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Generalized Shapiro—Loginov formula and moment stability
of a string equation with random telegraphic parameter

Z. KOTULSKI (WARSZAWA)

IN THIS PAPER the results concerning the moments of stochastic linear differential
equations with the multiplicative parameter in the form of a stochastic telegraph process
(Shapiro-Loginov formula) are generalized to the case of Hilbert-space-valued evolution
equations. The obtained results are then applied to the investigation of the moment
stability of some string equation with stochastic parametric excitation. The results
obtained for exact and modal approaches are compared showing the possibility of the
simplified analysis as well as differences. Additionally, the system with the appropriate
white-noise excitation is considered, and, with the aid of an “equivalent” white-noise
procisj the conditions of an approximation of the telegraphic stochastic process are
studied.

W pracy uogélniono wyniki dotyczace momentdéw rozwigzania liniowego stochastycz-
nego rownania rézniczkowego z multiplikatywnym parametrem w postaci stochastycz-
nego procesu telegraficznego (wzor Szapiro-Loginowa), na przypadek rownania ewolu-
cyjnego o wartoSciach w przestrzeni Hilberta. Uzyskane rezultaty zastosowano nastep-
nie do badania momentowej stabilnosci rOwnania struny ze szczegdlnym stochastycz-
nym wymuszeniem parametrycznym. Porownujac wyniki otrzymane przy zastosowaniu
metody nieskonczenie-wymiarowej i w przyblizeniv modalnym, pokazano mozliwosé
uproszczonej analizy zagadnienia i roznice w wynikach. Ponadto rozwazono ukiad
z odpowiednim (,réwnowaznym”) wymuszeniem bialoszumowym i zbadano mozliwosé
aproksymacji procesu telegraficznego bialym szumem.

B pabore 00006lueHBl Pe3y;IbTAThI, KACAIOLIMECS MOMEHTOB DELICHHS JIMHEHHOrO
croxacTuyeckoro quddepeHunanbHOro YpaBHEHAs ¢ MyJIbT HIUIMKAT HBHBIM [IAPAMET -
pom B BHAE croxacTuyeckoro teaerpadroro mpouecca (popmyna Mamupo-Jlorano-
B4), HA C/Iy4Yail JBOIOLMOHHOIO YPaBHEHHS CO 3HAYEHHSIMH B IHibOEPTOBOM mpo-
crpancTBe. ITo/1y4eHHbIe Pe3yIbT AT bl PHMEHEHK! 3aTeM UL HCC/EI0BAHAS MOMEHT -
HOIf CTaBUNBHOCT M YPABHEHASN CTPYHLI C OCOGEHHEIM CT OXaCT HYECKHM TAPaMeT PHYec-
KHAM BhIHYXAcHEeM. CpaBHHBAS Pe3ybTaT bl, NOJIYYEHHbIE TPH MPUMEHEHHH OECKOHe-
HOPa3MEPHOr0 METOJa M B MOJAJILHOM NpPHOIHXEHHH, NOKAa3aHA BO3IMOXHOCTb
YNPOLIEHHOTO aHATA3a Npo6ieMBl H YKa3aHHl pa3HHLK! B peayasTaTax. Kpome atoro
PACCMOT PEHA CHCT EMa C COOT BETCT BYIOLIHM (,,9KBHBAJIEHT HRIM™") BRIHYX/IEHHEM T HMA
6e10ro 1myMa M HCCIeA0BAHA BO3MOXHOCT b AMNPOKCHMAIHH TelerpadHoro npouecca
GennM 1IyMOM.

1. Introduction

AMONG seVERAL definitions of stochastic stability (cf. [S, 13]), the concept of
moment stability is very intuitive. We say that a solution of a stochastic
equation is stable in the sense of k-th mean if its k-th moment is stable.
There are some cases where the moment stability of an equation is relat:vely
easy for investigation. We have to do with such a situation when exact equa-
tions for the moments of the solution can be obtained. In the class of linear
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stochastic differential equations with a multiplicative stochastic coefTicient
(parametric excitation), the example could be the stochastic Langevin equa-
tions (see [14]). For this kind of equations the moment equations have been
derived in the literature. In papers [1] the ordinary differential equations with
white-noise coefficients have been treated. CHow in papers [3, 4] has dealt with
a partial differential equations of the parabolic type with a function-valued
white-noise. Finally, in papers [9, 10] the moment equations for general
evolution equations with a Hilbert-space — valued white-noise have been
derived. Such equations include, as particular cases, both ordinary and partial
differential equations.

Another example of the stochastic linear differential equation, for which
the exact moment equations can be written in closed form, is the one
where the multiplicative parameter has the form of a stochastic telegraph
process (cf. [7]). For this example the moment equations have been derived
in [12] and [11] for the ordinary and the partial differential equations,
respectively.

In this paper we generalize the results concerning the moments of the
stochastic equations with the multiplicative telegraphic parameter to the case
of Hilbert-space-valued evolution equations. Then we consider the example of
a string equation and investigate the mean and mean-square stability of its
solution using both exact partial differential equations for the moments of its
modes. The obtained results are then compared. Finally, we introduce the
moment equations for the string with the “equivalent” white-noise process
instead of the telegraph one in order to find corresponding stability conditions.
(The literature concerning the stability of stochastic equations with discrete
parametric excitations is cited in Ref. [11]).

2. Generalized Shapiro-Loginov formula

Consider the stochastic evolution equation of the form

% = L U(ty) + P(ty)BU(t,y), te(0,T), ver,

@1) UOy) = U,eX,
where (I',#,%) is a complete probabilistic space, I' is the set of elementary
events, & is the g-algebra of its measurable subsets and 2 is the prob-
abilistic measure, U(t) is an X-valued stochastic process, X is a separable,
real Hilbert space, &/ and £ are linear, possibly unbounded operators
(generators of strongly continuous semigroups of linear operators) acting
from 2(A)ND(B) <X into X, and P(t,y) is a stochastic telegraph process
defined as (cf. [7]):
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(22) P(tv‘)’) = a(— I)N(t'ﬂv P(O’Y) =a, Pz(t”) = az’

where a is a constant and N(t;y) is a homogeneous Poisson process with
intensity v. This means that the process P(t,y) takes the values a or -a, jumping
between the states at random instants of time constituting a Poissonian point
process.

The mean value and the covariance of P(t,y) are

(2.3) <Pty> =4 g7, <P(t;))P(t,7)> = a’e” "I 74,
and the higher order moments satisfy the following recurrent relations:

24)  mty,ty) = <P(tyy)--Pltyy)>

= <P(t;,;y)P(ty,7)>mu_s(ts,....t,), ty>t>..>t,>0.

(<-> denotes the mathematical expectation of a random variable).

Let R,[P(r)] be some H-valued functional depending on the values of P(t)
for t<t. (H is a real separable Hilbert space). The functional R,[ P] can be
represented in the form of the following functional Taylor series:

t

(2.5) R[P] =R[0] + Z jdt1 j’dt K™(t,,..t,) P(t,)..P(t,),

where K"(t,,...t,) arc H-valued deterministic functions of n arguments t,,....t,
from the interval (0,f) and one real positive parameter ¢, defined as

0"R,[P]
SP(t,)..0P(t,)
where d/[dP(t)] is the Volterra variational derivative.

Since K™ is a symmetric function of all its arguments, the formula (2.5) can
be written as

(2.6) K"t,,..t) =

(27) RJ[P]=R,[0]+ Z jdtljdtz j’ dt K™(¢,,.t) P(t,)-.P(t,).

n=10

Consider the product of P(f) and R,[P]. We have

28)  <P(OR[P]> = <P()R[0]>

+ iidtljdtz j dt, KM (ty,ent,) <P(O)P(t,)..P(t,)>.

n=1
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Differentiating Eq. (2.7) with respect to t, multiplying by P(t) and taking
expectation, we have

29 <P(t) d% R[P]> = <P(t) % R[0] >

th—1

- i :[dtl_fdtz j dt, L] KS"’(tl,...,t,,) <P(t)P(t,)..P(t,)>

n=1

th—1

w t
+ Y [dt _[dt3 j dt, K (t,t,,..t,) <PX)P(t,)..P(t,)>.
n=20

Differentiating Eq. (2.8), we have (since R,[0] is deterministic)

(2.10)

g <P(t) R[P]>= it

d
dt <P()> R[0] + <P(®)>  R[0]

th—1

+ i;dtltfldtz j dt c KP(tyuit) <POP(t)..P(t)>
0 0

-

t2 th—

+ i [de, [ dty... [ dt, K™ (t,t,,...t,) < PHOP(t,)..P(t,)>
n=20 0 0
w t ty th—1 d
+ ¥ [dt, [dt,... [ dt, K& (ty,..t,) 1 <POP()-P(t,)>
n=10 0

= <P(H) d—[ R[P]> + ;t<P(r)> R[0]

131

w t th—1
Z (dt, [ dt,... | dt, K™(t,,..t,) L <P()P(t,)..P(t,)>,
=10 0 0 dt

where in the second part of Eq. (2.10) the formula (2.9) has been used.
Using now the property (2.4) of the moments of the telegraphic process P(r)

and the following two equations satisfied by the mean and the covariance
(deduced from Eq. (2.3))

d
o <P(ty)> = —2v< P(t,y)>

< P(t;y) P(ty,y)> = —2v < P(t,y) P(t,,y)>,

2.11)

we finally arrive at the folloving Shapiro—Loginov formula (see [12] for its
original real-valued version):
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(2.12) }t < P(ty) R,[P]> = < P(ty) jt R,[P]> —2v < P(ty) R,[P] >.

The derivation of the equation for the mean value of the solution to Eq.
(2.1) runs in two steps. First, taking the expectation of Eq. (2.1), we obtain
the equation for two unknown functions <U(t,y)> and <P(ty)U(ty)>.
Next, using the Shapiro-Loginov formula (2.12) for R,[P]=U(t) and the
governing equation (2.1), we obtain the equation for <P(t,y)U(ty)> (the
property (2.2): P?(t;y) = a* closes the hierarchy of the equations). The result
is the following:

(2.13) }I <U(ty)> =L <U(ty)> + B < P(t,y)U(ty)>,

i < P(ty)U(ty)> = o <P(ty)U(ty)> —2v< P(ty)U(ty)>

+ a’B<U(ty)>,
with the initial conditions
<U>(0) =U,, <PU>(0) = aU,.

Analogously, differentiating the tensor product of the functions U(t,y) and
substituting R,[P] = U(z,y)f;._..@, Ulty), | =23,., we arrive at the following
times
cquations for the moments of any order of the solution to Eq. (2.1):

d A
G Ti= LT+ LA
=1 i=1

(2.14)
d ko, E
L= 2 AT +ar ), BT — 27,
i=1 =1

and corresponding initial conditions

I0)=U, @..0 Us,

I times

ry0) =al, e..e Uy,

| times

where the moments are defined as

r(=<Uity) e..e Ulty) >,

{ times
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Ti) = <Pen)Uy) o 0 UlL)>,

and the used operators &' and #' are acting on the simple tensors of the form
I', = ‘)’19 e @)’;
in the following way:

AT, =78..047,8..8Y,
BT, =v,8..0%7,8...87,

3. The string equation

As an illustrative application of the obtained moment equations we will
deal with the problem of the moment stability of a dynamical system. Consider
the equation of vibrations of a string in a medium with the viscosity fluctuating
according to the telegraph process

0%u 0%u

ou
F = Cﬁ —_ p(t,')’)a, tE(O,T], XG[O,L],

with the following initial and boundary conditions:
u(0,x) = uy(x),

0
(3.2 5 02 = ool

u(t,0) = u(t,[) = 0,

where Lis the length of the string and p(t,y) is the stochastic process of the
following form:

(3.3) pty) = b[1 —ag(— Y], 0<ap <1,

and N(ty) is the Poisson point process with intensity v.
Substituting the velocity v = d,/0, into Eqgs. (3.1), we arrive at the system of
two evolutionary differential equations of the form

o _
ot
dv 0%u
ot Cox?

v,
(3.4)
— bv + P(t,y)v,
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where
(3.9) P(t,y) = a(— 1YV

is the telegraphic stochastic process defined in Eq. (2.2), a = ba,, c and b are
arbitrary positive constants.

The system of evolution equations (3.4) written in the abstract form is as
follows:

duf(,
LD — sUey) + PENBUC),
(3-6)
U(O,y) = Uy,
where
0o, 1 0,0
oA = o2 , B =
o , =
dx2 0,1

In the above problem the Hilbert space where the operators of and & are
acting is X = H}(0,L) x [*(0,L). Here H(0,L) is the Sobolev space of square
integrable functions possessing square-integrable derivatives, with the support
contained within the interval (0,L), and I*(0,L) is the space of square-integrable
functions on the same interval.

In order to apply our generalized moment equations (2.14) to the derivation
of equations for the mean value and the covariance of the solution of Eq. (3.1),
we introduce the following denotations for the required moments:

M= <u>, I'!=<v>, I'’=<pu>, TI*=<pv>,
and
''= <uu>, I'?=<u>, I'=<wu>, TI*?=<w>,
rovt = <puu>, TI°'%= <puw>, TI°'= <pou>, TI%?= <pw>.
The obtained equations for the mean value are
8. = I,
0,I'* = cd*>I'* — bI'2 + I#,
8, = —2vI® + I*,
8,r* = cd*’I* — v+ b)r* + a*r?,

3.7)
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with the following initial conditions:
r'o)=u, TI*0)=v, I 0)=au, I'*%0)=av,,

where

The equations for the second order moments are the following:

AT = PIZ . PR,

8,I'% = co3r** —bI'2 + r*2 + r°,

% = edf ¥t — Br*d 4-T% ¢ I3,

8,1 = cdr'? + co3Ir?! — 2bI*? + 2°%,
6'1-!011 — roxz + r021 — 2vr011’
8,I°'? = co3 I — v+ b)I°'2 + I°?? 4 a®I'?,
9,1 = cdir°t! — (2v+ b)ro2! 4+ r°2* + a>r2t,
8,I°%% = ¢d3I®'2 + o3I — 2(v + b)Ir°* + 24°r?,

(3.8)

def 0 det O
A a =E 9
2 Bxy

along with the deterministic initial conditions

r'Y0) = ulxu(xy), r'0) = uxy)v(xy),
r?(0) = v(x,)u(x,), r?%0) = v(x,)v(x,),
re'0) = au(x,)u(x,),  I'°**0) = au(x,)v(x,),
re2y0) = av(x,)u(x,),  I'°?%0) = av(x,)v(x,).

Equations (3.7) and (3.8) can be easily used for the investigation of the mean
and the mean-square stability of the solution of the string equation (3.1). In the
considered example the moment stability is the (Lyapunov) stability of the
deterministic systems of partial differential equations (3.7) and (3.8). As
appropriate Lyapunov functionals we use the squared norm in, respectively,
the spaces X xX and (X x X)e(X x X) for the mean and the mean-stability.
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Such functionals are very natural; they guarantee that energy carried by our
dynamical system (the string) remains bounded.

At the beginning consider Eq. (3.7) for the mean value. In this case the
Lyapunov functional is defined as

(3.9) V=||Iy||> = f[c@I")* + (I'*)? + o(aI'3)? + (I'*)*] dx.
Differentiating the functional V along the trajectories of Eq. (3.7), we obtain

(3.10)  V =[[2cdr'ar* + 2r*r* + 2car3ars + 2r*r+]dx
= [[2cor'ar? + 2Irxcoé®r* — br* + r*) 4 2cér*ar*— 2vr?)
+ 2I'*(cd*r® — (v + b)I'* + a*I'*] dx
= [[—4v(ar3? + 2(1 4 a®)[2r* — 2b(r'*)? — 2(2v + bYI'*)?] dx.

From Eq. (3.10) we have that the solution of Eq. (3.7) is stable if the matrix

. 2, —(14a?
_[—(1+a2), 2(2v+b)]

is positive definite. Therefore the condition of the mean stability of the solution
of Eq. (3.1) is

(3.11) 4b(2v+b) > (1 +a?)?,
or, after substituting the definition of a from Eq. (3.5),
(3.12) 4b(2v+b) > (1 +b%al)%.

To investigate the stability of Eq. (3.8), we choose as the Lyapunov
functional the following expression:

(3.13) V= [[[c}2,0,T*")? + (8, I*?? + ¢(8,I'*") + (I'*?)?
+ 62(61521-011)2 + C(alrou)z e c(al[-ou)z + (FOZZ)Z]dxldxz'
Differentiating Eq. (3.13) along trajectories of the equation, we have
(3.14) V' =2{[[c?,0,I'**d,0,I** + ¢cd,I'*28,I*? 4 ¢d,I'**d,I*!

+ 222z czalazroualazfou + c511‘°1261f"°12 + 651F°2151f‘°“
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(3.14) + 0221022 dx dx, = 2 [ [ —be(0, 27 + ¢8,I'*28,I°12
[cont]

_bc(azrn)z + CaZIvZIaerZl — Zb(FZZ)Z o 2[‘221—1022

— 2vc%(8,0,I°')? — 2v+b)c(8,I°*%)? + a%cd, %9, 112

+a2cd,I'*19,I%%t — 2(v+bYI'°22)? 4 2a2I°22 %2 — (2y+ b)c(9,1°21)? ] dx  dx,.

The mean-square stability of Eq. (3.1) is guaranteed if the matrices constituting
in Eq. (3.14) the quadratic forms with respect to the moments and the spatial
derivatives of the moments, respectively, are negative definite.

The appropriate matrices of the quadratic forms are

A [ —2b, (L+a?)
la+ad), —2(v+b):|'
— —2bc 0 o1 +a?) 0
. 0 —2bc 0 c(1+a?)
Tl dl+a®) 0 —2Q2v+b) 0
[ 0 1+a? 0 —2(2v+b)c

The nontrivial inequalities obtained as the conditions of the stability are: from
matrix A:

4b(v+b) > (1+a%)?,
and, from matrix B:
4b(2v+b) > (1+a?)>.

Finally, since we consider only positive values of the parameters, the
condition of mean-square stability is

(3.16) 4b(v+b) > (1+a?)?,
or, with the use of Eq. (3.5)
(3.17) 4b(v+b) > (1+aZb?)?>.
In this section we have used moment equations for studying the stability of

the solution to the partial differential equation. In practical problems of
mechanics the evolution of systems is very often investigated using the modal
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approach. Such a treatment leads from partial to ordinary differential
equations and, usually in stability problems, yields conditions easier to derive.
The considered case, which is relatively simple in analysis, gives us the
opportunity to compare the results obtained using both methods. The
following section is devoted to the modal treatment of our string equation.

4. String equation. Modal approach

Assume that the solution of the system (3.4) can be expanded into the series
of the form

utx)= Y y,(0) sin T,
n=1 L

@®

tx)= ¥ z,(f) sin %

n=1

4.1)

Substituting Eq. (4.1) into Eq. (3.4) results in the sequence of equations of
motion for all the modes

dya(t)
——dt—— = Zn(t)’
42) dz (t) n*n’c
) _ T 0 ba) + p02,0),

n=12,.., and the initial conditions

. hmx
.Yn(o) = juo(x) sin T dx = ynOi

z,(0) = Jvy(x) sin % dx = z,9.

The systems of ordinary differential equations (4.2) written down in abstract
form (2.1) are the following:

Y, =o,Y, + p)%Y,,

d
@3) dt
' Y,

0)=Yo n=123,.,

where o/, n=1,2,.. and # are the following matrices:
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0, 1 0,0
44 pi xSl PORY |
I
and

=l el

To study the approximate conditions of the moment stability of the
solution of Eq. (3.1), we consider the moments of the modes. Equations for the
mean values of the solutions to Eq. (4.3) (also possible to obtain with the use of

Eq. (2.7)) are

<P> = <z,>,

2n2ec
<Z,>=—b<z,> — T <>t <pn>,
4.5)
<py,> = —2v<py,> + <pz,>,
2152
<pi,> = —b<pz,> T <> - 2v<pz,> +a’<z,>,
with the initial conditions
<Y»>(0) = Yo, <z,>(0) = z40,

<py>0)=ay,o,  <pz,>(0) = azy,
where the angle bracket denotes the mathematical expectation of a random
variable. The characteristic polynomial of the matrix U of the system
4.5) is
(4.6) Det(U — A1) = A* + a34% + a34% + a}Ad + af,

where

4.7)

2.2
a} = (2v +b) (2vb + 2”;; C) — 2a?,
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4.17) n’n’c

- ab=2v(2v+b) + 4v+b)b + 2 2 &

_a'

ay = 2(2v+b).

Applying the Routh-Hurvitz criterion (cf. [2]) to Egs. (4.5), we have that
for n = 1,2,... their solutions are stable if simultaneously three conditions are
satisfied:

@48)  a1>0, W% =adla}—aja}>0, W4 =W3a}— (a})?>0.

Hence we say that the solution of our string equation is stable in the mean (in
k-th approximation) if the equations for the mean values of modes (4.5) are
stable for n=1,2,.. k. This means in fact that the approximated solution
of Eq. (3.1) (the truncated series (4.1)) is stable in the mean.

To investigate mean-square stability, we should consider the mutual
moments of the solutions of Eq. (4.2) for arbitrary fixed n and m (the pairs
(mm)n=1,2,...k, m=1,2,.., k), because the second moment of the truncated
series (4.1) contains the terms <y,y.>, <VpZm>, <Z,2,>, nm=1,2, k.
The adequate moment equations are

<YV = <VpZm> + <Z,¥n>,

m?n?c
<Y 2> = — 2] <Y Im> = b<Y 20> + <2,2,> + <PYpZm> .
nn?c
<Lz Y>> = — i <Y V> —b<z,y,> + <2,2,> + <pz,y,>,
nn?c m?n?c
<zn-zm> =l = Lz <YpZp> _T <ZpYm> — 2b<znzm>
+ 2<pz,z,,>,
49) P
<PYp'Ym> = — 220<PY V> + <PYpZp> + <PZ,¥p>,
m*n?
<Py > =02 <Y,2,> — e <PV > — Qv+ b)<py,z,>
+ <pz,z,>,
2.2
5 n’n
<Py Ym> =0 <ZYp> = 7 <PYa¥m> —(2v+b)<pz,yn>
+ <pz,z,>,
5 n’n’c minic
<Pz,2y> =20°<2,2,> — B <PYpZm> — ) < P2y Y>>

—2v+ b)<pz,z,>.
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Applying the Routh—Hurvitz criterion of stability of the system of equations
(4.9) for all pairs (n,m) such that njm <k, we obtain the analytical conditions on
the parameters of Eq. (3.1) which guarantee the stability of its solution. Of
course, they are too involved to express them in an explicit form. The results
will be presented graphically in Sect. 5 for some fixed parameters. The
characteristic polynomial of the matrix of the system (4.9), the coeflicients of
which are required in the Routh-Hurvitz criterion, is given in the Appendix.

5. Numerical example

Consider the string equation (3.1) with the initial condition (3.2) and
telegraph parametric excitation (3.3) and the corresponding moment equations
with the following parameters fixed: ¢ =1.0, L=1.0, a, =0.1. For such
constants the areas of mean and mean-square stability for the exact criterion
introduced in Sect. 3 are shown in the b-v-system of coordinates (Fig.1).

o5
b

IIIIIIITIII’]I[IIII

Mean sguare stability regron
— |

N stabitity 17 e
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03 - :
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T T 17T

- ‘-x‘
o2f
01} ]
L ]
- -
C 1 1 1 1 1 1 1 1 1 [} | | | 1 1 1 1 1 1
0 a1 az 03 04 a5

v

FiG. 1 Infinite-dimensional criterion of the mean and mean-square stability; L= 1,c = 1,a, = 0.1.

It is seen that the region of mean-square stability is contained within the region
of the mean one. The dependence of the stability conditions on a, is relatively
simple (see the inequalities (3.12) and (3.17)). For b = 0 the string is always
unstable. The conditions of stability are independent of L and c.

In the case of the modal approach introduced in Sect. 4 the situation is
much more complicated. The conditions of stability depend on the parameters
of the string equation ¢, L, a, and on the rang of approximation in a very
involved way.

Consider again our numerical example. Substituting the given values L= 1
and c¢=1, we have the mean stability of equations for cach mode for all a,, b
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and v (except of b=v=0). The modal equations loose the stability if b is
sufficiently small and c/I? tends to zero (c is small and L is big). We conclude
that in the case of stability in the mean the modal approach and the exact
criterion give quite different results.

When mean-square stability is considered, we have a more interesting
situation. In Fig. 2 the regions of the mean-square stability of the vibrating
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FIG. 2. Regions of mean-square stability for 1, 2, 5, 10, 15, 20, 25 modes; L=1, ¢ =1, a,=0.1.

string for n = 1,2,5,10,15,20,25 modes are shown. Taking into account only
the first mode gives a result far from the one obtained in the infinite-di-
mensional method (see Fig. 1). It is seen that for n tending to 20 the bounds
of the stability regions concentrate near the curve obtained with the use of the
infinite-dimensional criterion; next they diverge and give the stability regions in
the b-v-system of coordinates more restrictive than in the exact case. As
a conclusion we can say that the first mode approximation gives in our
example some information about the instability of the string, but it may
happen that taking too many modes we loose information about instability
and do not gain certainty about stability.

Let us remark that our conclusion differs from the classical results of
Lyapunov stability of the string with deterministic parameters, where the
positivity of the damping coefficient b is the condition of the asymptotic
stability. In the considered approach the solution not only tends to zero (with
its temporal derivative), but also makes the {luctuating parameter P(t,y) (the
mixed moments) tend to zero. The obtained conditions guarantee that
a numerical procedure for solving the exact set of the moment equations
converge for the long period of time.
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6. Relation to white-noise coefficient

As it is seen from Eq. (2.3), the correlation time of the random telegraph
process is 1/2v and it tends to zero as the intensity v in the Poisson stream of
pulses tends to infinity. Therefore we can say that the process P(t,y) tends to
a white-noise when v—co but a?/v remains bounded, and, what follows, for
very large v the telegraph process could be approximated by a white-noise one
with the “equivalent” intensity I = a?/v (cf. [6]).

Let us assume that the process P(t,y) in Egs. (3.4) is replaced by
a white-noise with intensity I = a%/v. The equations for the two lowest
order moments of the solution of such a modified equation are (cf. [8]) the
following:

8t =r2,
(6.1) '
8I*=cd'I' —bI* +31T?,
and
arll = F1z s FZI
t ?
1
0I'?=cdyr' —bI'* +I* +JIT'?,
(6.2)

1
0% = c0}I"! —bI* + I + S I T,
8,I** = cdI*? + ca2I*' — 2bI'*2 + 21T,

(The denotations in Eqgs. (6.1) and (6.2) are the same as in Egs. (3.7)
and (3.8)).

The stability conditions obtained from Egs. (6.1) and (6.2) (in a way
analogous to that in Sect 3) for the mean and the mean-square are, res-

pectively,

(6.3) %<%
and

2
(6.4) 4 <b,

v

what, with the use of Eq. (3.5), gives
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6.5) a2 < 2v
and
(6.6) az <v.

Using the modal approach we obtain the following equations for the
moments (see the series (4.1)) (cf. [1]):

S fte = Lz b,

6.7 2 5
: nen 1
<z,> = —b<Zn> —T <y,> + §I<Z">,
and
<yn.ym> = <yllzm> + <Znym>’
m*n2c
<Y Zy> = — 7 <Yu¥m> —b<yz2,> + <z,2,,>
1
+§I<y,,z,,,>,
(63) ey
Ly P> = — 7 <Yu¥n> — b2, y0> + <2,2,>
1
+51<Znym>,
n*n?c 2n2c
<Z,02,> = — T <WEe> T T <Zm> —-2b<z,z,>

+21<pz,z,>.

As it is seen, the condition of stability of Egs. (6.7) for n=1,2,... is

1
(6.9) b—3I>0,
or

2
(6.10) “V <2b,

and it is independent of n.
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From the inequalities (6.3) and (6.10) we have that the exact and
approximated conditions of mean stability in the case of the white-noise
process in the parameter are equivalent.

The condition of mean-square stability in the case of the modal approach
is much more involved. From the Routh—Hurvitz criterion we have that the
system of equations (6.8) is stable if simultaneously W,, W,, W, and W, are
positive, where these quantities in terms of the parameters of the “equivalent”

. . , n*r’c , mPrlc
white-noise are [ c* = =, & = =
n I m L

iz
Wy = (¢ —c2)* + (¢ + c2)(agh® — 3a2vb + 2V?) e

3
W, = (¢ +c2)(4v —3a2h) %—}- (—a3b® + Sagvb* —8a2v?h + 4v%) %,

W, = (4v—3a2b)(c* + 66;(}: + c";) %

b3
+ (2 +¢2)(— 19a%h® + 88a*vb? — 132a2v%b + 6419) .

5
+ (—'9a30b5 + 73agvb" = 232agv2b3 £ 360a‘;v3 p2 — 272agv4b + 80v5) %,

b2
W, =4c2c2(9agh® —24avb + 16v%) "

b‘l-
+(c? 4 c2)(45a3b* — 264aSvb’ + 572a3v?b* — 544a2v*b 4 192v7) e

+(25a;2b° —235a°vb* + 906av b* — 1832a%v*b> + 2048 av* b?
b6
— 1200a2°b + 288 .

For the parameters taken in the numerical example (¢, = 0.1, L=1,¢ = 1),
we always have the mean-square stability of each mode except b=0
and v=0. This fact shows that approximation of the telegraph process
with white noise requires great caution. It may happen that the result
of such a substitution gives some unexpected result — like here the
stability of the originally unstable system. This means in fact that even
if the telegraph process in the limit case gives white noise, its nonlinear
transformation (generated by the string equation) might not converge to the
analogous nonlinear transformation of white-noise. Therefore such an ap-
proximation could be performed only within the general problem where it is
used.
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Appendix

The characteristic polynomial of the matrix of the system of Egs. (4.9) is
Det(U — AId) = 2* + a,4” + agd® + asA® + a,2* + a3A° + a,A* + a; 4 + a,,
where its coefficients are (c: = n"LLzzc 2 = m—z;i)
a,=8v+b),
ag=24v? 4+ 26b> + 56vb + 4(c? + c2) — 6a?,
as=32v® + 144v%b + 156vb* + 44b° + 24(v + b)(c? + c2) — 4a*(9v + Tb),
a,=9a* —2a*(36v> + 70vbh +25b* + 4(c? + c2)) + 2(c? — 2)*
+4(c2 +¢2) + (e + ¢2)(56v> + 120vb + 56b?)
+ 16v* + 160v3b + 332v?b* + 220vb> + 41b*,
ay = a*(36 + 20b) — a2(32( + B)(c? + c2) -+ (48 + 224v%b + 200vb?
+406%) + (24(c* + ¢) + 16¢22) (v + B) + (¢2 + ¢2)(64(v° + b?)
+ 224vb(v + b)) + 64v*b + 288v3 b3 + 368v2b> + 164vb* + 20b3,
a,= —4a® + a4(4(c: + c:') + 36v% + 60vb + 12b%) — az(—2(c: + c.‘:)
+36¢2c2 + (¢ + ¢2)(56v* + 96vb + 40b%) + 112v°h + 232v?b?
+ 120vb> + 12b%) + 4((:":i + ci — c:ci — C:C:.) + (c: + c";)(40v2
+72vb + 34b%) + c2c?(— 16v* + 48vb + 28b%) + (c? + c2)(32v*
+ 192v3b 4+ 320v2h? 4 192vb* 4 36b*) + 80v*b? + 224v3b3
+ 196v2b* + 60vb*® + 4b°,
a; = —8a®v +a*(8(c2 + c2)(v + b) + 40vb + 24vb?) — a*(#c? + c})(b —v)
+c2c2(72v + 56b) + (c? + 2 )(48v* + 112v?b + 80vb* + 16b%)
+64v3b + 80v?b* + 24vb*) + 8(c® + 8 — ctcZ — c2ct) (v + b)
+ (c: + (:":)(32v3 + 80v2b + 68vb? + 20b%) + cfc:l(— 64v3 —32v%b
+ 56vb? + 24b%) + (2 + c2)(64v*b + 192v*b* + 192v?h* + T2vb*
+ 8h%) + 32v*b3 + 64v3b* + 40v2b° + 8vbS,
ag=a*(d(c? +c2)? +(c + c2)(16v* + 8vb)) — a*(4(—c’ — e+ e
+c2et) +(ch +c)(—16v2 + 4vb + 8b%) + c2c2(32v? + 56vb + 16b%)
+(c2 + c2)(48v%b + 56v2b* + 16vb?)) + (c® + ¢ + 6cic — 4cSc2 —4c2c?)
-+ (cﬁ + ci - c:c:l - cfc:)(sz + 8vb + 4b%) + (c: + c:)(16v4 +32v3b
+36v2h? + 20vb> + 4b%) — c2c2(32v* + 64v°h + 8v?h? — 24vb> — 8b%)
+ (€2 4 c2)(32v*b* + 64v°b> 4 40v*b* + 8vb®).
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