf(t)ll = llfoll · 

If fo has finite higher moments (i.e. / 0 (1 + lvl 2
)"'2 e B+ for s ~ 2) then f(t) has the same 

higher moments finite and 

11/(t)l b = llfoll2, for all t ~ 0, 

llf(t)lls ~ CTIIfolls for s > 2, for 0 ~ t ~ T, 

where CT depends on Kb T, llfoll 2 and s only. 

5. The unbounded case 

The proof of existence and uniqueness will be done following ARKERYD [1) by the 
method of monotone operators. We start by recalling some general ideas. 

All our investigations will be made in a Banach space X which has the Levy property, 
i.e. Xis a partially-ordered Banach space in which every non-negative, monotone bounded 
sequence is convergent. Namely, if {/'H~ 1 is such that 0 ~/1 < ... ~f" ~J"+ 1 ~ ..• 

and sup 11/ill < + oo, then lim fi = f exists and f ~ 0. 
i-+CO 

An operator F in X is called positive and monotone if 

0 ~ Ff ~ Fg for 0 ~ f ~g. 
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Consider in X the following Cauchy problem: 

(5.1) 
l

fr+hf = G(J), 

f(O) = fo, 

A. P ALCZEWSKI 

where h is a linear operator which generates in X the semigroup Z(t) = e-~t and all Z(t) 
are positive, monotone contractions, and G is a nonlinear, positive and monotone oper­
ator. 

We construct the solution of Eq. (5.1) by tlie method of successive approxima-
tions: 

f 1(t) = 0, 
t 

j"+ 1 (t) = Z(t)/0 + J Z(t-s)G(f") (s)ds, n = 1, 2, .... 
0 

If / 0 ~ 0, then {/1
} form a monotone, positive sequence. Suppose we can prove bounded­

ness of 11/111, then, according to the Levy property, there exists/= lim f 1 which is a solu-
i .... oo 

tion of the following integral equation (generalized solution): 

t 

(5.2) f(t) = Z(t)fo+ J Z(t-s)G(f) (s)ds·. 
0 

If we prove thatf(t) is continuously differentiable, as can be done under suitable conditions 
on G, thenf(t) is a strong solution of Eq. (5.1). Let us observe that if g(t) is another non­
negative solution of Eq. (5.2), then f(t) ~ g(t) due to the construction of the series f". 
Let us consider a pair ofCauchy problems of the type (5.1) characterized by (Z(t), G,/0 ) 

and (Z'(t), G~,f~). This pair is called a monotone pair if 

Z'(t)g ~ Z(t)g, G'(g) ~ G(g), f~ ~ / 0 for g ~ 0. 

The important property of a monotone pair is the following. If the problem (Z(t), G,/0 ) 

has a solution f(t), then (Z'(t), G' ,f~) has a generalized solution f'(t) w)lich satisfies 

0 ~ f'(t) ~ f(t). 

We are now able to prove our main result: 
THEOREM 2. 
Let k(v, v1 ) be given by Eq. (2.3) with 0 ~ r1 , r2 ~ 2 and / 0 (1 + lvl 2

)
512 

E B+ with 
s ~ 4. Then there exists a unique strong solution f(t) of Eq. (2.1) for t E [0, oo [such that 

f(t) (1 + lvl 2
)

5
'
2 

E B+, 

llf(t)ll = 11/oll, llf(t)ll2 = 11/olb' 
11/(t)lls ~ CT 11/olls for t ~ T, 

Here CT depends on 11/0 11 2 , T, Kk and s only. 
Proof. 

a. Construction · of a monotone sequence of approximations 

We approximate the kernel k(v, v 1 ) by the bounded functions 

km( V, v1) = min [k(v, v1), m] 
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and let Jm be the corresponding collision operator. According to the Proposition 4~1, 
the Cauchy problem · 

(5.3) 
l

ft+AJ = Jm(j,J), 

/(0) = fo 

has a solution which we denote by fm(t). 
Let us introduce 

then 

(5.4) 

h(v) = K(1 + lvl 2
)}; J (1 + lv1l 2

) (/0 )(t)(vl)dvh 
(I) 

J~(f,f) = Jm(f,f)+K(1 + lvl 2)f(v)}; J (1 + lvii 2)/m(vl)dv1, 
(I) 

l

ft+Af+hf = J~(f,J), 

/(0) = fo 

is the Cauchy problem of the type (5.1) as A +h generates the positive, monotone semi­
group U(t) e-ht and J~ is positive and monotone for K sufficiently large. 

Since the solution of Eq. {5.3) is ·a solution of Eq. (5.4), a sequence of successive 
approximations of Eq. (5.4) is bounded by fm· 

Let us introduce now 

J',;,(f,f) = J km(v, vl)f(v')f(vadudvl +K(1+ lvl 2)/(v)}; J (1 + lvii 2)/<o(vl)dv1 
(I) 

. - J k(v, v 1)f(v)f(v1)dudvh 

J;,: is positive and monotone for sufficiently large K and 

J~(f,f) ~ J',;,(f,J), f ~ 0, 

J':.(f,f) ~ J't'(f,f), m ~ k and f ~ 0. 

Consider the Cauchy problem: 

(5.5) 
l

ft+Af+hf ~ J',;,(f,f), 

/(0) = fo· 

Then Eqs . . (5.4) and (5.5) constitute a monotone pair. Hence there exists a generalized 
solution f/,' of Eq. (5.5) and 

11/:r:lls ~ 11/mlls ~ Crll/olls· 
Since (U(t)e-ht, J::, ,/0 ) and (U(t)e-ht, J~',fo) constitute a monotone pair too, then 

f~' ~ 1::. if k ~ m. 

Hence we have a monotone sequence {/}' }t= 1 and since 

11/;:.{t)lb ~ 11/m(t)lb = 11/olb, 
the sequence is bounded, this implies convergence 

f(t) = lim 1::. (t) 
m-+oo 
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We have also 

as for fm(t). 

b. J:,.' Is a strong solution of Eq. (5.5) 

Let us consider the equation (we write for simplicity J, fr.~ instead off;,', ([:,.')'): 
t 

Ji+l = U(t)e-htfo + J U(t -s)e-h<t-s>J~(Ji,Ji) (s) ds. 
0 

We show now that if f' is continuously differentiable and 11 !' 11, is bpunded, then the 

same holds for f 1+1 • 

Let us observe that 

11 :t J~(J',f')ll-- 4K 11 a;,• ll,lif'llz. 
Hence J;:. (/1

, f 1
) is continuously differentiable and f 1+1 is continuously differentiable 

as well. We have in addition 

and 

We conclude now that since fr' are uniformly bounded, all f 1 are equicontinuous with 
respect tot. Since {/1}~ 1 is a pointwise convergent sequence of equicontinuous functions, 
it is convergent uniformly in C([t1 , t2 ], B2 ) on every bounded interval [t1 , t2 ]. We have 

11ft-1:11 ~ I lA (/1
- /')11 + llh(/1

- /
1)11 + IIJ;,:(/1, /

1
) -J;,:(f', !')I I 
~ 11/1 -/

11!2(1 +KII/olb+2KIIfolb). 

Hence {/1}~ 1 converges uniformly on every bounded interval and the function f(t) = 

= lim f 1(t) is differentiable. This ends the proof since if 1:: is differentiable it is a strong 
~00 . 

solution of Eq. (5.5). 

c. {/ ... }:'= 1 Converges to f(t) 

Let us consider integral equations which describe fm and 1::. : 
t 

fm(t) = U(t)fo + J U(t -s) [J~(fm, fm) -hfm] (s) ds, 
0 

t 

j:,;(t) = rJ(t)/0 + J U(t-s) [J;,:(j:,.',J::)-hj:,;] (s)ds. 
0 
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Then for Sm = fm- f';. we have 

t t 

llsm(t) lb ~ J IIJ,;.(Jm, fm) J hfmlb ds+ J IIJ;,:(J',;., /,;.') -hf:,;lb ds 
0 0 

t t 

= J .J; J lm((fm)ob (fm)w)O+Ivl 2)dvds+ J J; J Jm((f:,;)<o' (f';.)m)O+Ivl 2 )dvds 

and 

0 ((i) . 0 (i) 

t 

t 

+ J J: J [k(v, V 1)-km(v, v1)] (f;:,(v, s))(i)(j:,;(v1 , s))<Odv1 dvds 
0 (i) 

+ K J J; J (1 + IVI 2
)

2 (1 + lvtl 2
) (f;:,(v, s) )w[(fo(vt, s) )m -(fm(vt, s))mJ dvtdvds 

0 (i) 

~ 0+0+o(l)+tKCTIIfoll4 sup llsm(s)lb 
OEOs:E;t 

lim llsm(t)ll 2 = 0 for t sufficiently small. 
1n-.oo 

In the estimates. above we have utilized the fact that (1 + lvl 2
) is the collision invariant and 

If lim lls .. (t)ll 2 = 0 for small t, we can prove step by step that this is true for every t and 
hence 

f(t) = lim fm(t). 
m-.oo 

d. /(t) ts a stroug solution of Eq. (2.1) 

It is_ easy to see that f(t) is a solution of the follo~ing integral equation: 

t 

f(t) = U(t)fo + J U(t -s)J(f,f) ds 
0 

hence a generalized solution of Eq. (2.1 ). 
We are now able to prove that f(t) is continuously differentiable and is a strong sol­

ution of Eq. (2.1). 
To this end let us observe that {fm}:=l form an equicontinuous family of functions 

with respect to t, as 

11 ~; 11
2

.;; (2K+I}Cxllfoll.llfolb. 

Hence .fm(t) converge to f(t) uniformly · on every bounded interval. Considerations anal­

ogous to that in b. show that ~!!!...-+ dr uniformly. This ends the p~oof. 
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