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Drag on a sphere oscillating in a dusty gas
A. INDRASENA and A. M. EL-CONSUL (TRIPOLI)

IN THE PRESENT paper rectilinear oscillation of a sphere in an infinite expanse of viscous, in-
compressible fluid having uniform distribution of solid spherical particles is studied. The prob-
lem is solved by the method of separation of variables and particular attention is focused
on the drag acting on the sphere due to fluid stresses. An exact formula for the drag is obtained
in terms of two parameters and graphs have been drawn to study the variation of these pa-
rameters.

Przeanalizowano zagadnienie kuli drgajgcej w nieskoriczonej objetosci lepkiego plynu niescisli-
wego zawierajacego rownomiernie rozloZone czasteczki kuliste. Problem rozwiazano za po-
mocq rozdzielenia zmiennych, zwracajac szczegblng uwage na sily oporu dzialajace na kule,
a wynikajace z naprezefi przenoszonych przez plyn. Scisly wzor na sile oporu zawiera dwa pa-
r_al.;mtry. a przedstawione wykresy pokazuja wplyw zmiennodci tych parametrow na wielkos¢
sity.

IlpoananusnpoBana sagaua KoneGmmolerocsa mapa B GeckoHeuHoM oObeme BA3KOH HeCKH-
MaeMoif JKHIIKOCTH, COMep)KaBIleif pPaBHOMEPHO pacTipeleneHHble chepHuecKHe YaACTHILI.
IlpoGnema pemieHa mpH NMOMOINH pasfeNicHHS NepeMeHHBIX, ofpamas ocobeHHOE BHHMaHHE
HA CHJIbI CONPOTHBJICHMs, NEHCTBYIONME HA INAp M BBITEKAIONHE H3 HANDXKEHHH HepeHo-
CHMBIX- Yepe3 JHAKoCcTh. TouHaa dopMysa JJiA CANLI CONPOTHBIICHHA COACPYHT ABA Napa-
MeTpa, a MNpe/CTaBIeHHble AHATPAMMBI MOKA3LIBAIOT BJIHAHME IEPEMEHHOCTH ITHX Ilapa-
METPOE HA BEeJIAYHMHY CHJIBI.

Nomenclature

velocity of fluid particles,

velocity of dust particles,

pressure,

density,

kinematic viscosity,

F, body force vector,

g acceleration due to gravity,

U, amplitude of oscillation of the sphere,
frequency of oscillation,

density ratio of particles to fluid (per unit volume),
particle relaxation time.
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1. Introduction

THE sTUDY of fluids having uniform distribution of solid spherical particles plays an im-
portant role in many technical areas such as fluidization, environmental pollution, com-
bustion, blood flow through capillaries, pneumatic conveyance of small grain-like parti-
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cles, flow in rocket tubes, etc. The basic theory of multi-phase flows is given in a recent
book by Soo0 [1]. The development of the subject can be seen in a number of papers [2-12].
Liu [3] has solved the Stokes problem. Later, HEALY and YANG [10] have found the
exact solution of the Rayleigh problem by the Laplace transform technique. MICHAEL
[11] has investigated some spherical flows by the perturbation method. Recently, INDRA-
SENA and ZArTY [12] have studied the rotary oscillation of a sphere in a dusty gas.

The present paper deals theoretically with an oscillating system which can be used
when the fluid is large with uniform distribution of dust particles. In this system a sphere
which is suspended in an infinite expanse of dusty, incompressible, viscous fluid, executes
rectilinear oscillations about its mean position. The problem is solved by the method of
separation of variables and analytical expressions for the components of fluid velocity
are obtained. An exact formula for the drag experienced by the sphere due to fluid stresses
is established in terms of the amptitude, frequency of oscillation and two parameters,
known as drag parameters. Graphs have been drawn to study the variation of these pa-
rameters with frequency of oscillation. It is observed that the presence of dust particles
increases the magnitude of the drag. The drag experienced by a sphere in clean viscous
liquid has been obtained as a particular case of the present investigation.

2. Basic equations

The equations of motion of unsteady flow of a viscous, incompressible fluid with uni-
form distribution of dust particles are given below [2]:

@.1) V@i =0,

e Gt @V = o vpr o Foviar Le-n),
2.3) r[—?;}-+(ﬁ- V)i;‘] =ii—B,

2.4 V-5 =0.

It is assumed that 1) the interaction between the phases take place according to the
Stokes drag law; 2) there is negligible particle interaction; 3) sedimentation is neglected;
4) there is no radial migration of the particles; 5) the volume occupied by the particulate
phase is constant and 6) Brownian motion is neglected.

3. Formulation of the boundary-value problem

We consider a sphere of radius a oscillating rectilinearly along the vertical diameter
6 = 0 with velocity U,cosot. If %:— is small, i.e. if the spatial amplitude of oscillation is

small compared with the radius, then the inertial terms in Egs. (2.2) and (2.3) can be ne-
glected. Elimination of ¥ between the resulting linearised equations yields

d\ du a\(1 1- 0 s
3.1 —_— = - e | | — e Rt 2
3.1 (l+f+1:a‘ 5 (1+ra‘)(eVp+eFl)+v(l+rat)V u.
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Choosing a spherical polar coordinate system (r, 0, ¢), taking ,, €, €, as the base
vectors of the system and assuming the motion to be symmetric about the vertical dia-
meter, the vector u# can be written as

(3.2) u= u,.(r, 0, f)é.-'l‘llg(r, 0, f)ég.
Using Eq. (3.2) Eq. (3.1) can be resolved into the following equations:
(3.3)

(1+f+r6)6u,.= ;(1+ gt p +v(1+t )(v=u, 24, 2cotf 2au,)

at| ot ar r? r? r2ae |’
(3.9)

AT 1 op Uy 2 du,
(l+f+t ) ot )( ) (l+r—)(V o r’sm*@ 2 a0

In view of Eq. (2.1), the components u,, u, can be expressed in terms of a function
yw(r,0,1) as

3-3) e _F‘-s%rl_za_g-vﬂ;’ “ = rsilnﬁ _?ri’

which simplify Egs. (3.3) and (3.4) respectively to

(3.6)

(1442 5) 5 i ) = (e ) (30 o) [
ot \r%sinf 06 ot ] Lr’sinf 90

(3.7

1 a\[1 ap’ 1 4
(1+f+r )6t (rsmﬂ ar)_ _E(1+ "aT)(? ) (H. 61)[?5136 ﬁr(viw)]’

where

o1& cotd 0
LT T 2 902 r: a0

and
p’ = p—grcosf+const.
Eliminating p' from Eq. (3.6) and (3.7), one finds that

(3.8) (1 o) o (Viy) = (1+r a,)(v,w)
Since the velocity of fluid at the surface of the sphere must be Uycosat parallel to the
direction of the oscillation of the sphere, the boundary conditions are
u,a,0,t) = Uye' - cosh,
(3.9 ks 9 63= Us .
ug(a, 6, f) = —er""slnﬂ.
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4. Solution of the problem

The form of the boundary conditions suggests that the function y can be assumed
as

4.1) v(r, 0,1) = F(r)- & - sin?6.
In Egs. (3.2), (3.9), (4.1) and in all subsequent equations only the real parts are to

be taken whenever physical quantities are represented by complex quantities.
Equation (3.8) on using Eq. (4.1) simplifies to

4.2 D}F(r)—n*D,F(r) =0
where
d? 2
Di=gm—
and

» _ 1o (1+f+7io)

v (1+7io)

The boundary conditions (4.1) in terms of function F become
2

43) F(a) = — U°2“ ., F(a) = —Usa.

The general solution of Eq. (4.2) subject to the condition that u, and u, vanish as r - oo,
is given by

(4.4 F@) = %-&-B(%-{'n)e‘

Using the boundary conditions (4.3), the constants 4 and B can be evaluated as
3 an

& A= —Ean" £ (1+na),
B = % Uott e
Integration of Egs. (3.6) and (3.7) yields
(4.6) p=—- Af:z cosf- e + Ce:h +const,

where C is an arbitrary constant.
From Egs. (3.2), (4.1), (4.4) and (4.5) it follows that

31 1 o
@7 ur,0, t)—Uo( )[ (ja L. S fli::)) -ner— =>}]coss-e ,

@0 = St 20 oo
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We can calculate the force which must be applied to the moving sphere to maintain
its oscillations. This is equal in magnitude to the drag D(t) due to fluid stresses and is
given by

(4.9) D(t) = [ (vorc0s8—7,4sinb),.27a%sind —db,
0

where

(Trr)raa = — l;:,:u (3+3na+n%a*)cosf - ',

(4.10)
3Uop (1+na)- sinf - e'*.

(Tra)rac -

Equat on (4.9), on using (4.10) leads to

D(t) = 2’3““ Uoa(9+9na+a*n?)e',

which on separation of the real part gives

(4.11) D(t) = M'aU,y(Ksinot—K'cosot),
where
_ 9 Inlsing 1 |n|?
(4.12) K= R sin2¢,
»__ 9 Olnjcos¢ [n|*
(4.13) K' = 2a%a TR cos2¢.
4dnap . y s
Where M’ = 31 the mass of fluid displaced by the sphere and |n|, ¢ and « are
defined by
o[ A+ +72 az]
1+ 1202 ’
Sk -1 —tan-1
(4.14) 2¢ = 3 % +tan l f tan~!7o,
o
a=—,
14

For convenience, the quantities K and K’ introduced in the expression (4.11) may be de-

signated as drag parameters.

®

5. Discussion

The two terms appearing in the expression (4.11) for D(r) can be interpreted as follows.
In the absence of fluid (he force necessary to move the sphere of mass M is — MU,osinat.
Expression (4.11) shows that, in addition, a further force — MU, oKsinot in phase with
the acceleration is required, because in the process of moving the sphere, fluid is neces-

5=
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sarily moved as well. The second term in the expression (4.11) is the force that always
opposes the movement of the sphere, and is thus a damping force out of phase with the
acceleration. This force causes the decay of the oscillations of the sphere if left free. It
is seen from Eq. (4.14) that for large values of 7o, the influence of the dust particles
on the fluid motion is reduced and D, K, K’ ultimately approach their corresponding
values for clean viscous fluid. Figures 1 and 2 represent the variation of K and K’ for

k

Clean viscous Fluid (T=0, F=0)

15 -

different frequencies of oscillation. These graphs show the decrease in the values of the
drag parameters with the increase of frequency. There is an increase in the values of these
parameters when compared to clean viscous fluid over the entire range of frequency con-
sidered. From Egs. (4.11)-(4.14) it follows that for any given frequency the drag expe-
rienced by the sphere due to dusty fluid is more than the drag due to clean viscous
fluid. This increase in drag is due to the presence of dust particles. If the masses of
the dust particles are small, their influence on the fluid motion is reduced and ultimate-
ly as m — 0 the fluid becomes ordinary viscous and the drag parameters simplify to

1
K = E‘(gﬁ'l'l)’

K = %(ﬁ+2),
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=V o

where

=005, F=02
Clean viscous Fluid (T=0, F=0)

15

N

8 1 1 1

FiG. 2.

The expression for drag, (4.11) with the above values of K, K’ is the same as the re-
sult given by LAMB [13]. The solution of the problem of steady motion of a sphere in
ordinary viscous fluid can be deduced as a particular case of the present investigation.
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