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Macro-homogeneous strain fields 
with arbitrary local inhomogeneity 

M. ARMINJON (GRENOBLE) 

FIRST, HILL'S analysis of the macro-homogeneity of the stress and strain fields in an 
inhomogeneous continuum is reviewed and extended. It is examined which precise 
requirements must be satisfied by the fluctuating part of the displacement field. The 
macro-homogeneity conditions are extended to aggregates with spatial correlations. 
Then, a general construction of macro-homogeneous strain fields is proposed in 
a general aggregate, which enables accounting for unrestricted local inhomogeneity: 
arbitrary volume averages of the strain field may be imposed uniformly inside the 
constituents, provided their distribution has one well-defined volume and linear 
macro-average. This throws some new light on the classical "compatibility problem", 
which the models for deformed aggregates have to deal with. Whereas this problem is 
shown to have no solution when piecewise uniform fields are considered, it thus has 
always one in the sense of the local volume average. However, the obtained strain fields 
fluctuate with an unknown amplitude, increasing with inhomogeneity of the imposed 
strain distribution.It is concluded that the models for deformed aggregates should be 
interpreted in a statistical sense. 

Na wst~ie om6wiono i rozszerzono uzyskane przez Hilla wyniki dotyczflce analizy 
makrojednorodnosci p61 napr~zen i odksztalcen w osrodku niejednorodnym. Usta­
lono 8cisle warunki jakie spelniac musz~ podlegaj~ce fluktuacjom skladowe pola 
przemieszczenia. Warunki makrojednorodnosci rozszerzono na przypadek agregat6w 
o korelacjach przestrzennych. Zaproponowano nas~pnie og6lne zasady konstruk­
cji makrojednorodnych p61 odksztalcen w agregatach, pozwalaj~e wzgl~nic nie­
jednorodnosc lokaln~. Rozwarzania te rzucaj~ nowe swiatlo na klasyczny problem 
, warunk6w nierozdzielno8ci", kt6re spelnic mus~ modele odksztalconego agregatu. 
Stwierdzono, ie problem ten jest nierozwi~alny w przypadku pol odcinkami jedno­
rodnych, rna jednak zawsze rozwi~anie w sensie lokalnych srednich obj~toscio­
wych. Otrzymane w ten spos6b pola podlegaj~ fluktuacjom o nieznanej amplitu­
dzie, wzrastaj~cej wraz z niejednorodnoSci~ przyj~tego rozkladu odksztalcen. Stwier­
dzono, ze modele odksztalconych agregat6w naleiy interpretowac w sensie statys­
tycznym. 

Bo ase,neHHH o6cy'lK,neHhl H paCWHpeHhl, noJiy'leHHble XHJIJIOM, pe3yJibTaTbl, KacaJO­
IUHeCJI 3.HaJIH3a MaKpOO.u;HOCTeii: noJieH uanpuceHHii H ,necpopMaJ.Uiii B HeO.ll.HOPO.lUIOH 
cpe.ne. YcTa.HoaJieHhl TO'IHble yCJioBHJI KaKHM AOJDKHhl y.noaJieTaop.KTb noAJie'lKamHe 
ci>JIYKTY8.I{HJIM COCTaBJIJIIOIUHe nOJIJI nepeMemeHHH. Y CJIOBHJI MaKpoo.lJ.HOPO.ll.HOCTH 
paCWHpeHbl Ha CJIY'IaH arperaTOB C npOCTpaHCTBeHHbiMH KOppeJIJIIUfJIMH. 3aTeM 
npe,nJio:wceHbl o6mHe npHHIUIIIhl KOHCTPYKIUfH MaKpoO.u;HOpo.lJ.Hblx noJieii: .necl>opMar.utii 
B arperaTaX, n03BOJIJIIOlllHe Y'IHTbiBaTb JIOKaJibHYJO HeO.ll.HOpO.u;HOCTb. 3TH pac­
C}''liC,l.leHHJI 6poC&IOT HOBbiH CBeT Ha KJiacCH'IecKYJO npo6JieMY ,yCJIOBHH aepa3,neJib­
HOCTH", KOTOpbiM AOJI'liCHbl YAOBJieTBOpJITb MO,neJIH Aeci>OpMHpyeMOrO arperaTa. KOH­
CTaTHpOBa.HO, 'ITO npo6JieMa aepewaeMaJI B CJiy'l8.e noJieH 0Tpe3KaMH OJUlO­
pOAHbiX, HMeeT OAfla.KO Bcer,na pemeHHe B CMbiC..'le JIOKaJibHbiX 06'beMHbiX CpeAHHX. 
Tioey'leHHble TaKHM O.LQlaJOM noJIJI nOAJIC'liCaT ci>JiyKTyaUHJIM c aeHJBeCTaoii aMnJIH­
Ty.noH:, B03paCT3.10JlleH COBMeCTHO C HeO.lJ.HOpO.u;HOCTbiO npHHJITOfO pacnpe,neJieHHJI 
.necl>opMaUHii. KoacnTapoaauo, 'ITO MO,neJIH .necl>opMHpyeMblx arperaToa CJie.nyeT 
HHTCpnpeTHpOBaTb B CTaTHCTH'ICCKOM CMbiCJie. 
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Introduction 

IN coNTINUUM physics of inhomogeneous media, it is often necessary to con­
sider the material at different scales. The most important thing is of course to 
specify the "macroscopic" scale, which is the directly relevant one for discussing 
the effect of systematic variations in the external solicitations. However, one 
wants to study the influence of "local" inhomogeneities, the size of which is 
small compared with the macroscopic size. In order to do that within the 
framework of continuum physics, one must introduce an even smaller scale: the 
"microsccpic" one, where the material is still assumed to behave as a con­
tinuum; in that way, fields can be defmed and studied within the micro­
structural elements constituting the local inhomogeneities. Whereas this 
procedure is rigorously applied in the homogenization theory for periodic 
media (SANCHEZ-PALENCIA [27], SuQUET [28]), it is sometimes overlooked in 
the models for random media, especially those for aggregates such as 
polycrystals. When discussing models for deformed polycrystals, "microscopic" 
strains and stresses are often referred to, but it is not always clear whether this 
designates a mean value of the corresponding field in one constituent crystal or 
the value of this field at one particular point. One result of the analysis 
presented here is that the "microscopic" stresses and strains _ which are 
predicted by the polycrystal models can not be considered as local values of 
these fields, and even are difficult to regard as true volume averages of the fields 
in individual constituents. Rather, these predicted values should be interpreted 
in a statistical sense, as outlined in the earlier work on the self-consistent model 
(KRONER [20], HILL [13]) or in the generalization [1] of the "relaxed Taylor 
theory" [16, 19, 26, 29]; this interpretation is more or less implicit in more 
recent self-consistent approaches of BERVEILLER and ZAOUI [5], IwAKUMA and 
NEMAT-NASSER [18], MOLINARI et al. [24], LIPINSKI et al. [22]. 

In this paper we focus on the direct definition of the inhomogeneous 
distributions, i.e. on the fields and their mean values in the geometrically 
defined constituents. Specifically, a general construction of strain fields in 
a random aggregate is presented; this construction allows to obtain mac­
ro-homogeneous strain fields having an almost unrestricted local inhomo­
geneity, in the sense that the distribution of the mean strains in the constituents 
is only assigned to satisfy an asymptotic condition of statistical homogeneity, 
without any restriction to the individual values. For the purpose, the Hill 
macro-homogeneity condition is first discussed and extended. In short, the Hill 

. or Hill-Mandel condition [14, 15, 23] means that the displacement field 
fluctuates about a linear mean field with a bounded amplitude and a small 
pseudo-period. It will be shown that these two conditions are not exactly 
necessary, and indeed cannot_ be met in a general aggregate where spatial 
correlations can exist. 
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The second step is the construction of compatible strain (rate) fields 
whose mean values in the contiguous constituents of a bounded aggregate 
are prescribed. The principle of the construction is simple, but leads to 
an irregular velocity field, only defmed on the faces of a cubic lattice 
(similar displacement fields have been introduced by HAVNER [12] in a par­
ticular case). It is really necessary to regularize and to extend this field 
for obtaining a meaningful construction, but the quite technical procedure 
is left to appendices. Our analysis is presented in terms of velocities, i.e. 
a velocity field is built whose . unsymmetrical gradient tensor (strain rate 
plus spin, in fact) has prescribed mean values. The macro-homogeneous 
character of the obtained strain rate and spin field (for statistically homo­
geneous distributions of its mean values) is most easily seen in a space-fil­
ling aggregate, in view of the asymptotic nature of the macrohomogeneity 
condition. However, the obtainable approximation in a real, bounded ag­
gregate is also given. Finally, the possibility of fulfilling a macro-homogeneity 
condition separately inside each constituent, or "meso-homogeneity" (the mean 
value of the gradient fields differing from one constituent to another) is 
examined. Such a possibility would allow to consider that the discretization 
operated in the models of deformed polycrystals does correspond to the 
separation of the polycrystal into homogeneous crystals, thus capturing the 
very idea of a polycrystal. 

In most parts of the paper, the velocity field may be replaced by a vec­
tor field of an arbitrary nature and the corresponding gradient. To remain 
with deformed aggregates, the displacement field and the corresponding 
finite transformation gradient may be substituted, as in [12] and [15]. 

2. The macro-homogeneity condition for a strain field 

2.1. The no-correlation condition 

In a fundamental study . of the extremum principles governing crystal 
plasticity and their transmission from the crystal level up to the macro­
scopic one, BisHOP and HILL [6] assumed that, in addition to have well-

-defined macroscopic volume averages a and D, the microscopic fields 
of stress and strain-rate a and D have no macroscopic correlation: this 
condition ensures the upwards transmission of the principles. Let us note 
that the virtual work equation does in fact imply this condition for truly 
macro-homogeneous fields; while the left-hand side of the "no-correlation 
condition", 

(2.1) a:D=a:D 
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is the macroscopic rate of work per unit volume, as expressed in terms of the 
microscopic fields, the right one is the same in terms of the macroscopic fields. 
This justification of Eq. (2.1) is also valid for non-associated stress and 
strain-rate fields. It is assumed that the fields cr and D are homogeneous at the 
macro-level, ie. that the volume averages ;n and Dn are independent of the 
macro-element D in which they are taken: in that case, one may consider cr and 
D in Eq. (2.1) as uniform fields, well-defmed at the macroscopic level. In the 
same way, the microscopic fields cr and D have a sense above a certain scale 
only, ie. they also are averaged upon certain "micro-elements" but they do 
depend on the position of the micro-element. The necessity of condition (2.1) 
has been stated in a neighbouring way by KRONER [21], in connection with the 
assumed existence of a macroscopic behaviour. 

l.l. Hill's analysis 

Since the macroscopic fields are volume averages of their microscopic 
counterparts which are inhomogeneous, the macroscopic homogeneity cannot 
be exact. It should rather be defmed as an asymptotic property of the 
microscopic fields and the no-correlation condition should be deduced from 
this property. Using the classical transformation of the volume integral of cr: D 

· into a surface integral, HILL [14] formulated sufficient conditions which the 
microscopic fields cr and D should satisfy in order that they have well-defined 
macro-averages and fulftl the condition (2.1). Later on, HILL [15] extended his 
analysis to a pair of unsymmetrical tensors, namely the nominal stress N and 
the transformation gradient. Equivalently, this analysis is here reviewed in rate 
form. Thus we introduce a (microscopic) velocity field V with gradient tensor 
L = VV and an unsymmetrical tensor field T satisfying the equilibrium 
condition div T = 0; this could be the material derivative of the transpose t N, 
as in [12] and [18]. The divergence theorem implies: 

(2.2) JT· tLdv = J (T·n)®Vd9'. 
n an 

The volume averages Tn and Ln in the macro-element D satisfy the relation 

whence, by applying Eq. (2.2) to T- T and V - L · x: 

(2.3) 
--n -n -n 1 -n -n 
T·tL -T ·tL =- J[(f-T )·n]®(V-L ·x)d9'(x). 

v(D) an 
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Hence, the "tensor" correlation of the tensor products is expressed in 
terms of the non-uniform part of the surface data: stress vector and vel­
ocity field [15]. The trace of the tensor products (2.3) gives the "scalar" 
correlation: 

(2.4) 
--u -n -n 1 -n -n 

J 0 =T:L -T :L =v(D)L[(T-T )·n]·(V-L ·x)d.9'(x). 

The right-hand side of Eq. (2.4) is not changed if one surface field is substituted 
to its non-uniform part, because this latter has nil average [15]: 

(2.5) 
1 -n 1 -n 

L1 0 =- J (T·n)·(V -L ·x)d.9'(x) =- J [(T-T )·n] ·Vd.9'. 
v(D)an v(D)an 

Here, Hill introduces the notions of micro-uniform (surface) data (such 
that the non-uniform part identically vanishes) and macro-uniform data, 
(such that the non-uniform part is bounded and fluctuates randomly about 
0 with a pseudo-period of order d, the order of magnitude of the linear 
heterogeneity, e.g. the typical grain size). If one of the surface data, 
e.g. the velocity field, is micro-uniform, then L1 n = 0, by Eq. (2.5). A more 
realistic situation is also considered, in which one only knows that one 
of the surface data is macro-uniform. If the velocity field is so, the frrst 
integral in Eq. (2.5) shows that for a bounded field T, L1n is O(R2

)/ R3 = 0(1/R) 
where R = R(D) is the size of the macro-element D, assumed cubic. 
Thus L1n becomes negligible if R is sufficiently large, but it seems diffi­
cult to understand the statement of HILL [14] that the small size d should 
intervene directly, in an upper bound of Eq. (2.5). Moreover, this way 
of reasoning cannot be used if the stress vector is known to be macro­
-uniform. In [15] the essential role is play~d by a "boundary layer 
argument" according to which the effect of the non-uniformity of the 
surface data decays with depth and is negligible beyond a layer a few 
wavelengths thick: thus, except in a volume of order R2d, the analysis 
for micro-uniform data would be applicable to macro-uniform data. Clearly, 
this argument refers to the mechanical behaviour and for this reason 
might be more or less valid, depending on the particular material and 
boundary conditions (Hill emphasizes the case of an elastic material and 
the extension to highly nonlinear behaviour is not straightforward). Here­
after, no relation between T and L is assumed; Hill's reasoning for 
a macro-uniform V is extended, and the role of the fluctuation distance 
d is clarified. 
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2.3. Amplitude and cbancteristic distance of the fluctuation 

The way in which the deviation An was proved to decay with the increasing 
size R(Q) for a "macro-uniform" velocity field, remains valid if V is more 
generally assumed -to have the form: 

(2.6) V(x) = L0 • x + u(x), L{x) = L0 + Vu(x), 

where the nonlinear part u may be unbounded, but satisfies 

(2.7) 

(in a real, bounded observation domain, the quantity in relations (2.7) should 
become negligible, when !2 is the largest possible, as compared with II Loll). To 
see this, we first deduce from relations (2.6) and (2. 7) that 

(2.8) R(Q)--+ oo, 

since formula (2.2) yields for T = 1: 

(2.9) JLdv = J V ® nd9'. 
n M2 

Hence, in view of Eqs. (2.6), the deviation An (Eq. (2.4)) is for large R equi­

valent to T:Vun, but Eq. (2.2) implies if T is bounded {I!T{x)ll ~ cr for 
every x): 

(2.10) I T:Vunl = v(~) I f (T· n) ·ud.9' I~ v~) f lin II d9'. 
an an 

Conditions (2.6) and (2. 7) are thus sufficient to ensure that the velocity 
gradient L is macro-homogeneous in the desired sense. It would be more 
appropriate to qualify such velocity fields as "macro-linear". We notice 
here that no bound of a real heterogeneity field u in an aggregate, can be 
deduced from the knowledge of the typical (or maximal) heterogeneity !lou II 
across one typical (or even maximal) constituent. Indeed, the heterogeneities 
of the velocity field through successive constituents, may as well pile up 
one over another as compensate one another: For the macro-homogeneity 
to hold, it is only necessary that, at some larger scale, the sum of successive 
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heterogeneities becomes negligible in the average. The number of constituents 
to be taken into account in order that this average compensation ap­
proximately occurs, may depend strongly on the particular structure of the 
aggregate, and has no a priori bound. In other words, the fluctuating character 
of the heterogeneity field may well be more complex than that of a bounded 
wave oscillating about 0 with a pseudo-period of order d, the mean size of the 
constituents. Moreover this character - and especially the smallness of the 
fluctuation distance - does not play an apparent role in the macrolinearity 
condition (2.6)-{2.7). 

The order of magnitude of the nonlinear part (or heterogeneity): 

(2.11) 
- n 

u(x) = u0 (x) = V(x) - L · x 

across an observation domain Q, may be known from experiments such as grid 

measurements. Then by comparison of aiiL
0

II with the upper bound in Eq. 
(2.10), the reliability of the no-correlation condition can be physically assessed_ 
In this, the fluctuation distance again plays no role. However, suppose that u is 
known to fluctuate in such a way that Jr"u dY" = 0 for each rb where the 
subdomains rk, with size smaller than d, build a partition of the boundary oD 
(in view of the relative homogeneity inside the grains or constituents, the F1 

should overlap the sections of neighbouring grains by the surface of the 
sample). If moreover the spatial variation rate of the "stress" (or stress rate) 
field is bounded: 

(2.12) IIT(x)- T(y)ll ~ Kllx- Yll, 

then a different upper bound is found for L1 0 : 

(2.13) 

Indeed, we have from Eqs. (2.5) and (2.11) and the fluctuation condition: 

(where Tr" is the surface average in rk) and by Eq. (2.12) 

J [(T-Tr")·n] ·udY" ~ %& J llulld9'. 
r" r" 
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In the upper bound (2.13), the maximum "stress" (or stress-rate) a of the 
upper bound (2.10) has been replaced by the maximum variation ba = Kd 
of the "stress" through a fluctuation domain of the velocity (or displacement) 
field about the linear mean field. Thus the fluctuation distance of the velocity 
field does play a role in setting bQunds to the deviation (2.5) from the 
no-correlation condition, if the spatial fluctuation of the "stress" is corres­
pondingly bounded. 

3. A general construction of macro-homogeneous strain fields 

3.1. T~ompatibility problem in deformed aggregates 

In a coherent aggregate, the microscopic behaviour is rather uniform inside 
the constituents, but varies abrubtly at their boundaries, while the stress and 
velocity vectors should remain continuous. A well-known consequence is that 
both local fields (f and L) must be non-uniform and might only be obtained 
numerically, which would imply a precise knowledge of the behaviour and 
arrangement of the constituents; even for a small, non-representative number of 
grains, the calculations are formidable. Nevertheless, such complete simula­
tions of the deformation of a crystalline assembly open a new way for 
discussing the different polycrystal models [11]. 

In all operative models for deformed aggregates, each constituent Qk is 
given by its local "state" (crystallographic orientation, critical shear stresses, 
geometrical parameters, ... ) assumed uniform inside 0 1 [2, 3]. In the place of 
local fields, such models predict one tensor L1 and T1 for one constituent 0 1 . 

The global deformation rate being given by the macroscopic velocity gradient 
L0 , a consistent model should predict a discrete d~tribution (L1

)1 = 1, .. ,N and 

(1'1)1 = 1 , ... ,N such that the macroscopic average L1 is the given L0 • The 
"compatibility problem" may then be formulated in the following way: is it 
always possible (as it should be) to associate a macro-linear velocity field 
V (Eqs. (2.6)-(2.7)) to the distribution (L1

), and in which sense? Do certain 
models behave more gently in this regard? The predicted L1 (or the predicted 
strain rates D1

) are often interpreted as the local values of the field L (or D) in 
the constituents. Since these latter are assumed homogeneous, the velocity 
gradient, or only the strain rateD, is thus supposed to be a piecewise uniform 
field. However, we state that no compatible strain rate field can be piecewise 
uniform, unless it is a uniform strain rate and spin field. Indeed, it follows 
from the compatibility equations that the spin is uniform in a domain Q where 
the strain rate is so: hence the velocity field is linear in Q, V(x) = L.a · x + a.a . 
At the interface S between two linear domains Q and Q' of V, we have 
L.a · x + a.a = L0 .·x + a0 ., or (L0 .- L0 )·(y- x) = 0 if x and y belong to S. 
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Except for the very special case where S is plane, it will contain four 
non-coplanar points x, yl' y2 , y3• The above equation then implies that 
La, - La cancels for three independent vectors, whence La = La·, and our 
statement is proved. Even in the highly improbable case of all polyhedral 
constituents, the complex system of the above continuity relations would only 
have non-uniform solutions in very particular situations, the treatment of 
which would require the complete knowledge of the spatial arrangement. 
Thus it is more realistic to consider Lk and Tk as the average values of the 
strain and stress rates in a constituent Qk. Nevertheless, the generic model 
predicts Lk and Tk as mutually associated by an assumed constitutive relation 
of the constituent. As for a macroscopic relation, this is only justifiable 
if the field L = VV has reasonable properties of "macro-homogeneity" but 
in every given constituent. In precise words: in every given Qk, L must 
fluctuate about Lk as in Eq. (2.6): L(x) = Lk + V uk(x), in such a way that the 
integral (2.7) (with uk in place of u) is negligible with respect to Lk when Q is 
any sufficiently large subdomain of the constituent Qk. In what follows, we 
address the question of whether this "meso-homogeneity" condition may be 
reached for any distribution (L~ of the mean values. Moreover, it is proved 
that, under two conditions of statistical homogeneity for the distribution (Lk) 
the true macro-homogeneity (Eqs. (2.6)-(2.7) as they stand, for the whole 
aggregate and the macro-average L 0) may be ascertained. 

3.2. Vector fields with arbitrary local means of their gradient 

A bounded aggregate Q is partitioned in its constituents D1. .... DN 
and a family (L~k= 1 ..... N of second-order tensors is given. Except at the 
boundaries of the constituents, we may associate to every point x of 
the aggregate, the tensor L(x) which is the Lk corresponding to the unique 
constituent Qk containing x. Take an orthonormal basis (ei)i= 1 ,3 and for x E Q, 

define the intersection Ii(x) of the segment [pri(x), x] (pri is the projection 
on the plane xi= 0) with Q. Then, three vector fields Uiu= 1 ,3) may be 
defined as the linear integration of the piecewise constant function L in the 
direction ei: 

(3.1) Uj(x) = J L(y) dy. 
Ij(X) 

Now let~~ be a cubic lattice with mesh parameter l, having its sides parallel to 
the e j· We define a vector field V; only on the faces of ~~: V; (x) = U i(x) if 
x belongs to a face perpendicular to ei, and we observe that v; has the 
following property: 
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(3.2) J v; ® nd9' = v(C)L1 if C c 0 1 , 

~c 

where Cis one of the cubes of the lattice rc, and v(C) = 13
• This follows from the 

definition, since n(x) = e1, n(x -1e) = -e1 and 

when x is on the face of C with external normal e1 (the assumption C c 0 1 

implying that L = L 1 in C). 
In general there is no relation between the values U1 for different j, so that 

the surface field V; is discontinuous at every ridge of the lattice re,. However 
v; may be regularized and then extended into a body field V,,,, arbitrarily near 
to v; in the sense that 

(3.4) ~ J IIV,,,- V;jld9' ~, 
ccn~n 

(Appendix 1). From Eqs. (2.9) and (3.2) it follows that the velocity gradient field 
L1., satisfies if Ccf21 : 

llv(C)L1
- J L,,,dvll =II J (V;- v,,,)®nd9'11 ~ J IIV,,,- v;ll d9' 

c ~ ~ 

whence, by inequality (3.4), denoting by Q~l) the union of the cubes of the CC1 

lattice which are entirely included in 0 1 : 

(3.5) Lllv(Q~>)Lk- J L,,,dvll ~ L L llv(C)Lk- J L,,,dvll ~ '1· 
1 n<~> 1 c c nk c 

(fhe cubes intersecting the boundaries of the constituents are omitted in 
inequality (3.5), but their average contribution decays with 1: this is proved by 
returning to surface integrals as in Eq. (3.2), due to the continuity of U1® e1 
which on the j faces is equal to ± v; ® n). For sufficiently small I, the volume 
averages of L,,, in the constituents Qk are thus arbitrarily near to the given 
tensors L 1

. 

H desired, V,,, could be replaced by another field, arbitrarily near in the 
sense of inequality (3.4), but giving exactly the imposed average values of its 
gradient (Lemma 1 of Appendix 1). Also, if the L1 are zero-trace tensors, 
a vector field with zero divergence may be chosen (Lemma 3 of Appendix 1). 

It must be finally mentioned that the way of "transmitting" a vector field 
from three adjacent faces ac- of a cube c to the opposite faces ac +' by 
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Eq. (3.3), so as to obtain a given surface integral (3.2), has previously (but 
independently) been found by HAVNER [12], in the particular case where the Lk 
tensors are all the same in the space-filling lattice tt1• The aim was to give 
a general form of macro-homogeneous displacement field (periodic, however). 
Unfortunately, for a given surface field on oC_, this directly obtained field is 
generally discontinuous on every ridge of ac + and can not be extended in 
a body field satisfying the divergence theorem and Eq. (2.9). This fact was not 
pointed out in [12]. 

3.3. Fulfilment of the macro-homogeneity condition 

In Sect. 2, the asymptotic nature of the macro-homogeneity condition 
has been emphasized (see Eqs. (2.7)-{2.8)). Thus we consider a space-filling 
aggregate, partitioned in an infmite sequence of bounded constituents 
Dh···,D1 , .... In order to obtain a macro-homogeneous gradient field L = VV 
having prescribed volume averages L1 in the constituents 0 1, we must 
suppose that the infmite sequence (L~ is statistically homogeneous, in the 
sense that 

(3.6) 

Here the macroscopic average L0 is asymptotically reached, independently of 
the position of the macro-element D. The research of Lis equivalent to that of 
the associated vector field V, which must be "macro-linear" in the sense of Eqs. 
(2.6}-(2.7), in order that L be macro-homogeneous. In general we only have to 
find the nonlinear part u in Eq. (2.6), such that the local averages of Vu are 
L1

- L0 • Thus we may assume L0 = 0. 
The whole construction of Sect. 3.2 remains valid for the space-ftlling 

aggregate D = R3 (the only questionable point is. inequality (3.4) which 
limits the difference between the irregular surface field v; and the regu­
larized body field V1,,. However, the way in which the regularization process 
is propagated from one cube to another, allows to obtain Eq. (3.4) for these 
infinitely many cubes (Appendix 1); this is only a question of convergent 
series). Now we prove that the obtained field V1, 11 satisfies condition (2.7) 
if the linear averages of the L1 tensors are asymptotically equivalent to their 
volume average L0 = 0, when segments [x- Rei, x] (parallel to the coordi­
nate axes) are considered: 

(3.7) !IO-~ J L(y)dyll ~ e(R)--.0, 
[x-Rei,X] 
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Indeed, combining (3.7) with the definition (3.1) of v;, we see that to every 
small number ex we may associate a size R(J such that 

On the other hand, we assume that the Lt tensors are bounded, liLt II~ A, for 
all k, which implies: 

(3.9) for every x. 

Defining the "cross" X(J(Ixil ~ R(J for one j at least), which is in fact the union 
of three perpendicular walls, and separating the surface integral of II v; II 
accordingly, we obtain from (3.8) and (3.9): 

(3.10) J + J IIV;IId9' ~ R(D)·(A9'(X(J~aD) + ex9'(aD)). 
x(Jnan aD\X(J 

Evidently, we may suppose that the cube D and the "cross" have no common 
boundary; in that case: 

Thus, Eq. (3.10) implies that 

R(D)-+oo 

and with (3.4), this proves that V,,, satisfies the macrolinearity condition (2.7), 
since ex is arbitrary. 

3.4.. Discussion 

1. Solution of the compatibility problem in the average sense 
In Sect. 3.3, the distribution (L~t~ 1 of the mean strain rates and spin 

rates has demanded the following properties of statistical homogeneity, in 
order that the construction of Sect. 3.2 lead to a macro-homogeneous field 
L = VV (such that, moreover, iDJc = Lt for every k): the distribution (L") must 
have an asymptotically well-defined macroscopic average L0 (Eq. (3.6)) 
and the linear average values of the distribution must be asymptotically 
equivalent to its volume average value L0 (Eq. (3.7)). These properties are worth 
discussing within the frame of an asymptotic theory of the distribution of the 
"states" of the constituents in a random aggregate [2], which is presented 
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in another paper [3]. In "operative polycrystal models" (Sect. 3.1), the 
discretization is directly done in terms of the states. When applied to simulate 
a material with statistically homogeneous distribution of the states of its 
constituents, any such model will thus provide a distribution (L") having the 
desired properties (this statement is precised and proved in [3]). Hence, the 
compatibility problem (Sect. 3.1) may always be solved in the sense of the 
prescribed volume averages, by using the construction of Sect. 3.2. In this 
regard, any of such operative models is satisfactory and no one may be said to 
be "superior". 

2. Fulfilment of the meso-homogeneity condition 
For sufficiently small l and f7, the volume average of the velocity gradient 

in any constituent Q"' L~;, is arbitrarily near to the prescribed value L", 
in view of (3.5); actually the second inequality in (3.5) proves more: every 

average L~, in a small cube C (with size l) is nearly the L" corresponding 
to the constituent Qk containing C. Thus, as for an exact constituent Dk, the 

volume average L~, is arbitrarily near to L" if l,f1 are small enough and the 
domain w is included in Qk - and for an assigned minimum size of w, this 
holds uniformly with regard to the position of w in the space-filling aggregate. 
However, the field L 1,, is not uniformly bounded with respect to l, even in 
integral norm. On the contrary, it is generally true that for a fixed f1 and for any 
given domain w: 

(3.11) • J I!Lz,,ll dv-+ oo as l-+0, 

since V 1,, must regularize the discontinuity L1 V of V; from one face i to another 
j =I- i of the small cubes C, the value of L1 V being roughly independent of 
l - thus leading to an amplitude of order L1 Vfl for the gradient L1,, and an 
integral (3.11) of order v(w)L1Vjl. 

In other words: by reducing the size l of the cubes, the construction 
allows to obtain the prescribed averages L" of L in smaller and smaller 
domains located anywhere inside the constituents Q", but this also in­
creases the fluctuation amplitude of the obtained strain (rate) field L = L1,,. 

For a given distribution (L") of the prescribed mean values, it is hence 
generally impossible to state in what measure the no-correlation condition 
inside the constituents may be reached; the same may be said on the 
fulfilment of the meso-homogeneity condition (Sect. 3.1), since this implies 
the local no-correlation. This is not a shortcoming of our natural con­
struction, but a necessary consequence of prescribing a non-uniform dis­
tribution (L") of the local means: the degree of the attainable approximate 
meso-homogeneity depends on the inhomogeneity of both the distribution 
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and the aggregate itself. Overlooking this point may lead to wrong state­
ments. 

As a consequence, it is difficult to regard the mutually associated stresses 
and strains, predicted by any given "operative model", as the true volume 
averages of the corresponding fields in the geometrically defined constituents 
(since the strain field should then be meso-homogeneous). A more realistic 
objective that the aggregate models should generally pursue, is to predict the 
stresses and strains, averaged as functions of the local state. This is of course 
consistent with the discretization in states but, in our opinion, needs to be 
analysed precisely (such an analyse is proposed in [3]). 

On the other hand, exactly as for the macro-homogeneity condition, the 
meso-homogeneity of experimental strain fields may be physically assessed 
(by measuring the strain inhomogeneity at the scale of the constituents). 
As far as metallic polycrystals are concerned, this kind of strain inhomo­
geneity is well evaluated by measuring the variations in the crystal orienta­
tion inside a grain, because the strain rate and the lattice spin are bound 
together. Thus we expect the meso-homogeneity condition to be more pre­
cisely verified at low or moderate strains, where the metallurgists clearly 
identify grains or (later) subgrains and cells (see e.g. [10, 25]), than at high 
strains (such as those attained during cold-rolling), where large and con­
tiguous zones under continuously heterogeneous strain seem to form at some 
places (see e.g. [9]). It is worth noting that the strain inhomogeneity 
is generally agreed to increase with strain, and that our construction clearly 
links the deviation from the meso-homogeneity, i.e. the intra-constituent 
inhomogeneity, with the differences between the Lk for different "grains" 
Qk, i.e. the inter-constituent inhomogeneity. Finally, in so far as the me­
so-homogeneity of the actual fields is considered to be experimentally 
consistent, a simple formulation of the model [1] may be given [ 4]: the 
meso-homogeneity assumption was implicit in the original formulation. This 
model is generalized in [3]. 

3. Meaning of the extended macro-homogeneity condition 
It may be seen from Eqs. (3.1) and (3.7) that if the heterogeneity field 

u(x) = V(x) - L0 • x has to be bounded, then the convergence of the linear 
averages of the Lk tensors towards L0 must be at least of 0(1/R), where R 
is the considered length. Accordingly, the linear distributions of the sta­
tes of the constituents should converge towards the asymptotic volume 
distribution like 1/R [2]. This is clearly a restrictive condition. Thus 
again (see Sect. 2.3), a bounded heterogeneity field may not be expected 
for general aggregates. In practice, of course, only bounded aggregates 
are encountered; then a "bounded" heterogeneity means "having an am­
plitude independent of the size of the measuring base": this condition 
is not to expect general, real aggregates, and is not necessary to obtain 
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macro-homogeneous strain fields. In the same way, we have seen that the 
condition of a fluctuating heterogeneity field with a characteristic distance 
having the same order of size as the constituents, is neither necessary nor in 
general expectable. We conclude that HILL'S and MANDEL'S definition of the 
macro-homogeneity [14, 15, 23] applies to aggregates which are strongly 
disordered, whereas an operative macro-homogeneity condition (2.6}-{2.7) 
may also be defined for aggregates having arbitrarily large "clusters" or 
spatial correlations. 

4. Conclusions 

A theoretical analysis of the structure of the strain and spin field in 
a deformed aggregate has been presented and some parallels have been drawn 
with both the experimental reality and the operative models, especially in the 
case of metallic polycrystals. The main results are the following: 

1. Hill's macro-homogeneity condition has been reviewed, clarifying the 
role played by the amplitude and the characteristic distance of the fluctuating 
part of the displacement. This allows to extend Hill's definitions to more 
general situations with spatial correlations. 

2. The "compatibility problem" in the models for deformed aggregates, 
has been formulated in a general way. It has no solution if piecewise 
uniform strain and stress fields are assumed. In an average sense, this 
problem has always a solution and does not allow us to decide between 
different models. 

3. In order that these models could predict the average strains (and 
stresses) in the geometrically defined constituents, it is necessary that the 
strain field be "meso-homogeneous", i.e. fulftl a macro-homogeneity condition 
separately inside each constituent. The more severe compatibility problem of 
obtaining a meso-homogeneous strain field cannot be solved for a general 
distribution of the average strains. It is thus advisable to interprete the 
predicted strain distributions in a statistical sense, and it is suggested that this 
needs a rigorous formulation of the local "state" and the corresponding 
functions. 

Appendix 1. Regularization of the field v; into the field V1,, (or V) 

Precisely, we demand that V is in the simplest Sobolev space 
H1 (.Q) = H 1 (.0)3

, i.e. each component Vi ofV and each partial weak derivative 
a~ fiJxj is a different function q> whose square q> 2 has a finite integral in Q 
(the set of such q> is classically denoted IJ(.O). The space H 1 (.0) is a convenient 
tool, e.g. the fields considered and practically handled in the numerical 
approximation of partial differential equations often have exactly this regu­
larity (DAUTRAY and LIONS [7]). Here, an even more essential point is the 
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validity of the divergence theorem for the fields of H1 (D), involving that of the 
virtual work equation and the equation (2.2) above [28]. This validity follows 
from density arguments. However, the fields of H1(D) and their derivatives 
may be discontinuous and their restrictions or "traces" to the boundary aD are 
thus defined indirectly (by a continuity extension of the ordinary restriction 
operator V--+ V1a.a, as this is defmed fo1the dense subspace of H1 (D) containing 
all the infmitely differentiable fields). Anyway, we still ·denote such "traces" 

v1~.a· 
The regularization is first done in one cube and then propagated from one 

cube to another. 

At.t. Case of a single cube with an additional vector field on its half-boundary 

Let D be a simple cube. Let us choose a vertex 0, denote aD- the union 
of the three faces bordering 0 and aD+ the three opposite faces. For any 
e > 0, for every given regular vector field U on an- (U e H1(aD- )) and every 
2nd order tensor L0, we are going to build a regular field V(V e H 1 (D) and 
V1a.a+E H1 (aD+ )), such that divV = 0 if trL0 = 0, 

(A.l) 1 J 0 
v(D) ~.a V®nd9' = L , 

and 

(A.2) J IIV(x)- U(x- .dx)- L 0
• .dxll dfl'(x) ~e. 

~D+ 

Here .d x = ln(x) is the difference vector between the opposite sides of D, l being 
the size of D. 

Suppose that D is one cube of the lattice CC1 of Sect. 3.2 and is included in 
a constituent having L0 as the prescribed mean value. Then, if U is the 
restriction to an_ of the field v,, the field 

(A.3) 

for X almost everywhere (a.e.) in aD+' is the restriction to aD+ of the 
same field v;. Note that V2 satisfies Eq. (A.l). This explains what we are 
doing. 

The boundary as= a(aD+) of S =aD+ is equal to a(aD_), i.e. to the 
union of the six two-by-two adjacent ridges of D, which do contain neither 
the point 0 nor the opposite vertex. Let us fust (incorrectly) deal with traces 
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in the same way as if they were ordinary restrictions: then, v1~n would be 
uniquely defined by vi~D_ = u which is known and vi~D+ =VIs, provided 
that these two coincide at the common (sub-) boundary as. Thus, we 
would have to find a field V1 E H1 (S), satisfying (A.2) in the place of V, 
such that: 

(A.4) J V1 ®nd9' = J V2 ®nd9' =- J U®nd9' + v(Q)L0 

~n+ ~n+ ~n 

so as to obtain (4.1), and that V1 1~s = U1~s· Actually, this procedure is correct: 
it is proved in Appendix 2 that a unique field V E H1 (aD) is found in that way, 
having V1~n- = U and V1~n+ = V 1 as ordinary restrictions. Once a possible V1 

will be found, we thenjust will have to extend v from ao to the inner part of 
the cube Q. 

(i) Construction of a field V1 on S = ao+ 
If E is an arbitrary second-order tensor (the space of such tensors will be 

denoted by !f' and !f' 0 will denote the subspace of zero-trace 2nd order 
tensors), we are able to find in the same way as for V 2 an integrable field 
X(X E L 1 (S)) such that 

(A.S) f(X) = J X®nd9' =E. 
s 

In other words f defmes a linear mapping of L 1 (S) onto !f'. Since this 
mapping is obviously -continuous with respect to the usual norm 

(A.6) II X lit.= J I!X(x)l! d9'(x) 
s 

of L 1 (S), we shall be allowed to use Lemma 1 below. This lemma essentially 
states that, if we always can find an_ irregular solution (or even only an 
approximate one) to a given finite set of linear, scalar functional equations 
like (A.S), then we also can fmd, near an irregular solution, an exact 
and regular one. Then, Lemma 2 will allow us to modify the trace, x1~s, 
almost without changing f(X). By combining these results, we will fmd 
a satisfying field V1

. Lemmas 1 and 2 are proved in Appendix 3. 
LEMMA 1 
Let E and F be two normed linear spaces, F having fmite dimen­

sion, f be a continuous linear mapping of E onto F and E0 be a dense 
subspace of E. Then, the restriction fo =!Eo is an open mapping of E0 
onto F. Moreover, for every open set U in E, f(U) and f 0 (U nE0) are the 
same open set in F. 
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LEMMA 2 
Let ro be a bounded open set in R", whose boundary aro is regular 

(piecewise ~1) and let U be a field in H1
'
2 (aro) (1

). Then for every e > 0 there 
exists a field U 1 = U i E H 1 ( ro) such that 

(A.7) J IIU1 (x)ll dv,.(x) ~ e and U\,w = U. 
CD 

Let us come to the research of a regular field Y1
, arbitrarily near 

Y2 in the sense that JIIY1
- Y2 lld9' ~ e, satisfying (A.4) with the given 

s 
trace Y~s = u,~S· The subspace H~ (S) containing those fields XE H1 (S) 
whose trace x 1~s are zero, is dense in L 1 (S) with respect to the integral 
norm IIXII1 . We thus apply Lemma 1: sinse the ranges of the open balls 
f(H~(S)nB(Y2, e/2)) and f(B(V 2,e/2)) are one and the same open set in~' there 
is a lJ > 0 such that 

(A.8) 

Applying successively Lemma 2 (with n = 2) to the three faces of S, we fmd 
a field U 1 

E H 1 (S) such that ut~s = u,~s with II U 1
111 ~ Min(lJ,e/2). 

Since llf(U 1)II~IIU1 11 1 by (A.5), we have thus f(V 2 -U1)eB(f(Y2),lJ) 
whence, from (A.8), we fmd a field Y0 E H ~ (S) such that 

The field Y1 = Y0 + U 1 satisfies f(V 1
) = f(V 2

) and thus also (A.4); moreover, 
Yf~s = Uf~s = U1"s and IIY1

- Y2 ll 1 ~ IIY0
- Y2 ll 1 + IIU1 II 1 ~ e, as announced. 

{ii) Extension of Y from ao to Q 

The above construction of Y1 provides us with the trace Y1~u = (U1"u-, 
Y1 1~u+) (see Appendix 2) of the field Y that we are looking for. From 
the trace theorem of zero order (see e.g. [7]), it follows that there exists 
at least one field Y3 

E H1 (Q) having exactly this trace (actually there are 
a lot of such fields). Now, we only have to deal with the additional 
zero divergence condition of the incompressible case. The construction 
of Y1~u ensures that 

(A.lO) J Y®nd9' = v(Q)L 0 • 
~u 

e) This Sobolev space is not defined here, since we only use the trace theorem (see below) 
ensuring that the trace application U-U18w maps H1(w) onto H1

'
2 (ow). 
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The incompressibility condition trL 0 = 0 then takes the form 

(A.11) 0 = J V·nd9' =·J divV3 dv. 
an n 

The range of the div operator, restricted to H~(.Q), is exactly the set L2 (Q)j R of 
the classes of the functions pE L2(.Q) satisfying J pdv = 0. This follows from 
[7], (3d vol., p. 828): the inclusion div (H~(.Q))eL~.Q)jR comes from the diver­
gence theorem; the inverse inclusion follows from the fact that the adjoint ope­
rator of u = div I Hl is u* = grad lu<D)/R by the same theorem, and from an ine­
quality I!PIIL2<D>!R ~ e(D)I!grad PI! Ll(D) whence Ker(u*) = {0}, i.e. u(H~).L = {0}. 

This, combined with (A.11), shows that there is a field V4 E H~(.Q) (that is, 
V4 lan = 0) such that div V4 = -div V3

E L2 (0)/R. The field V = V3 + V4 of 
H 1 (.Q) has the right trace Vlan and satisfies div V = 0 in D. With the defmition 
(A.3) of the irregular field V2

, the proximity condition II V1 
- V2 11 1 ~ e gives 

(A.2). QED. 

Al.l. Propagation of the regularization process in the lattice 

In the lattice rt,, the position of a given cube is directly specified by an 
integer threesome (M,N,P) and any volume domain Q is covered by a family of 
cubes of rt1: 

(A.12) o c ( U eMNP) = n<'>' 
(M,N,P)el

1 

This set of threesomes 11 is fmite if Q is bounded. In that case, we may order 
the eMNP in the lexicographic way, Obtaining the differently indexed CUbeS 
em. Here m takes all values from 1 to an integer n = Card (11). For 
a · given m > 1, em has at most three common faces with the preceding 
cubes: indeed, if m = m(M,N,P), em has one and only common face with 
each Of the only three Cubes eM-l,N,P, eM,N-l,P, eM,N,P-l which may, Or not, 
belong to D<o· Also, if Q is unbounded, a different order (em)m~l may be defined 
with the same property. First, in the 2-D case, this order is obtained by 
describing a square spiral from the origine square to infinity, as indicated. 

17 16 15 14 13 

18 5 4 3 12 

19 6 1 2 11 

20 7 8 9 10 

21 22 23 24 25 
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Thus the squares at the boundary of the "large" square (with side nl) are 
successively counted at step n (n = 3, 5, 7, ... ). In the same way, for the 3-D 
case, the boundary cubes of the large cube Bn (with side nl) are counted 
at step n, beginning with the lower face which is described as in the 2-D case; 
then the square rings at the boundary of Bn are successively described in the 
direct sense, upwards from one ring to another; step n is ended by describing 
the upper face of Bn in the same way as the lower one. Only those cubes 
pertaining to Q(l) are counted. 

Now, attributing to each of the so-indexed cubes em E Q(l) the tensor Ll(m) 
of the subdomain Ql including em (an arbitrary choice is done at the 
boundaries iJQ1), we proceed in a recurrent manner. For every cube em there 
are at least three adjacent faces which are common with no preceding cube 
e, (1 ~p<m). We denote ae~ this set of three "free" faces, and ae;;. the three 
other faces. On those faces of ae;;. which are not common with a preceding 
cube (often, there is no such face), a field U~ is initialized as U~ = v;. Thus 
for the first cube, at the origin: U~ = 0 which is in H 1 (oe.t) and we apply 
Sect. A1.1 with U 1 = U~ = 0 and L1u>, obtaining the restriction Vlc1 which 
satisfies (A.1) and (A.2). Then at step m, the trace of the field Vlc1 u ... ucm-l 
is taken as data U~ on F~ = ae;;. n(oe1u ... uaem-d, and U~ = v; on 
F~ = ae;;.\(oe1u ... uaem-d· A regularization process is applied as in ((A1.1), (i)) 
so as to obtain a field UmE H 1 (ae;;.) whose restriction UmiF' is arbitrarily near 
to U~, while the restriction UmiF" is exactly the previously obtained field 
u~ = VIF"• The process of Sect. A1.1 is then applied with um and Ll(m)_ In 
order to Obtain (3.4) one only has to take the tolerances em in (A.2) in the form 
of a convergent series, e.g. em = rr/2m. 

Appendix 2. Definition of a field in H1(w) by its restrictions to contiguous 
subdomains, having common traces 

In Appendix 1, it is supposed that a field U can be defined in H1 (w) 
by its two restrictions U 1 and U 2 to disjoined open subdomains w1 

and w2 having a common boundary F = ow1 now2 , provided that the traces 
Ufr and U~· are the same field of H 1'

2(F). In Appendix 1, w is the 
boundary oD of the considered cube in R 3, w1 and w 2 are two opposite 
groups of three adjacent faces of D: w1 = ao-, w2 = ofl+. Thus w, in this 
case, is not an open set of R 3 but a surface or "two-dimensional manifold" 
and w1 and w 2 are "manifolds with boundary". The Sobolev spaces can be 
defined on abstract manifolds and the trace theorems can be obtained for 
manifolds with boundary (HDRMANDER [17]). However, the involved manifolds 
are so simple in our case (consisting of a small number of trivial mappings) 
that the use of this formalism would appear overbearing and unnecessary. The 
only important feature of the considered situation is the low regularity of 
these manifolds -namely, they are piecewise ~1 (continuo usly differentiable). 
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The zero order trace theorem is valid for such manifolds (see e.g. [7]). 
Therefore, we consider it sufficient to prove the following result. 

LEMMA 3 

Let w1 and w2 be two disjoined open sets of Rn, each with a piecewise <tt'1 

boundary owi , Ui be a function in H 1 (wi), Yi the (well-defmed) trace mappings 
of H 1 (wJ onto H 1

'
2 (owi), denote r = ow 1 now2 and!/ the surface measure on 

ow1 u ow2• In order that the function U defined a.e. on the interior w of 
w1auw2a bye) 

(A.12) U(x) = U 1(x) a.e. xE w1 

be in H 1(w), it is sufficient that 

(A.13) 

Note that, if the boundary intersection r is !/-negligible - in particular 
if r is void - no condition is imposed to the traces Yi(U1

). Also note that 
the results will be obviously extended to vector fields UiE H1 (w1) = (H1 (w;)r, 
as this is needed in Sect. 3. 

Proof. Clearly, U is in L2(w). We must show that the weak derivatives DiU 
(j = l, ... ,n) also are functions J.}E L2 (w). Denoting !?)(w) the space of infinitely 
differentiable functions with a compact support included in w, we have by 
definition 

2 

(A.14) v (/) E !?)(w) < Dj U,qJ > = - < U,DjqJ > = - L s U1 DjqJdv. 
i= 1 Wf 

Since U1
E H 1 (ro1), the weak derivatives Di U1 are functions V/ E L2 (ro;). We 

extend these functions to w by zero in ro\ro1, with the same notation. We may 
write for i = 1, 2 and j = 1, ... , n: 

(A.15) 

where n~ U = 1, ... , n) are the components of the !/ - a.e. defined outer 
normal oi to ow; (i = 1, 2). Indeed, for a fixed qJ E !?)(ro), this equality writes 
t~Ji(U1 ) = 0 with a continuous linear form t~Ji on H 1 (wi) (the continuity 
of the first integral follows from the defmition of the H 1 space and the 
Cauchy-Schwartz inequality in L2 (ro;); the continuity of the second integral 
results form the continuity of the trace mapping l'; and the Cauchy-Schwarz 
inequality in L2 (oro;)). Since, by the divergence theorem, t~Ji(U1 ) = 0 when 

e) If Q is a subset of R ", 0 11 denotes the closure of Q. 
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U1 is a function in !'}(Rn) and since !'}(R~ is dense in H1 (ro;), we have (A.15) for 
every UieH1 (wi). (fhis implies that Yi(cp Ui) = qJY;(Ui)). Therefore 

(A.l6) < Dp.({) > = ,t f qJDiU'dv- .t, f qJy1(U1)n}d9', 

Wt Dwt 

but the sum of the integrals on owi vanish, because cp = 0 on (ow 1 u ow2 )\F 
(since this set belongs to ow), n1 + n2 = 0 and y1(U1

) = y2 (U 2 )9'- a.e. on F. 
Defming l-j = V] + VJ in L2 (ro), we have thus 

(A.17) 
(I) 

which proves Lemma 3. 

Appendix 3 

1. P r o o f of Lemma 1 

Since / 0 is continuous, f 0 (E 0 ) is dense in f(E) = F and since F is 
fmite-dimensional, the linear subspace / 0 (E0) is closed, hence fo (E0) =F. Let 
p be the canonical mapping of E0 onto E~ = E0 (Kerf0 and / 0 = f~op the 
corresponding factorization. Again, the fmite dimension of F implies that f ~ is 
a bicontinuous one-to-one linear mapping of E~ onto F: in particular, f~ is an 
open mapping. That p also is an open mapping, follows easily from the 
definitions of the quotient space E~ and its topology (e.g. DtEUOONNE [8]). 
Thus, the composite fo is an open mapping. Let U be an open set in E 
and X an arbitrary point in U. There is an rr > 0 such that the open ball 
B(X,2rr) of radius 2rr is in U, hence, for every Ye B(X,rr) the ball B(Y.rr) 
is in U. Since / 0 is open and linear, it is easy to see that / 0 is "uniformly 
open", i.e. there is a £5>0 such that B(f(X0),t5)cf(B(X0 ,rr)nE0 ) holds 
for every X 0 E E0 • Since f is continuous, there is an ~; > 0 such that 
f(B(X,e)) c B(f(X),b) and it is possible to choose e~tf. The subspace E 0 being 
dense in E, there is an X0eB(X,~;)nE0, whence f(X0 )eB(f(X),t5) or equiv­
alently f(X)E B(f(X 0),£5) which is inf(B(X 0,rr)nE0). But since~;~ tf, X 0 belongs 
to B(X,rr) and thus B(X 0,rr) c U. Hence f(X) ef(U n E0 ), which completes the 
proof. The proof is also valid for metric linear topological spaces. 

2. Proof of Lemma 2 
Denote 

A"= {x;d(x,A) = [Inf(!lx- yl!:yeA)] ~ b}. 

The assumed regularity of ow implies that v(ow)") vanishes with £5. For 
every t5 > 0 there exists an infinitely differentiable function cp d such that 
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0:::; (/)a:::; 1, (/)a(x) = 1 if d(x,ow):::; {Jj2 and tp,(x) = 0 if d(x,ow) ~ {). From the 
"trace theorem of zero order" (e.g. [7]), we know that there exists a field 
WeH 1 (ro) such that Wlaw = U. For any {)>0, we have also (tpa W)j&o = U and 
moreover 

(A.18) faJtpaWIIdv :::;: J 
1

11WIIdv-.O as {J--.0 
(&w) 

whence Lemma 2 follows. 
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