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Annular punch on a transversely isotropic layer bonded to a half-space 

B. ROGOWSKI (L6DZ) 

IN THIS NOTE the author analyzes the axisymmetric indentation of an annular punch into the 
elastic, transversely isotropic layer perfectly bonded to a dissimilar half-space. 

W pracy autor analizuje osiowo-symetryczne wciskanie piericieniowego stempla w poprzecznie 
izotropow~ warstwct sp~~ idealnie JX>hlczoil~ z r6~ od niej p61przestrze~. 

B pa6oTe aBTOp aBa.JIB3HPYeT oceCHMMeTpH'IHoe B~aBmmaHHe Kom.~eBoro IImlMIIll B ynpyrnit, 
l'paHCBepcam.Bo-H30Tp0IIHhrlt CJIOD: coe~emn.rlt C JU)yrHM DOnynpOCl'paHCTBOM. 

1. Introduction 

CoNTACT problems involving annular contact region have been studied in recent years and 
several solutions have been given for the case in which the punch face is flat. CooKE [1], 
COLLINS [2], GUBENKO and MOSSAKOVSKII [3], 0LESIAK (4], . JAIN and KANWAL [5] and 
SumUYA et al. [6, 7] have analyzed the problem for isotropic half-space. The author [8-9] 
has also analyzed the problem for a transversely isotropic medium. DHALIW AL and SINGH 

[10] have considered the annular punch problem for the isotropic layer bonded to an 
isotropic half-space. The same problem for transversely isotropic materials has been con­
sidered in this note. 

2. Basic equations and their solution 

In a cylindrical coordinate system (r, (), z), the axisymmetrical solutions of the elastic 
basic equations of equilibrium for a transversely isotropic material are given by the func-
tions cp1 (r, z) and cp2(r, z) satisfying the partial differential equations [11] . 

(2.1) (o~+r- 1 o,+sr 2o~)cp1(r,z) = 0, i = 1,2 (no sum implied), 

where a, denotes differentation with respect to r, etc. The nonvanishing components of 
the displacement and stress due to the functions are [11] 

(2.2) u, = a,(kcpl +cp2), u. = a.(cpl +kcp2); 

a .. = Gl(k+1)o~(s12cpl +s22cp2), 

(2.3) a,.= G1(k+ l)o::(fPl +cp2), 

(::) = -G1 (k+l)iJ:(<p1 + <p2) -2G('~~0') (/<<p1 + '1'•), 
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120 B. ROOOWSKI 

where G1 and G denote the shear modulus in the z-direction and in the r- 0 plane respec­
tively, and the nondimensional quantities s1 , s2 , k related to the five elastic constants 
of the material E, v, E1 , Gh v1 are given by the following equations [11]: 

I 
(2.4) St,2 = 2(a±p), (X= ey2(e+l), p = e}/2(e-I), k = q+yq2 -I, 

E = L~.2 H(l-v~H)r. e = (F-v,H)[:~:H~l-v~H)r
12

, 

q =F[•,H+ ~: (1-v-2•~H)r -1, H = :. , . r = :. . 

(2.5) 

Suitable solutions of Eqs. (2.1) are taken in the form 

00 

(2.6) qJ,(r' z) = Gt (k:;){sl -s2) f E-l[A,(~)e-s,~: + B,(E)es,~:]Jo(Er)dE, 
0 

where A1(E}, B1(E) (i = 1, 2) are arbitrary functions and J,.(Er) is the Bessel function of 
the first kind of order n. 

Substituting Eq. (2.6) into Eqs. (2.2) and (2.3) the stress, displacement fields are 

00 

u, =- G1 (k~l)PJ [ks2(Ate-•1e~:+B1 e'1~•)+s1 (A2e-"ze:+B2 e'2h)]J1 (Er)dE, 
(2.7) 

0 

(2.8) 

00 

u =- StS2 J[A e-•le:_B e'te~:+k(A e-sze:_B e'2t%\]J.(t:r)dt:· 
1: Gl (k+ I)P 0 1 . 1 2 2 J 0 ~ ~' 

00 

Uu = ~ J E[s2(A1 e-s1t• + B1 e'•t:)+s1 (A2e-'2~~:+ B2 e'2e~:)]J0(Er)dE, 
0 

00 

Clu =- St;2 J E(-Ate-ste~:+Bte'•t~:_A2e-sztt:+B2e'2e•)Jt(Er)dE. 
. 0 . . 

The other components may be expressed similarly. 

3. Statement of the problem and derivation of the integral equation 

Consider a layer bounded by a pair of parallel planes z = 0 and z = -h. The layer 
is perfectly bonded to a half-space z ~ 0. The materials of the layer and the half-space 
are different but homogeneous, transversely isotropic an4 elastic. 

The free surface z = -his indented over an annular area r, ~ r ~ r0 by an annular 
rigid punch with an arbitrary smooth face. We assume that the punch is indented to a depth 
<5 and the interface between the punch and the layer is fixed, while the remaining part 
of the surface is free froin traction. 
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The boundary conditions of the present problem are: 

(3.1) 

(3.2) 

(3.3) 

u,;(r, ..:..h)= lJ-f(r-r~), r, ~ r ~ r0 , 

t1u(r, -h)= 0, 0~ r < '" r > r0 , 

tlzr(r, -h)= 0, r ~ 0, 

121 

where {J is the penetration depth of the indentor, z = f(r-rc) the function describing 
the indentor prome so thatf(O) = 0, r, and r0 are the inner and outer contact radii re­
spectively, and r c is a coordinate of the top of the end surface of the punch. The indented 
load P is given for the static equilibrium of a punch by the equation 

ro 

(3.4) P = -2n J rau(r, -h)dr. 
,, 

The displacement and stress fields in the elastic layer are given by Eqs. (2. 7) and (2.8). 
For the half-space they are obtained from the same equations by replacing u, Uz, Uzz, 

az,,S1 ,s2 ,k,G1 ,A1(E), A2 (E) by u;,u;,a;na~,s~,s~,k', G~, D1 (E), D2 (E) respec­
tively, and setting B1 (E) = B2(E) = 0. A1(E), B1(E), D1(E) (i = 1, 2) are unknown functions 
of ~ to be determined from the boundary conditions (3.1), (3.2), (3.3) and from the 
following continuity conditions which must be satisfied at the interface between the two 
regions z = 0 

(3.5) u;(r, 0+) = u,(r, 0-), u;(r, 0+) = Uz(r, 0-), r ~ 0, 

(3.6) a;z(r, 0+} = O'zz(r, 0 -), a;,(r, 0+) = O'z,(r, 0-), r ~ 0. 

Solving Eqs. (3.3), (3.5) and (3.6) for A1(E), B1(E) and D1(E), we obtain 

(3.7) 

where 

(3.8) 

A1 (E) = -(ase-s~x-a1 e'2x+aJe-'2X)G(E)[X(x)]-I, 

A2(E) = '- (a1 e•1x+a4t-s1x+a6 e-'2X)G(E)[X(x)]- 1 , 

Bt(E) = -(ase'sx+a4e'2x-a2 e-•2x)G(E)[X(x)]- 1, 

B2(E) = -(a3e•1x+a2 e-s1x+a6 e'2x)G(E)[X(x)]-t, 

Dt(E) = -( -b1 e'1x+b2e-•1x-b3e'2x-b4e-s2x)G(E)[X(x)]-I, 

D2(E) = -(bse'1x-b6e-•1x+b7 e'2x+b8 e-'2 X)G(E)[X(x)]- 1, (x =Eh), 

b1,2 = ctfs1 (g-I)+s~(gk' -k)], 

b3,4 = ctfs~(gk'-I)+s2(g-k)], 

bs,6 = c2[s 1 (gk'-I)+s~(g-k)], 

b1,s = c2[s~(g-I)+s2 (gk' -k)], 

G1 (k+ 1) {3s~,2 
g = G~(k'+l)' c1 ' 2 = 2s1 s2 {J'(k-1)' 

ai = b3bs-b1b1, 

a3 = b1b8 -b4b5 , 

as =b2bs-b1b6, 

a2 = b4b6-b2hs, 

a4 = b2b1 -b3b6, 
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G(E) is an unknown function to be determined from the boundary conditions (3.1) ·and 
(3.2) and the function X(.x) (.x = Eh) is defined by the equation 

X(x) = a1 t'%+a2e-cx%+a3 r~.p-lefl%+a4 rJ.f3- 1e-flx+4s2a5 f3- 1 ; 
(3.9) 

The substitution of A1(E) and B1(E) from Eq. (3.7) into Eqs. (2.7) and (2.8) leads to the 
following expressions for normal displacement Uz(r, -h) and stress au(r, -h): 

(3.10) 

(3.11) 

where 

(3.12) 

00 

Uz(r, -h)= c-l f [1 4-M(E'h)]G(E)lo(E'r)dE', 
0 

00 

au(r, -h)= - J EG(E')lo(E'r)dE, 
0 

C = G1 (k+ l)(s1 -s2) 
s1 s2(k-I) 

is a parameter depending only on elastic constants of the material. The function M(x) 
(x = Eh) is defined by the equation 

(3.13) M(x) = -2(a2e-cxx+s1 a 3 p-leflx+s2 a4 /3- 1e-flx+2s2a 5 /1- 1)[X(x)]- 1 , 

where X(x) is given by the expression (3.9). 
When the medium is homogeneous (a2 = a3 = a4 = a5 = 0, a1 = 1) or h-+ oo 

(the cases of the half-space), the function M(E'h) is identically zero. 
Substituting Eqs. (3.10) and (3.11) in the boundary conditions (3.1) and (3.2), we find 

that they are satisfied if G(E') is the solution of the triple integral equations: 

00 

(3.14) J [I+ M(E'h)]G(E')J0 (E'r)dE = C[~ -/(r-rc)], r1 ~ r ~ r0 , 

0 

(3.15) 
00 

J EG(E)lo(E'r)dE = 0, 0 ~ r < r, r > r0 • 

0 

To solve the triple integral equations (3.14) and (3.15) we assume the following integral 
representation of the function ·G(E') as 

ro 

(3.16) G(E) = ~ J g(u)J0 (Eu)du, 
,, 

where g(u) is an arbitrary continuous function. 
Substituting Eq. (3.16) into au(r, -h) of Eq. (3.11), we obtain 

~ 00 ~ 

(3.17) <t,.(r, -h)= -d J g(u)du J U0(u~)J0(rfid~ = -d J g(u) d~) du, 
,, o ,, r 
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where 6(u-r) is a Dirac's delta function and the following formula is used: 

(3.18) 

CX) 

f 6(u-r) 
Elo(uE)lo(rE)dE = .. ;- . 

o vur 

Since the argument in the delta function is u- r ::/: 0 in 0 ~ r < r1 or r 0 < r because of 
r1 ~ u ~ r0 , the stress au(r, -h) is always zero in the free surface independent of the 
function g(u). Then Eq. (3.15) are identically satisfied. The stress in the contact region 
is from Eq. (3.17): 

(3.19) au(r, -h) = - 6r- 1g(r), r1 < r < r0 • 

Substituting Eq. (3.16) into Eq. (3.14), we reduce the problem to the solution of a Fred­
holm integral equation of the first kind for the determination of an unknown function 
g(r): 

ro 

(3.20) J K(u,r)g(u)du = C[1-6- 1/(r-rc)], r1 < r < r0 • 

,, 
The symmetric kernel K(u, r) is in the form 

CX) 

(3.21) K(u, r) = J [1 +M(Eh)]lo(Eu)J0 (Er)dE. 
0 

From Eqs. (3.4) and (3.19) we have the expression for the total load P which must be 
applied to the punch to maintain the penetration 6: 

ro 

(3.22) P = 2n6 J g(r)dr. ,, 
The inner and outer contact radii r1 and r0 are not known a priori. Since the punch ren­
ders contact smooth at the edges r = r1 and r = r0 with the layer, azz(r, -h) must be 
finite as r-+ r1+0 or r-+ r0 -0. 

This is equivalent to the conditions where the function g(r) is zero at r = r1 and r = r0 • 

The inner and outer contact radii can be expressed by the following equations: 

(3.23) g(r1) = 0, g(r0) = 0. 

In the special case of flat-ended annular punch, the contact radii are given by the inner 
and outer radii of the annulus. 

4. Solution of the integral equation 

The integral equation (3.20) can be solved approximately by the GUBENKo-MossA­
KOVSKII technique (3], DHALIWAL and SINGH [10], JAIN and KANWAL (5] have discussed 
equations of this type. 

By following their analysis, we derive from Eq. (3.20) a system of four Fredholm inte­
gral equations of the second kind with four unknown functions [9]. The solutions of 
these integral equations are obtained approximately by an iterative process when the pa­
rameters A.= r,fr0 and e = r0 /h are small. For the case of a flat-ended annular punch, 
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i.e. for f(r-rc) = 0 and.r1 ~ a, r0 = b (a, bare the inner and outer radii of the annulus), 
the following values of the contact stress and penetration depth are obtained correct to 
0().4) or O(e5) (setting r = br' and dropping the dashes) 

( b h) 
P g(r, A, e) , 

(4.1) a:u r , - = - ~b2 . (A ) , 11. < r < 1, 
n K1 'e 

(4.2) 

where 

(4.3) ( 
2e 4e

2 
)[ n A. • ( A )] g(r, A, e)= 1--10 + -15 .. ! + .. ! arcsm -

n n 2 2., 1 - r 2 ., r 2 -A 2 r 

(4.4) 

a b 
A = b ~ 1, e = h ~ 1, e = O(A) 

and 

CX) 

(4.5) In= (2~)! J x2"M(x)dx, n = 0, 1, 2, .... 
0 

The integrals In are convergent because the function M(x) given by Eqs. (3.13) and (3.9) 
satisfies · 

(4.6) {
g < 00, 

limx2"M(x) = 
x ... o 0 ' 

for arbitrary values of the elastic constants; 

fJ 

I 

const, e- x 
(4.7) limM(x) ---=cxx = a3 s1 

x ... o e -2-p-, 
al 

when 

when 

for n = 0, 

for n = 1, 2, ... , 

ex eR+ and 

M(x) is continuous for x e (0, oo) when ex e R+ . 

(a > p). 

·The parameter ex is real when the five elastic constants of the layer satisfy the condi­
tion (see Eqs. (2.4) and (2.5)) 

(4.8) 
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The elastic constants for some practical materials such as magnesium, cadmium and lami­
nates, fiber composites and other transversely isotropic materials satisfy the condition 
(4.8). . 

In special cases when e = 0 (1,. = 0) or A.= 0, l* :f: 0 or A= 0, e = 0 (1,. = 0), we 
obtained from Eqs. (4.3) and (4.4) the corresponding functions .g(r, A., 0) and g1(A., 0) 
for annular punch and half-space, g(r, 0, e) and g1(0, e) for cylindrical punch and layered 
half-space, g(r, 0, 0) = n/2y' 1-r 2 and g 1 (0, 0) = 1 for cylindrical punch and half-space. 
In the special case of isotropic (C = G/(1-P)) half-space the penetration depth is 

(4.9) ~1 = P(l-P) (1- 4).3)-1 
. 4bG 3n2 

' 

S. Conclusions 

The stress in the contact region and penetration depth of the pun~h depend on the 
geometric parameters A.= afb and e = b/h and ·on the elastic constants . of the materials. 

The influence of the transverse anisotropy for a half-space is considered by the con­
stant C and for the case of the half-space with a surface layer also by the function 
M(x), defining the integrals 1,.. The composite materials are strong transversely ani­
sotropic, i.e. H = E/E1 ~ 1 and r = G/G1 ~ 1. Taking into account this type of ani­
sotropy, one may conclude: 

1. The penetration depth <5( A., H, F) of the annular punch into transversely isotropic 
half-space is larger than the penetration depth into isotropic medium. For example, the 
ratio between the depth in the composite and in the isotropic semi-space for , = 0.20 
and P 1 = 0.10 is ~(A., 2, 2) = 2.04~1 ; ~(A., 2, 20) = 5.12<51 ; ~(A., 5, 10) = 6.00~ 1 ; 

~()., 10, 5) = 6.82~1 ; ~(A., 20, 20) = 14.25<51 . The values of the depth increase slightly 
as A. increases. 

2. The contact stresses, produced by flat-ended punch on a surface of the half-space 
are independent of the anisotropy of the material, and their values increase as the punch 
becomes thin. When the punch face is not flat, the contact stresses depend on the aniso­
tropy of the material; as the transverse anisotropy increases, the contact stresses decrease. 

3. When H > H' and F > F', then the penetration depth of the punch into a layer 
(H, F) is smaller and the contact stresses become larger than for the case of the half-space 
with the parameters Hand r. In the case of not flat-ended annular punch, the contact 
region decreases. When H < H' and r < F', the contact region and penetration depth 
into the layer (H, F) are larger and the contact stresses are smaller in comparison with 
the same values in the half-space with the parameters Hand F. 

4. As the transverse material anisotropy of the layer increases for the same founda­
tion or as the transverse anisotropy of the foundation increases for the same layer, the 
contact region and the penetration depth increase and the contact stresses decrease. As 
the transverse anisotropy of the layer or the foundation decrease, the contact region and 
the penetration depth decreases and the contact stresses increase. 
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