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Spatial amplification and Squire’s theorem
T. CEBECI (LONG BEACH) and K. STEWARTSON (LONDON)

SpATIAL and temporal model disturbances to a two-dimensional shear flow are considered. The
,,zarf” or absolute neutral curve for a Blasius flow is obtaied and the lower branch is shown to
differ from the two-dimensional neutral curve. For a fixed frequency the most amplified spatial
oscillation, as the Reynolds number varies, is not two-dimensional but very nearly so.

Rozwazono przestrzenne i czasowe zaburzenia modalne dwuwymiarowego przeplywu scinania.
Otrzymano absolutna krzywa obojetna dla przeplywu Blasiusa i wykazano, ze jej dolna galaz
rézni sie od dwuwymiarowej krzywej obojetnej. Przy ustalonej czestodci i zmiennej liczbie
Reynoldsa najsilniej wzmocnione drgania przestrzenne sg prawie dwuwymiarowe.

PaccmaTpuBalOTCA MPOCTPAHCTBEHHbIE M BPEMEHHBIC MOMAJILHBIC BO3MYIUEHHA IBYMEPHOrO
TeueHHs cpesa. ITonmyueHa aGcomoTHasAs KpuBag HeHTpanbHasA A TeueHHA Brnesusa M moka-
38HO, YTO €ro HMYKHAA BeTBb OT/IMYAETCA OT ABYMEPHOI HeilfTpamsHoit KpuBoit. IIpr ycrano-
BJIEHHOM 4acToTe W nepemeHHOM umcie Pefinonbica, HauGonee MOLIHOE YCHIIEHHE IPOCTpaH-
CTBEHHBIX KoJieOaHuil MOUYTH ABYMEpHLIE.

1. Introductjon

THE LINEAR theory of the stability of a plane parallel flow is important both for the de-
termination of the highest Reynolds number, Re, at which all sufficiently weak disturb-
ances decay and also as a predictor, or at least a correlator, of the onset of transition
to turbulent flow. In its second role it clearly has shortcomings especially in its neglect
of nonlinear effects and of external disturbances but it is the best available procedure and
may be regarded as an early groping towards a proper theory of transition.

Consider a pseudo-plane parallel flow, in a semi-infinite fluid bounded on one side
by the plane y = 0, with the velocity components [u(y), 0, w(»)] relative to Cartesian
coordinates (x, y,z). We make a small disturbance to this flow in which the velocity
component normal to the plane y = 0 has the form
(1.1) y(y)expliax+ifz —iwt],
where o, f, » are constants and y is a function of y only; the other components of the
perturbation velocity take on equivalent forms. On substituting these forms into the
Navier-Stokes equation and ignoring the fact that the basic flow does not quite satisfy
them at the high values of the Reynolds number in which we are interested, we find (e.g.
GREGORY, STUART and WALKER, 1955) that ¢ is a solution of the differential equation
(1.2) 9" =2(2+ B>y + (a2 +p?)*y = iR{(au+pw—o)([p" — (x®+ ) y]

—(ou" +pw")p}

together with the boundary conditions
(1.3) v(0) =¢'(0) =0, -0 as y- oo,
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where primes denote differentiation with respect to y. Here R is a representative Reynolds
number of the flow and the coordinates have all been appropriately scaled. For example,
if the basic flow is a Blasius boundary layer, of special interest to us in this paper, the
Reynolds number is based on the displacement thickness 6* of the boundary layer at
the special point of interest 0 of the wall. All coordinates are measured from 0 as origin
and scaled with §*, the time is scaled by 8*/U,, where U, is the mainstream velocity, v by
U, and w = 0. As defined R is proportional to the square root of the distance of 0 from
the leading edge.

2. Squire’s theorem

The existence of a nontrivial solution of Eq. (1.2) subject to Eq. (1.3) is only possible
if there is a relation connecting o, 8, w, R. This relation, if it exists, is not necessarily unique
but it is generally believed possible to identify the one of importance to the stability
theory and we shall assume that this can be done. For temporal stability «, g are assumed
to be real and Eq. (1.2) provides a means of computing @ as a function of R. We are then
considering the evolution of a given local disturbance as a function of time and the relation
may be written in the form

2.1) o = af(e®+ 2%, aR)

since w = 0. Hence if the growth rate w; of a disturbance is equal to wy; when R = R;,
o =03, f= B3 #0, it is equal to w;;a,/0; when R=R,, o = a,, f =0,

(2.2) oa = (ag'f'ﬁ%)”z > o3, Rz = T < R;.

This is SQUIRE’s theorem (1933) and it tells us that as the Reynolds number is increased
the first mode of disturbance to become unstable at R = R, is two-dimensional with
B = 0. Further for every unstable three-dimensional mode there is a more unstable
two-dimensional mode at a lower Reynolds number. It does not necessarily follow, how-
ever, that at larger values of R the most unstable disturbances are two-dimensional
although this does appear to be the case in plane Poiseuille flow (WATsoN 1960, MICHAEL
1961) and in Blasius flow (CRIMINALE and KovaszNay 1962).

3. Spatial amplification

The most successful of the methods of predicting transition is the “e"” method orig-
inated by SMiTH and GAMBERONI (1956) and VAN INGEN (1956). In this method it is often
assumed that w is real, corresponding to spatial modes of instability and in two-dimensional
studies Eq. (2.1) is used to compute « as a function of R and w. Thus we envisage a finite
disturbance at the origin O for all time, analyze it into Fourier components and determine
their amplitudes proportional to

3.1 exp(—a;Xx).
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We now use the principle of sectional analysis to extend this formula not only to large x,
on the scale of the boundary-layer thickness, but also to finite distances down the flat
plate, This is done first by noting that if the imposed frequency remains constant as the
wave advances down the plate, @ must also change taking the form w, R/R, where R,
is the Reynolds number at which the disturbance originates. Next we replace the relation
(3.1) by

(3.2 exp—f o;dx

and change the variable x to the physical distance x* along the plate using the formulas

oy Uy, 0*
(3.3) ® = 50x‘ -'/W ¥ R = e - x*—-xﬁ = xé*,
where d, = 1.721, and x% is the distance from the leading edge at the origin of x. It then
follows that Eq. (3.2) may be replaced by

R A~
(3.4) exp [ = —a'g' f oy (R—l', R) dR] ¥
R,

Strictly Eq. (3.4) may only be identified with Eq. (3.1) if the variation of R is small but
we now assume that it represents a reasonable approximation to the growth of the initial
disturbance as R changes through finite values. The lower limit of integration is taken
to be a point on the neutral curve (where o; = 0) since at smaller values of R modal dis-
turbances determined by the solution of Eq. (1.2) are strictly negligible when compared
with those associated with the continuous spectrum. Transition is estimated by computing
the maximum value of the exponent as w, varies. In two-dimensional or axisymmetrical
flows with moderate pressure gradients, transition occurs at that Reynolds number Ry
at which the exponent first reaches 8.98 for some w, (CEeBecI and BRADSHAW 1977).

In the above theory g is taken to be zero and the basic shear flow also has w = 0.
Recently, however, (CEBECI and STEWARTSON 1979, NAYFEH 1979), the two-dimensional
theory of spatial amplification has been extended to three-dimensional disturbances of
a three-dimensional basic shear so that w # 0. Now emphasis is laid on the original dis-
turbances being a spatial group of waves localized in the neighborhood of 0 and we are
interested in the amplification properties of those waves from 0 which reach large values
of x, z. These waves form a group centered on particular values of « and § in Eq. (1.1),
given by a solution of Eq. (1.2) which also satisfies

(3.5) da/op = —tanf = —z/x.

The partial differentiation is carried out holding w and R constant, these two quantities
being prescribed by the choice of disturbance and its source, 0. The condition (3.5) enables
a, B to be found as functions of w, R, 6 which again may not be unique but are such that
we can expect to identify the most unstable members of a discrete family of solutions.
The generalization of Eq. (3.4) to a three-dimensional shear flow requires us to
integrate

(3.6) tx;-i-ﬁ‘tallﬂ — —B
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with respect to R for appropriate values of 6, w. CEBECI and STEWARTSON (1979) applied
these ideas to the prediction of transition on a rotating disk using a numerical scheme
devised by CeBeci and KELLER (1977). They were able to identify an absolute neutral
curve for spatial amplification which they named a zarf [lit. envelope (Turk.)] which is
the locus of the minimum value of R on the neutral curve for each w. On the zarf

(3.7 oy =p, =0, Oual/of = —tanb ,(w),

where 0,4(w) is a real function of w. This curve is identical with the zarf for temporal
disturbances, its projection onto the w— R plane being the envelope of all neutral curves
as a varies for fixed f. Further, its projection onto the a«— R plane separates out the re-
gions where w; < 0 for all neighboring real § from that where w; > 0 for at least one
neighboring real value of f. A similar remark applies to the f—R plane.

The calculations of CeEBECI and STEWARTSON (1979), for the rotating disk problem, orig-
inated at the zarf and, as R increased, 6 was held fixed at the value 0 it took on this
curve. Some measure of success was achieved in that the static wave with @ = 0 was
found to have the maximum growth rate and the corresponding value of 6, to be about
—8°; experimentally the well-known spiral vortices (GREGORY, STUART and WALKER
1955) are also associated with w = 0 and their direction corresponds to 6 = —13°. The
value of n is = 10 at the beginning of transition, when the spiral arms appear, and is
~ 20 at the onset of turbulence.

Clearly, however, this mode of procedure for determining » is not the most general
nor can it lead to the greatest possible value of n at transition. For the disturbance amplifies
at different rates in different directions and these rates also vary with R, so that we cannot
assume the most unstable direction is always 6,. Our aim in this paper is to investigate
whether a more general approach, in which the local direction 6 of the group is allowed
to vary with R so that B is always a maximum, is likely to make a significant difference to
the choice of #. We shall also examine whether the basic result of Squire’s theorem can be
generalized to the working rule that in spatial amplification two-dimensional disturb-
ances are the most unstable when w = 0 and, if not, to estimate the likely errors involved
in making such an assumption.

4. Results

Let us first examine the properties of B when g is small. With the assumption that
w = 0, it follows from Eq. (1.2) that « may be expressed as a power series in f? whose
coefficients are functions of w and R; both real quantities in spatial coefficients are func-
tions of w and R, both real quantities in spatial amplification theory, and taking the form
“@.n o = ag(w, R)+ pf?ay(w, R)+ p*ay(w, R)+ ....
On the zarf a, B, w, R are all real and it is clear from Eq. (4.1) that one possible form for
itis # = 0, i.e. the two-dimensional neutral curve. If we now suppose that w, R are chosen
to be on this neutral curve, so that w = w,(R), @, is real but nothing can be said of
course about «,, as. An admissible solution (i.e. one with da/df real) must satisfy

(4'2) aziﬁr‘l'ﬂ'mﬁt = 0:
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when £ is small, where the suffixes r, i denote, respectively, the real and imaginary parts
of the complex number, and the growth rate is

(4.3) B = —(a;+pitanb) = —ay (B2 + 7).

Hence if the two-dimensional neutral curve also corresponds to the maximum growth
rate a,; > 0, and we may then reasonably expect it to form part of the curve in the (w, R)
plane dividing regions with negative amplification of all admissible solutions from those
in which there is at least one direction 0 for which positive amplification occurs. On the
other hand, if a,; < 0, there are values of 6 along which amplification takes place even
though there is none at 6 = 0. This condition on a,; is actually the same as that for
the formation of the kidney-shaped curve (CRIMINALE and KovaszNAY 1962, GASTER
and DAvVEY 1968) in the plane of real a and real f on which w is also real for a constant
values of R.

The values of &g, o, have been computed at a number of points on the lower branch
of the two-dimensional neutral curve and the results are set out in Table 1. It is deduced
that «,; = 0 when R = 710 and we shall refer to this point as R,,. So far as we can tell
o, > 0 on the upper branch of this neutral curve.

Table 1. Values of o, «, on the lower branch
of the two-dimensional neutral curve as

functions of R.
R [+ £ [+ 5]
690 0.2165 " —0.66+0.005i
772 0.2003 —0.72—0.015i
943 0.1741 —0.85—0.058i
1089 0.1609 —0.93—0.083i
1333 0.1450 —1.05—0.123i
1540 0.1353 —1.14—0.153i
1722 0.1285 —1.21—0.175i

Let us now suppose, as indeed appears to be the case for Blasius flow, that a,; > 0.
Then in the neighborhood of R, «,; is small and, taking B, to be small as well,

(4.9 0 = 2a,,,+0(B7), B = —afi—aup’
and hence at the maximum growth rate
(4-5) ﬁrz = —ay/(20sy).

It thus appears that the correct curve in the w— R plane from which the integral in Eq.
(3.4), as amended by Eq. (3.6), should be started is the two-dimensional neutral curve
only if R < R,. In other words, the zarf coincides with this curve if R < R, but bifur-
cates from it if R > R,.'In order to find the shape of the zarf near R = R,, we expand o
in Eq. (4.1) in powers of (w—w;), (R— R,) retaining the leading terms only and obtaining

(4.6) @ = oy + (0 —ws) L+ (R—Ry) M+ B2z, +if2[N(R —Ry) + P(w —wp)] + f*ota+ ...,

11+
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where L, M, P, N are constants of which N, P are real. Then from the conditions defining

the zarf we have

_ _ MP+L,N (R—R)+ ...,

2

= 2L 04y

M,L,~L.M, M,P+LN ]
4.7 —ap = — R—R)+ ...,
4.7) o —olp [ L 20a, L, o | ( )+

M
®—wp = —-L—: (R—Ry)+O(R—R,)>.

Thus the bifurcated zarf intersects the two-dimensional neutral curve at right angles in
the f— R plane, at a finite angle in the «— R plane and touches it in the w— R plane. These
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FiG. l.a. Projection of the zarf on the a,, R plane. Dashed line is the two-dimensional neutmal curve.
b. Projection of the zarf on the B,, R plane. c. Projection of the zarf on the w,, R plare.
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properties are displayed in Fig. 1 in which the shape of the zarf has been calculated up
to values of R in excess of 3000. Considerable differences between the two curves may be
seen especially in those for « and f. It may be shown (CeBEcI and STEWARTSON 1981)
that in the limit R — oo, |f| = 0.212 and a~ 149/R on the zarf.

A general point is worth making. The computation of admissible solutions of Eq.
(1.2) depends on the assumption of a Taylor series expansion of « as a function of 8, w, R
all of whose coefficients are finite. Should this not prove to be the case, the computational
procedure breaks down. Contrariwise, if the numerical procedure breaks down, which
we find to be the case at some values of w and R, either it is not delicate enough to con-
verge, with the constraints applied, or the Taylor-series principle has broken down. We
shall assume that the numerical failure is due to the failure of this principle and that groups
of waves with such phase velocities (i.e. ,, f,) cannot penetrate to large values of (x, 2)
except in a weaker form than has been envisaged. This conclusion is tentative and the
phenomenon merits further study.

In the studies to determine n we selected a point on the lower branch of the two-di-
mensional neutral curve for Blasius flow with g = 0, to start from and followed the be-
haviour of B as f, R varied defining @ in terms of R as in Eq. (3.4). For example, we took
R; = 1018, w; = 0.05345, o; = 0.16678, f = 0 and then computed both B and tan 6
for a set of values of £ holding w, R constant. It was found that B duly vanished at § = 0
but increased with g, (a,; ~ —0.07). At f ~ 0.150—0.005i it seemed that a maximum
value of B of approximately 0.07x 10~* was very nearly attained. Simultaneously, the
value of 0 decreased and nearly reached a minimum of ~ —9.4°, the corresponding phase
velocity being in a direction making an angle ~ —45° to the mainstream. The two ex-
trema are inferred to occur at slightly different values of f,. However, further calculations
at larger values of f, failed to converge since it proved impossible to find a f; such that
|@a;/@B,| is small enough to satisfy our tolerance requirements (< 0.001). Another calcu-
lation was carried out at R, = 1540, w, = 0.03909 the breakdown occurring at §, > 0.120
with B and tan# still definitely increasing. The principal results of these two calculations
are displayed in Table 2.

A related calculation was also carried out at R, = 1540, w, = 0.03909 in which §; = 0
and B, were allowed to vary. The reults are of interest in connection with the experiments
of KLEBANOFF, TIDSTROM and SARGENT (1962) on the evolution of waves from a vibrating
ribbon in a boundary layer with surface spacers of cellophane tape. This calculation
showed good agreement in estimates of B with the admissible solution of Table 2 except
for B, = 0.105 and the growth rate achieved a maximum at 8, ~ 0.16 when the spanwise
wave-length is about 2/3 of the chordwise wave length. The same ratio occurs in the
experiments carried out at R, = 1635, The present calculations were stopped at §, = 0.240
but it seems clear that if they were continued, the growth rate would be found to vanish
again at f, ~ 0.3. In the §, R-plane the corresponding point is well outside the zarf but
there is no contradiction since the zarf also satisfies the criterion thatonitw; = oy = f; = 0
and o, is an extremum regarded as a function of «,, 8, with R fixed. Here w = 0.03971
while w = 0.0345 on the lower branch of the zarf.

Next the variation of B with R was computed by choosing R, = 1333, o, = 0.04342
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Table 2. Variation of B, tanf as functions of f3,, for
R = 1018 and R = 1540.

R = 1018 R = 1540
B | Bx10* | tan® | B | Bx10® | tano
0 0 0 0 0 0
0.015 | 0016 | —0.027 |0.015| 0034 | —0.034
0.030 | 0063 | —0.053 [0.030| 0135 |—0.067
0.045 | 0.138 | —0.077 |0.045| 0298 |—0.097
0060 | 0234 | —0.099 |0060| 0511 |—0.123
0075 | 0342 | —0.118 | 0.075| 0762 | —0.144
0.090 | 0453 | —0.134 [0.090| 1.037 |—0.160(")
0.105 | 0.556 | —0.147 |0.105| 1.826 |—0.184(")
0.120 | 0.638 | —o0.156
0.135 | 069 | —0.162
0.150 | 0.703 | —0.165

(1) convergence marginal

and defining w for other values of R by w = w, R/R;. In order to obtain as large a value
of n as possible, we define

Rr

2 [ BuwdR,

where B,,,, is defined to be the largest attainable value for B at a particular value of R
as f§ varies, with ® = w, R/R,, and the requirement that the solution of Eq. (1.2) be ad-
missible while R,, w.(= o, R;/R,) is a point on the zarf. In Table 3 we display the varia-
tion of By,, with R and compare it with that of B, which is equal to —o; when g = 0.

Table 3. Table of the maximum value of B as a function
of R deduced from the solution of the Orr-Sommerfeld
equation with Jx/df = —tano(real) and ® = w; R/R;
where R, = 1333 and o, is the value of @ at R, = 1333
for which o; = 0 when § = 0. Also shown is a table of
B, = —a; computed for the same values of R, but with
£ =0.If R= 1806, Bmax = B>.

R B. tanf Bunax X 10? B, x 102
1333 | 012 —0.175 0.14(Y) ] 0
1440 | 0135 | —0.164 0.36 ’ 0.27
1540 | 0.12 —0.155 0.55 L 050
1633 | 0.09 —0.127 0.72 0.70
1722 | 0.06 —0.088 0.87 - 0.87
1806 0 0 1.00 1.00

(') No admissible solutions found for #, > 0.12
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Also included are the corresponding values of f§,, tanf. We see that the differences be-
tween the two values of B are negligible or zero for R > 1540 and that the increase in the
value of n due to the three-dimensional effects amounts to 0.17 only. Another calculation
was carried out for R, = 943. In this intstance the difference between the two values of B
is negligible or zero for R > 1089 and the increase in the value of n is 0.04.

A similar phenomenon occurs when f§ is kept real and R allowed to increase, with
o = w, R[R,. For example at R, = 1540, w, = 0.0391, B vanishes at §, = 0 and has
a maximum of 0.0018 at 8, = 0.165. The difference between the corresponding values
of B diminishes as R increases, the relevant numbers being 0.0038 and 0.0047 at R = 1721,
0.0069 and 0.0072 at R = 1886; thereafter the differences are negligible.

5. Discussion

The principal result of this paper is that even if the basic shear flow is two-dimensional
it does not follow that the zarf satisfies § = 0. So far as «, § are concerned, the zarf shows
considerable departures from the two-dimensional neutral curve on the lower branch
although the two are coincident on the upper branch. This phenomenon is important
when small amounts of cross flow are present, for it follows that the corresponding zarfs
are not necessarily close to the neutral curve with # = 0. An example is the yawed stagna-
tion flow (CeBecr and STEWARTSON 1979).

Secondly, we have established that while the most amplified waves at a given Reynolds
number R and frequency w/2n of oscillation do not necessarily have a phase and group
velocity in the direction of the mainstream outside the boundary layer, in general little
is lost by adopting such a working rule. It is least successful near the lower branch of the
two-dimensional neutral curve for the shear flow studied, namely Blasius flow, and in
order to achieve the largest possible value of » in the ¢" method for predicting transition,
the integration of Eq. (3.4) or Eq. (4.6) should strictly start at the zarf rather than at this
neutral curve. The contribution to n from this neighborhood of R, w is, however, quite
small and, as the Reynolds number is advanced, the growth rates do increase but the
differences between the two-dimensional and the maximum values diminish rapidly and
soon the two coincide. The ultimate effect on 7 is to raise it by 0.17 for R, = 1333 when
admissible three-dimensional disturbances are incorporated. Since 1333 is close to the
crucial value of R, for the largest possible value of n at transition where R < 2900 and
n = 8.94 when two-dimensional disturbances only are taken into account (CEBECI and
BrADsHAW 1977, p. 307), it is unlikely that the fuller study which permits § # 0 would
increase n beyond 9.2. In view of the complicated nature of the method of predicting transi-
tion and its imprecise character for Blasius flow, such a change may be ignored for prac-
tical purposes.

The study also lends support to the hopes expressed by CEBECI and STEWARTSON (1979)
that in calculations of # it is sufficient to start on the zarf. Indeed for Blasius flow one
might go further and take f = 6 = 0 without significant loss of accuracy.

Finally, attention should be drawn to the abrupt and curious termination of the cal-
culations with increasing # due to an inability to obtain admissible solutions. This phenom-
enon also occurred during the calculation of the absolute neutral curve for a rotating
disk. In that problem the curve was eventually reached through a series of “false” solutions
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of which the final one simultaneously satisfied o; = f; = 0 and 9¢;/88, = 0. It is an
open question whether a similar device would enable us to increase the value of 3, in the
Blasius studies, but it was felt that even if successful, there would be little change in our
conclusions.
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