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Nonsimilar laminar incompressible boundary layer flow
over a rotating sphere

Notations

M. KUMARI and G. NATH (BANGALORE)

THE HEAT and mass transfer problem for the steady laminar incompressible boundary layers
for a rotating sphere under forced flow has been studied. The results indicate that the rotation
has a strong effect on the skin friction but its effect on the heat transfer is comparatively small.
When the temperature of the wall is greater than the temperature of the free stream, then beyond
a certain critical value of the dissipation parameter, the hot wall ceases to be cooled by the
stream of cooler air because the “heat cushion” provided by the frictional heat prevents cooling.
The results have been compared with those obtained by other prediction methods.

Rozwazono problcm przeplywu ciepla i masy w niedciSliwych laminarnych warstwach przy-
Sciennych dla kuli wirujacej w przeplywie wymuszonym. Wyniki wskazuja, ze ruch wirowy ma
duzy wplyw na tarcie powierzchniowe lecz niewielki wplyw na przewodnictwo ciepla. Gdy tem-
peratura Scianki jest wyzsza od temperatury strugi swobodnej, to powyzej pewnej krytycznej
wartosci parametru dysypacji goraca §cianka przestaje by¢ chlodzona przez struge chlodniej-
szego powietrza w wyniku dzialania ,,poduszki cieplnej” wytworzonej przez cieplo tarcia. Wy-
mklporéwnanozwymkamluzyskanymlmpomoqmnychm

Paccmorpena mpobiema nepeHoca TeIa M MacChl B HECOKMMAEMBIX JIAMHHAPHBIX IOrPaHHYHBIX
CIOAX [Jisi BPAIAIOIIEroca mapa B BEIHYKACHHOM TeueHHH. Pe3yNbTaThl mMOKashIBaloOT, YTO
BHXpEBOE [OBHKCHHE HMeeT GOJbUIOC BIMAHHE HA NOBEPXHOCTHOE TPeHHMe, HO HeGoubluoe
BJIAAHME HA TEIUIONPOBOAHOCTH. Koria Temmeparypa CTeHKH BBIIIE 9EM TeMIEparypa CBO-
GoaHOro MOTOKA, TOrMA CEHINE HEKOTOPOrO KPHTHYECKOIO SHAUCHHA NAPAMETPA MHCCHIIAIMH
TopAYad CTEHKA NEPECTaeT OXIKIATHECA IIOTOKOM Gosee XOJIOMHOIO BO3fyxa, B Pe3yNbTaTe
IeliCTBHA ,,TeioBoi moAaymkn’’, obpasoBaHHON TeIUTOM TPeHHMsA. Pe3ayNeTaThl CpaBHEHBI
C pesy/bTATAMM MOJYYEHHBLIMH IIPH MOMOUIN APYTHX METOHOB.

A dimensionless constant characterizing the surface mass transfer,
Br Brinkman number,
¢ constant having a dimension (time)~',
C;, C, skin-friction coefficients in the x and y directions, respectively,
C, specific heat at a constant pressure,
f dimensionless stream function,
f» dimensionless mass transfer parameter,
F,s dimensionless velocity components in the x and y directions, respectively,
F’, s’ shear stress functions in the x and y directions, respectively,
g dimensionless temperature,
£ heat-transfer function,
L characteristic length,
Nu Nusselt number,
Pr Prandtl number,
gw heat-transfer rate at the wall,
r distance from the axis of the body of revolution,
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R radius of the body,
Rer Reynolds number,
Re. local Reynolds number,
T temperature,
u,v,w velocity components in the x, y and z directions, respectively,
x,¥,z longitudinal, tangential and normal directions, respectively,
* dimensionless longitudinal distance,
«, A dimensionless rotation parameters,
o, dimensionless parameter,
B pressure gradient parameter,
n, & transformed coordinates,
v kinematic viscosity,
¢ density,
Tx, Ty Shear stresses along the x and y directions, respectively,
v dimensional stream function,
w angular velocity of the body.

‘Superscript

* prime denotes differentiation with respect to 7.
Subscripts

e denotes conditions at the edge of the boundary layer,

w denotes conditions at the wall,

o0 denotes conditions in the free stream,

& denotes derivatives with respect to £.
1. Introduction

THE sTUDY of the flow and heat transfer over a rotating body of revolution in forced
flow is of considerable importance in the design of missiles, projectiles and rotodynamic
machines. The flow field for the steady laminar incompressible boundary layer on a rota-
ting sphere has been studied by HoskIN [1] and the temperature field by SIEKMANN [2].
Both authors used four-term Blasius series to solve the governing boundary-layer equa-
tions. As pointed out by GorRTLER [3], the Blasius series method does not give accurate
results. Recently, CHAO and GREIF [4] re-studied the temperature field using an improv-
ed method where the velocity field is assumed to be quadratic and the temperature field
is expressed as a universal function. These authors observed that for large values of the
rotation parameter and for small values of the Prandtl numer, the quadratic velocity is
inadequate in determining the temperature field. Subsequently, CHAO [5] improved the
above method by taking more terms of the velocity profiles and applied the method for
the case of a rotating disc. More recently, LEE et. al [6] re-studied both the flow and tem-
perature fields using Mark’s three-term series [7] as refined by CHAO and FAGHENLE [8].
Since accurate results for the skin friction and heat transfer are required, it is essential
to assess the accuracy of these methods by comparing their results with those of an
exact method such as a finite-difference scheme.

The purpose of the present work is twofold. First, the solution of the foregoing prob-
lem using an implicit finite-difference scheme [9-10] has been presented. Second, the
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effects of mass transfer and viscous dissipation which were neglected by previous investi-
gators have been included in the analysis. The results (both for rotating and stationary
bodies, but without mass transfer and viscous dissipation) have been compared with the
previous theoretical results obtained by using various other methods [1-2, 4-6, 11-15].
We have also presented the skin-friction and heat-transfer results for a rotating disc which
is only a special case of our results and they are also compared with the previous theore-
tical and experimental results [4-6, 16-19].

2. Governing equations

We consider the steady laminar dissipative constant property incompressible bound-
ary-layer flow over a rotating porous body of revolution placed in a uniform stream with
its axis of rotation parallel to the free-stream velocity. The fluid at the edge of the bound-
ary layer is maintained at a constant temperature T, and the body has a uniform tem-
perature T,,. It has been assumed that the surface mass transfer normal to the body is
uniform. Under the above conditions, the boundary-layer equations governing the flow
can be expressed in dimensionless form as [6]

F"+fF'+B(&) (1 -F*)+a(§)s* = 26(FF¢—f F'),
2.1) s"+fs' —a;(§)Fs = 25(Fsg—fe s),
Proig” +fg'+ Br(ufuw)? [F' + (rofu,)’s’] = 2§(Fge—fi 8")-
The boundary conditions are
F(§,0) =g(5,00=0, s(0)=1,

23 F(E, ) = g€, 0) =1, s(¢, ) =0,
where
£ = [ (wofuw) (r/L)*Ldx,
(1]
2.3) 7 = [Rey/ Q@812 (u,Jux) (r|L) (z/L),

v(x, z) = ue L(2£/Rep)'? f(£, 1);

u = (Lr) (3p/dz), v = —(L]r)(3y/0x),
(239 w = —(r/L) [u./(2§Rer)' ] [f+28f¢+ (B+ 1 [2—1)9F],
u{u, =F =f'! ﬂ!?w =3, 5= (T_' Tw)l'(Tm—Tw);

B = (28[uc) (du.fdE),  «(§) = (24/r) (dr[dE) (rwue)?,

@37 @() = (4¢/r) (dr/d§), Br = uk/[Cy(Ta—T.);

n
f= deq-!—f.., Re, = uoL/fv,
(2'3:.") 0

fo= =& Rer/2)" [ (Woluz) (/L) d(¥/L).
0

3 Arch. Mech. Stos. 2/82
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The skin-friction coefficients in the x and y directions are given by
Cy = 27,/(0u%) = 2(ue[uw)® (/L) (2ERer) "/?F,,

= Cy = 27,/(ou2) = 2(r/L)* (26Rer) ™2 (Lo fuo) (Uoftic) s,

where

(2.4) 7, = w(0u/0z),,, 7, = p(dv/dz),.

The heat-transfer coefficient in the form of the Nusselt number can be written as
(2.4 Nu = L(0T/02),/(To—T,) = [Rer/Q2E)]"? (uefuw) (r/L)gw.

It may be noted that for a stationary body @ = 0 and Eq. (2.1), becomes inessential
since s is not interesting in this case. Consequently, Egs. (2.1), and (2.1); represent the
classical nonsimilar flow over a stationary body of revolution which has been studied in
the past.

The computations have been carried out for the case of a sphere. For a sphere the ve-
locity at the edge of the boundary layer, curvature of the body, and surface mass trans-
fer all being functions of x give rise to nonsimilarity. The velocity at the edge of the
boundary layer and the distance from the axis of the body are given by

(2.5) U fux = (3/2)sinx, r/R =sinx, x = x/R.

In this case we use the radius of the sphere R as a characteristic length instead of L.
Using the above relations, the expressions for &, A(£), a(£), «1(é), Cr, Cr, Nu, etc. given
by Egs. (2.3) and (2.4) can be expressed as

& = (1—cosXx)*(2+cosx)/2,

(2.6) B = (2/3) [cosx(2+cosX)/(1 +cosXx)?],
a=A8, o, =28, A= (4/9) (Rofug)?;
(2.6") (rofu)* = A, Rep=uxR/y;
C(Rep)'? = (9/2) sinx(1+cosXx) (2+cosx)~1?F,,,
(2.6") (_','Jr(F'.eL)”'2 = (9/2) A*?sinX(1+cosX) (2+cosx)~ s,
Nu(Rep)~? = (3/2) (1+cosX) (2+cosx)~2g,;
2.6") fo=A[2|24cosX)]'?, A= —(w,[us) (Rey)'/?;
(2.6") £(0/08) = 3~"tan(%/2) (2+cosX) (1+cos¥)~*(8/d%).

Here we have taken the surface mass transfer (w,,/us) to be constant. Hence A4 is a con-
stant (4 2 0 according to whether there is suction or injection) and the mass transfer
parameter f,, will vary according to Eq. (2.6").

It may be noted that the flow and heat transfer characteristics of forced flow for an
isothermal rotating disc can be obtained from those of a rotating sphere. For a disc [6]
2.7 r=2x, Ufux=2x[rR, A= nRw[2u,, f=0J5.

The local skin-friction coefficient in the radial direction is given by [16]

28) CrRe™ = 2{r/le(c*+0)¥]} [+ 5212 = 2031+ (Fu)so.
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Similarly, the heat-transfer coefficient in terms of the Nusselt number can be expressed
as [17]

(2.8) Nu = g,»"2|[K(T, — Tx) (¢*+w?)*] = 2"2(1+ 2) " *(gW)z=0,
where
(2.87) ¢ = 2up/nR, Re, = [(c?+w?)2x2—1]12,

We find that Eq. (2.8") is similar to (17) of Ref. [17] except the factor 2'/3(1+
+ )1,

3. Results and discussion

We have used an implicit finite-difference scheme for the solution of the governing
equations (2.1) under the boundary conditions (2.2) using the relations (2.6) or (2.7).
Since the method is fully described in [9-10], its description is not repeated here. To ensure
the convergence of the finite-difference scheme to the true solution, several values of the
stepsize Ay and A% were employed. The results presented here are independent of the
step size within at least three significant digits.

A=1
A=4 } Lee etal.
A=10

‘A=0,Br=0
Finite difference
———— Local similarity

——-— Local nonsimilarity

Bp e Op 0

: A=0 A=l
30k A Smith & Clutter a=4 [ Hoskin
[ ] Kao & Elrod A =10

0 1 1 1 |
0 0.4 0.8 1.2 1.6 2.0

X

FiG. 1. Effect of rotation on the skin-friction parameter in the x direction for the sphere and compa-
rison with that of other methods.

3*
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The skin-friction and heat-transfer results (F,,, g,,) for the stationary body (A = a = 0)
in the absence of mass transfer (4 = 0) and viscous dissipation (Br = 0) have been com-
pared with those obtained by the local similarity and local nonsimilarity methods [11, 12},
asymptotic method [13, 14] and difference-differential method [15] (see Figs. 1 and 2).

Pr=0.72,A=0,Br=0
Finite difference
—=———Local similarity
A Local nonsimilarity
0.6
10
s
r " B 1 r "
A=0
0.4}
~3
o
0.2
0 1 1 1 il
0 0.4 0.8 1.2 1.6 2.0

x
FiG. 2. Effect of rotation on the heat-transfer parameter for the sphere and comparison with that of
other methods (Pr = 0.72).

The finite-difference (present) results are almost the same as those of the difference-differ-
ential method [15]. They are also found to be in very good agreement with those of the
local nonsimilarity method [11, 12] and asymptotic method [13, 14] except when X is
large. However, the asymptotic method gives better results than the local nonsimilarity
method for large x. For small X, all the methods predict nearly the same results. But the
finite-difference results are found to differ significantly from the local similarity results
and this difference increases as X increases.

The skin-friction and heat-transfer results (F,,, —s.,, gw) corresponding to rotating
bodies (4 > 0) for Br = 4 = 0 have also been compared with those of HoskIN [1], Siex-
MANN [2], CHAO and GREIF [4], CHAO [5], and LeE et al. [6] (see Figs. 1, 3-5]. From Figs.
1 and 3, it is clear that the skin-friction results (F,, —s,) are in good agreement with
those of HoskiN [1] and LEE et al. [6). The heat-transfer results (g,) are also in good
agreement with those of CHAO [5] and Lk et al. [6] for small values of X (Figs. 4-5). How-
ever, for large X the results differ and this difference becomes more pronounced as A
or Pr increases. It is also observed that the heat-transfer results (g,,) obtained by CHAO
and Grerr [4] differ considerably from the finite-difference (present) results even for small
x and this difference increases as 4 or X increases or Pr decreases. Also the results (gi)
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FiG. 3. Effect of rotation on the skin-friction parameter in the y direction for the sphere and compar-
ison with that of other methods.
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FiG. 4. Effect of rotation on the heat-transfer parameter for the sphere and comparison with that of
other methods (Pr = 1.0).

[153)



154 M. KuMArl AND G. NATH
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FiG. 5. Effect of rotation on the heat-transfer parameter for the sphere and comparison with that of
other methods (Pr = 10.0).

obtained by SERMANN [2] differ from those of the finite-difference method. How-
ever, they are more accurate than those of CHAO and GREIF [4]. Furthermore the results
(gw) obtained by LEg et al. [6] are found to be comparatively more accurate than
those of SIEKMANN [2], CHAO and GREIF [4], and CHAO [5]. The results of CHAO [5]
who used 3-term velocity profiles in the energy equation are more accurate than those
of CHAO and GRrerr [4] who used 2-term velocity profiles. Hence it can be concluded
that for the accurate prediction of heat transfer, an exact method such as a finite-difference
method has to be employed, because all approximate methods are found to give inaccurate
results especially for large 4 and Xx.

As mentioned earlier, the rotating disc problem is a special case of rotating sphere

Table 1. Comparison of the skin-friction coefficient C,(Re,)'/

for disc.
Present T1FFORD and
A analysis LEE et al. [6] Cwu [16]
0 2.6252 2.6239 2.61
1 1.8712 1.8717 1.83
4 1.3726 1.3934 1.38
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problem. The skin-friction results (C}Rei) for the rotating disc without mass transfer
(4 = 0) and viscous dissipation (Br = 0) are given in Table 1 along with the results ob-
tained by LEE ef al. [6] and TiFFORD and CHU [16]. Similarly, the heat-transfer results
(Nu) are presented in Table 2 which also contains results obtained by CHA0 and GREIF [4],
CHAO [5], LEE et al. [6], and TieN and Tsuzi [17]. The skin-friction results are found

Table 2. Comparison of heat-transfer coefficient Nu for disc.

Pr 2 Present LEE et al. Tien and Crao and CHAO
analysis [6] Tsun [17] GRrEIF [4] [51
1 1 0.6578 0.6583 0.658 0.6113 0.659
1 4 0.5572 0.5577 0.557 0.432 0.548
10 1 1.5335 1.5354 1.535 1.518 —
10 4 1.3405 1.3410 1.340 1.297 —
1000
800 Pr=2.4,A=0,Br=0
———~  Theoretical results (19)
saor Present analysis
= Lee et al. (6)
400 Experimental data of Koong & Blackshear (18)
° Ug= 6.1 m/sec.
o 4.88 m/sec.
o 3.05 m/sec.
200r A 1.77 m/sec.
X 0.00 m/ sec.
3 100
z
[} 80k
@ |x
=] 60}
L0
20F
10 e 1 1 ] ] ]
01 02 0.4 06 0.8 1.0 2
2 -4
2R x10
v

FiG. 6. Comparison of heat-transfer for the rotating dis¢ with the experimental and theoretical results.
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to be in good agreement. The heat-transfer results are also in good agreement except
with those of CHAO and GREIF [4] (who used the quadratic velocity profiles in the anal-
ysis of the energy equation) for large 4 and small Pr. A significant improvement was
observed when the three-term velocity results were used [5]. This implies that as for the
rotating sphere, the accurate prediction of heat transfer (Nu) especially for large A and
small Pr requires more accurate velocity results in the energy equation. We have also com-
pared the heat-transfer results (Nu) with the experimental results given by KooNG and
BLACKSHEAR [18]. The comparison is shown in Fig. 6 which also contains theoretical re-
sults of SCHLICHTING and TRUCKENBRODT [19] and LEE et al. [6]. It can be observed
from the figure that the numerical results generally differ by about 10 per cent from the
experimental results except at some points. The results (Nu) of LeE et al. [6] have been
found to be in good agreement with our results. On comparing the results of SCHLICH-
TING and TRUCKENBRODT [19] with our results, we find that the results differ signifi-
cantly especially for large values of the rotational Reynolds number.

The effect of the rotation parameter (1) on the skin friction in the x-direction (F,) is
shown in Fig. 1. It is evident from the results that the point of separation (i.e. the point
of zero shearing stress) moves forward towards the equator (X = =/2) due to the centri-
fugal acceleration on the boundary layer which tends to push fluid towards the equator.
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FiG. 7. Variation of the skin-friction coefficients in the x and y directions with ¥ for the sphere.



NONSIMILAR LAMINAR INCOMPRESSIBLE BOUNDARY LAYER FLOW 157

This results in the increase of the adverse pressure gradient on the down-stream side of
the equator [20]. An empirical relation to determine of the point of separation for the
rotating sphere can be expressed as [20] (*)

(.1) Fuep = 1.853-0.22l0g;04, 4> 1.

We find that the point of separation predicted by the present method is in very good agree-
ment with that given by the relation (3.1). It is observed from Figs. 1-5 that in the
range 0 < X < X, F,, —s,, and g, increase as A increases. In general, g,, increases as Pr
increases. It is also observed that g, is strongly influenced by Pr (see Figs. 2,4-5).

The skin-friction coefficients in the x and y directions (Cy(Reg)'/?, — Cy(Rer)?) and
heat transfer coefficient (Nu(Re,)~*/2) for various values of 4 are given in Figs. 7-8

A=0,Br=0
Pr=0.72
30L ———— Pr=10.0

-1/2

g
(=}

Nu (RQL)

1.0

0

1
0 0.4 oA _ iz 16 2.0
x
F1G. 8. Variation of the heat-transfer coefficient with x for the sphere.

and in the range 0 < X < X, they increase as 1 increases. For a given 4, C;(Rep)'/?
and —C,(Re,)!/? are zero at X = 0 and they increase as ¥ increases till a certain value
X, beyond which they decrease as x increases. On the other hand, Nu(Re;)~!/2 has a finite
value at X = 0 and it continuously decreases as x increases.

The effect of mass transfer (4) on the skin friction and heat transfer (F,,, —s.,, gb)
is shown in Figs. 9-11. The results indicate that suction (4 > 0) or injection (4 < 0)
exerts a strong influence on the skin friction and heat transfer whatever the values of 4
may be. However, the effect is comparatively less pronounced when 2 is large. Further,
we find that for a given A, F,, —s,, and g, increase as suction (4 > 0) increases,

(") In [20] A is defined as A'/%,
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FiG. 9. Effect of mass transfer on the skin-friction parameter in the x direction for the sphere.
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Fic. 10. Effect of mass transfer on the skin-friction parameter in the y direction for the sphere.
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FiG. 11. Effect of mass transfer on the heat-transfer parameter for the sphere.

but the effect of injection (4 < 0) is just the reverse. Furthermore, for a given 4, injec-
tion (4 < 0) moves the point of separation towards the equator (¥ = =/2) whereas
suction (4 > 0) does the reverse.
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FiG. 12. Effect of viscous dissipation and Prandtl number on the heat-transfer parameter for the sphere
(A=0).
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Fic. 13. Effect of viscous dissipation and Prandtl number on the heat-transfer parameter for the sphere
(A=4).

A=0, Br=0
Xx=0
Xx=16
0 1 1 1 ]
0 1.0 2.0 3.0 4.0 5.0

L
FiG. 14. x-velocity component distributions for the sphere.
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The effect of the viscous dissipation (Br # 0) on the heat-transfer parameter g, is
shown in Figs. 12-13 which also contain the effect of the Prandtl number, Pr. The results
show that the parameters Br (Brinkmann number) and Pr strongly influence g,. When
Br < 0 (ie. T, > Tx), g continuously decreases as X increases, but when Br > 0 (i.e.
T, < T), g first increases as x increases and then begins to decrease with x. At a given
location X, g, increases as Br increases,

1.0

0.8

0.6

0.4
A=0,Br=0
0.2 X=0
———— X=16
0 1 T a 1
0 1.0 2.0 3.0 4.0 5.0

Fig. 15. y-velocity component distributions for the sphere.
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n
Fia. 16. Temperature distributions for the sphere (Br = 0; ¥ = 0. 1.6).
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FiG. 17. Temperature distributions for the sphere (Br = —1, 0, 1;X = 1).

The velocity and temperature profiles are shown in Figs. 14-17. For a given x (0 <
< X € X,), the velocity and temperature profiles (F, —s, g) become steeper when 4 increas-
es (Figs. 14-16). When X > X,, the effect of 4 on the profiles is just the opposite. This
behaviour is due to the fact that Fy, or —s,, or g, decreases as A increases when X > X,.
Similarly, for a given 4, the velocity and temperature profiles (F, —s, g) become less
steep as x increases. When Br < 0 and 4 > 0, the temperature profile g first decreases
to negative values and then tends to 1 asymptotically (see Fig. 17). This implies that
the temperature of the fluid near the wall is greater than that at the wall. Therefore, the
wall instead of being cooled will get heated. This effect becomes more pronounced as
the rotation parameter A increases. We also see from Fig. 14 that for 1 = 10, X = 1,
A = 0 and Br = 1 the profile g does not tend to 1 monotonically, but exceeds 1 at cer-
tain n and then decreases as 7 increases and finally tends to 1. This implies that the com-
bined effect of rotation and viscous dissipation tends to heat the fluid within the bound-
ary layer to such an extent that the temperature of the fluid within the boundary layer
is greater than the free-stream temperature. It may be remarked that no such effect is
observed when any one of the two parameters 4 or Br is equal to zero whatever the
values of other parameters may be.

4. Conclusions

The results indicate that the rotation and injection tend to move the point of separa-
tion of the flow towards the equator while suction does the reverse. Further, the rota-
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tion exerts a strong influence on the skin friction, but its effect on the heat transfer is
comparatively weak. On the other hand, the heat transfer is strongly dependent on the
viscous dissipation parameter and also on the Prandtl number. When the temperature
of the wall is greater than the temperature of the free stream, then beyond a certain
critical value of the dissipation parameter, the hot wall ceases to be cooled by the stream
of cooler air because the “heat cushion” provided by the friction heat prevents cooling.
The skin-friction results are found to be in good agreement with the existing results,
but the heat-transfer results are found to differ considerably from those of other pre-
diction methods for large values of the longitudinal distance. This implies that for the
accurate prediction of heat-transfer results, an exact method such as a finite-difference
method must be used. The results for the rotating disc case are found to be a particular
case of the sphere results and they are also in good agreement with the existing theoret-
ical and experimental results except those of Chao and Greif, especially for large val-
ues of the rotation parameter.
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