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Perfectly plastic plates loaded by boundary bending moments:
relaxation and homogenization

J.J. TELEGA (WARSZAWA)

EFFECTIVE MODELS of Eerfectly plastic plates with periodic structure are obtained by the method of
I'-convergence. It is shown that loading of the boundary by bending moments essentially influences
the process of homogenization and the final results. Relevant relaxation problems are discussed in
detail.

1. Introduction

IN OUR PREVIOUS PAPERS [50, 51] the problem of homogenization of perfectly plastic
plates clamped at a part [ of boundary and subjected to transverse forces at the com-
plementary part I} was solved. Distributed loading, e.g. body forces, was also taken into
account. New aspects (and difficulties) appear when the plate is additionally subject to
boundary bending moments. The aim of the present paper is to solve such more compli-
cated problem of homogenization provided that the plate reveals fine periodic structure.

The space HB({2), defined by (3.2), plays an essential role in the mathematical study
of perfectly plastic plates [19, 20, 22, 54]. In our case 2 will represent the mid-plane of
the plate. The trace operator 7, is strongly continuous even if the underlying topology of
HB(£2) is the weak one. Unfortunately, it is not so with the trace operator 7, (the trace
operators are introduced and discussed in the paper [21]). Hence the need for relaxation
of the relevant functionals. If boundary moments are absent then only one boundary
trace condition on I}, has to be relaxed [50, 51]. Physically this is obvious since on I
a plastic hinge can appear. An additional relaxation functional has to be introduced for
dealing with boundary moments. Moreover, the space of virtual fields on I is treated as
independent from virtual fields on 2.

In Sect. 5 the study of relaxation is performed. It seems that the results obtained
can also be used for solving some existence problems. Demengel’s existence results for
perfectly plastic plates are restricted to the case M = 0 [19, 22, 54], where M! is the
boundary moment. We observe also that little is known about existence theorems in the
case of limit analysis of plates, cf. [16].

Homogenization problems are studied in Sect. 6. Assuming that the plate exhibits
fine periodic structure, the effective model is constructed. To this end the method of I'-
convergence is applied. The study of homogenization in the case of limit analysis reveals
the influence of the boundary moments on the limit load multiplier of the macroscopic
plate. The latter is found by solving two limit analysis problems: one, more conventional,
on {2 while the other on I'. Similar result was earlier reported by BOUCHITTE and
SUQUET [11] in the three-dimensional case, cf. also Ref. [46]. Knowing the limit load
multiplier for the homogenized plate one can next perform homogenization of an elasto-
perfectly plastic plate made of a Hencky material. The homogenization problems solved
essentially exploit the relaxation technique developed in Sect. 5.
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The effective model of a plastic plate with periodic structure depends upon the problem
studied (limit analysis problem or elasto-plastic Hencky plate) and boundary conditions.
Rigorously, it is inferred from the epi-limit of appropriate sequence of functionals. How-
ever, the homogenized or effective plate properties in the open domain {2 are given by
the function j", specified by the formula (6.4), for the Hencky plate. Similarly, for the
limit analysis problem such role is played by the dissipation function j%, cf. (6.6).

For more information on homogenization problems in plasticity the reader should
refer to [7, 23, 24, 38, 41, 4448, 50, 51, 53].

2. Elements of the theory of epi-convergence. Epi-convergence and duality

2.1. Epi-convergence

Detailed presentation of the theory of epi-convergence, which is a particular case of
the so called I'-convergence, is available in the book by ATTOUCH [1], see also Refs [2,
3,9, 55].

DEFINITION 2.1. Let (X, 7) be a metrisable topological space and {F}.> a sequence
of functionals from X into R, the extended reals. _
(a) The T-epi-limit inferior T-li. F, denoted also by F*, is the functional on X defined
by
Fi(u) =7 — li.F.(u) = min - o liminf Fe(uc).
U, —ru} o,
(b) The T-epi-limit superior T —ls. F, denoted also by F*, is the functional on X defined
by
F?(u) = 7 — Is. Fy(u) = min g ) lim sup F(u.).
e—l

(c) The sequence {F.}.v is said to be T-epi-convergent if F'* = F'°. Then we write
F=71—lim.F,.

PROPERTIES

Let F, : (X,7) — R be a sequence of functionals which is T-epi-convergent, I’ =
7 — lim, F. Then the following properties hold:

(i) The functionals F* and F’* are T-lower semicontinuous (7 —ls.c.).

(ii) If the functionals F, are convex then F'* = 7 — ls.F, is also convex. Hence the
epi-limit F' = 7 — lim, F, is a T-closed (T —ls.c.) convex functional.

(iii) If # : X — R is a T-continuous functional, called perturbation functional, then

T—lim(F+@)=7—-lim F,+P=F+&.
(iv)
Y, —5 u, F(u) <liminf Fo(ue), u€ X;
- . E—r E—

F(u) = 7 = lim  Fe(u) & Yu € X Ju, — u such that F(u) > limsup Fe(u.).

e—0 e—0

In practical situations the last property plays an important role. Very useful is also the
following theorem.
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respectively. If Fi(z) = F*(z), for each x € X, then we write (cf. Def. 2.1)
F=7r—-1lim,F,.

e—()
In metrisable topological space the Definitions 2.1 and 2.3 coincide. For instance, in a
general topological space we have

When (X, 7) is metrisable space, in (2.2) equality holds.

2.2. Epi-convergence and duality

Having a sequence of functionals { F; } . one can construct the sequence of conjugate
functionals F by using the Fenchel transformation

(2.3) Fr(u*) = sup{(u*,u) — Fe(u)|lu € X}, u"€X".

As usual (X*, X, (.,.)) is a dual pair, cf. Refs [28, 36].

Now a natural question arises: what is a relation between the epi-convergence of the
sequences {F: }c>q and {F}}c50, respectively? Existing results are confined to convex
problems, see Refs. [1-3, 5, 6, 55]. ATTOUCH [2, 3] investigated such an interrelation
provided that X is a reflexive separable Banach space. More general results were obtained
by AZE [6] who assumes that X is a separable Banach space.

By Iy(X) we denote the space of convex lower semicontinuous and proper functions
on X, cf. Refs [28, 36].

THEOREM 2.3 [6]. Let X be a separable Banach space and {F.}c>9 C 1y(X). Assume
that

(i) F =s-lim,F,,

(ii)) lim sup F*(u}) < +00 = sup||ul||x~ < oo.

Then
(2.4) F* = w™ - lim F;.

| |

In the assumption (i) s denotes the strong topology of X whereas in (2.4) w* is the
weak-* topology of the dual space X *. The last theorem is important for studying homo-
genization of perfectly plastic solids and structures like plates loaded at their boundary, see
Sect. 6. This theorem is also important for the formulation of the duality theory proposed
by AZE [5]. Azé’s theory is a convenient tool for performing the dual homogenization
of solids and structures under the assumption of convexity, cf. Ref. [52]. However Azé’s
theory will not be exploited in the present paper.

3. Space HB(f2). Convex functions and functionals of a measure. Representation of
convex functionals of a measure

Before passing to the study of perfectly plastic plates it seems appropriate to introduce
relatively less known, but essential, notions and results.

2 C R? will always denote a bounded domain of the plane. EZ is the space of
symmetric 2 X 2 matrices. By M'(£2,E2) we denote the space of bounded measures with
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values in E2 [9, 10, 21, 32, 54]. The necessity of introducing of such a space follows from
the fact that for perfectly plastic plates the gradient of displacement or of velocity can be
discontinuous. Hence the second derivatives are no longer functions but measures.

Let Cy(§2,E2) be the space of continuous functions on {2 with values in E2 and
vanishing on the boundary, that is for every ¢ > 0 there exists a compact set K, C {2
such that |@(2)| < € for all z € 2\ K.. The norm is given by

(3.1) Yo € Co(12,E2)  |l@lloo = sup{|e(z)],z € 2} .

The triple (M'(£2, E2), Cy(£2,E2), (., .)) constitutes the dual pair, where in this case (-, )
is the duality bracket between M!(§2, E2) and Cy(£2, E2).

For mathematical study of the aforementioned discontinuities it is natural to introduce
the space HB({2) [19-22, 25, 54].

(3.2) HB() = {u € W"(2) | k(u) € M(2,E2)},
2
where k(u) = (U,ag) = (3_u> = VVu = D?u (in the sense of distributions). By
BCEGBSL‘E

(z) (o = 1,2) the Cartesian coordinates of the plane have been denoted. W1(42) is
the usual Sobolev space

(3.3) W) = {ue LY (D) | u,o € LY (2)}.
We shall also extensively use the following Sobolev space
(3.4) W2 (02) = {u € Wh(2) | kap(u) € L(2)}.

As usual, L'(2) is the space of Lebesgue integrable functions. All the introduced spaces
are nonreflexive Banach spaces (unfortunately !).
The natural norm on the space HB({2) is defined by

(3.5) lull By = llullwirgy + ||'<(u)||w(n,eg) ,

where

(3.6) ||'<(u)||w(r2,£§) = sup{(k(u), 9) | ¢ € Co($2,E}), |@(z)| < 1}.
In (3.6) | - | denotes the Euclidean norm.

Let II,(§2) be the space of distributions with vanishing second derivatives. Then (3.6)
defines the norm on the quotient space HB({2)/11,(§2), equivalent to the norm induced
by the norm of the space HB({2), provided that the domain {2 has the cone property
[21]. DEMENGEL [21] proved that the injection

(3.7) HB(2) c Wh(92)

is compact.

As we have already noted, in the case of perfectly plastic plates the components of
the tensor of changes of curvature (or their rates) are usually bounded measures and
not L' functions. Hence such notions as the total dissipation and the density of plastic
dissipation, depending upon those measures, have to be precisely defined. To this end
very useful are convex functions and functionals of a measure. Let us briefly discuss these
notions. Firstly, however, some assumptions have to be introduced.

(Hy)| Let f:(z,e) € 2 x E2 — RU {+00} be a normal convex integrand.
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We recall that then f is convex and ls.c. with respect to e € E2 and measurable with
respect to (z, e) € 2XE? [28]. If p € M'(£2, E2) then p < dz denotes that p is absolutely
continuous with respect to the Lebesgue measure dz = dadz; and p = h(z)dz. We set

~ [ fz,h(2))de, ifp<de and he L}R,E),
(3.8) Fw=14 a

+00, otherwise.

Now we make further assumptions:
(Hz) | e € Co(2,E2), b€ L'(N2) suchthat f(z,e) > Poaps(®)eas — b(a),
Y(z,e) € 2 x EZ,
(H3) | 3wy € L'(R2,E2)  such that f flz,vy(z))dz < +00.
o)

BOUCHITTE [9] (see also [12]) proved that under the assumptions (H; )-(Hj) the functional
(3.9 F(w) =sup{(p.0)— [ [z, 0()dz | € Co(,ED}, n € M'(R2,ED),
2

represents the lower semicontinuous regularization of the functional F in the weak-x
topology a(M!(£2,E2)), Cy(£2,E2)). Here f* denotes the polar (conjugate) function of
f(z,"), that is

(3.10) f*(z,e) =sup{e” e — f(z,e)| e € E}}, e* €EZ,
where e* : e = €} ;e,5. The functional F(p), denoted also by f f(u), is a convex
n

functional of a measure p € M'(§2,E2) and T(p) is the convex function of that measure,
being itself a measure.

The approach used by BOUCHITTE and VALADIER [12] is an alternative one to that
primarily proposed by DEMENGEL and TEMAM [25], see also [54]. HADHRI [33, Chap-
ter VII] refined the results due to DEMENGEL and TEMAM and demonstrated that the
Lemma 1.1 given in [25] is not valid, when the supremum is taken over 'Df(LL). The
same regards the formula given as Eq. (11.4.22) in the book by TEMAM [54].

For better comprehension of our subsequent considerations it seems instructive to
give the definition due to HADHRI [33], adapted to our case. The definition of Demengel
and Temam follows if f(z,e) = g(e). Let f be a function which satisfies the following
assumptions:

(H) | f: xE%2— Ris a convex normal integrand, hence the function f(z,-) is
continuous.

(Hy) | 3k >0, Fky € L1(2); V(z,e) € 2 X E2, f(z,e) < kile| + ko(z).

(Hs) | 3k € LY(2), V(z,e) € 2 x E2, fa(z,e) < f(z,e) + kz(2).

Here f, is the principal part (the recession function) of f defined on 2 x E2 by
1
(3.11) f4(x,e) = lim —f(x,te) = lim pf (m, E) = sup{e* : e | e* € domf*(z,-)}.
t—oo { p—0 P

As usual, domf*(z, ) is the effective domain of the function f*(z,-) [40]. In applications
to limit analysis problems the recession function is nothing else as the dissipation density.
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In a first instant Hadhri assumes that

(3.12) V(z,e) € 2 xE}, f(z,e) > f(z,)) = 0.
Further we define
(3.13) Vi ={ve Cu2,ED) | f*(,v()) € LY(D)},

where C.(§2,E2) is the space of continuous functions with compact supports in {2 and
with values in E2. The norm is given by (3.1).
For p € MY(£2,E2) and @ € C}(£2) = {p € C.(2) | VT € 2, (z) > 0} we set

(3.14) (), 0) = sup{(wvp) = [ f*(@,v(@)p(z)da | ve V).
2
If ¢ does not belong to C'f(§2), by means of the decomposition
(3.15) Vo € Co(2), 3", o) EICIDF, e=¢" -9,
we can set
(3.16) (), 0) = (Fw, ") = (Fw),¢7) -
Suppose now that f is defined by
(3.17) f(z,e) = fi(z,e) + a(z) : e + b(a),

where b € L'({2), a: {2 — EZ is a bounded Borel function and f; satisfies (3.12). Then
for ¢ € C.(£2) we set

(3.18) (T, ¢) = (T, 0} + (a0 + [ boda.
i}

In the sequel, for the sake of simplicity, the bar over a function of a measure will be
omitted.

Having defined a convex function of a measure, one can construct a convex functional
of the same measure [25, 33]. On the other hand, the approach used in [9, 12] is a reverse
one; for interrelations the reader should refer to Ref. [12].

The following lemma is important for mathematical investigations of perfectly plastic
plates, including homogenization problems [19, 21, 22, 25, 54].

LEMMA 3.1. Let f be a convex function on EZ satisfying the following property
(3.19) 3402 X >0, k>0, VecE; Ale|—ky< fe) < Ag(1+]e]).
Let " be a functional on W1(§2) defined by

[ fxwy, it ue HB@),
(320) F(U) = 0
+ 00, if ué€e WI,I(Q) \ HB(.Q)
Then
(i) F' is the lower semicontinuous regularization of the functional
(3.21) Feu) = { Fu),  if u e C®W) N WD),
+oo otherwise,

in the strong topology of the space W!!({2). The functional F is convex and continuous
on HB({2).
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(ii) For each u € HB({2) there exists a sequence {un,}nzo C C®(2) N WHI(£2)
such that you, = Yu, N1Un = N4, VR €N,
wil(2)

ta — 0w, [k = [ k@),  Flun) = F(u),
n n

n—

where v, and 7; are the trace operators; Yyu € Yy(W?1(§2)), v € LY(I"), I' = 952.
| |

Obviously N is the set of natural numbers. Further we observe that the functional
given by (3.20) is to be understood as a convex functional of a measure, since for u €
HB(2)\ W21(£2) one has x(u) € M!(£2, E2). We also recall that || is the total variation
measure associated to p; further by (dp)/(d|p|) the density of p with respect to |p| will
be denoted.

Let

(3.22) B = H(@)dz + 1y,

be the Lebesgue decomposition of p into absolutely continuous and singular parts with
respect to dz. For instance, if p = k(v) (v € HB(§2) denotes a velocity field ) then p,
represents the singular part of the tensor of changes of curvature on discontinuity lines.

Now we can formulate a fundamental result related to the integral representation of
the functional (3.9).

LEMMA 3.2. Under the assumptions (H,)-(H3) and
(3.23) Ve>0 36>0 VY(z,2)€ENx 2, VecE:
|z — 2| < 6 = |f(z,e)— f(z,e)| < e(1+ |e]),
we have

620 Py = [ f@unde+ [ fa(a ok
? 2

, (x))dlusl, b e MU(2,E).
d|ug|

For more details on integral representations of functionals of measures the reader
should refer to [9, 10, 12, 14].

4. Plate models and extremum principles

In the sequel by £2 C R? we shall always denote a sufficiently regular and bounded
domain. 2 is the middle plane of plate. By M = (My3), k = (Kap) and D = (Dy32,)
we denote the moment tensor, the curvature tensor (or its rate in the case of limit analysis)
and the tensor of elastic moduli, respectively. The last one is not necessarily isotropic and
Dapry = Dgary = Dajaps. We assume that
(4.1) Je>0 Vee E.ZST Dopgru(@)eapery 2 ceapeags
for almost every (a.e.) = € §2. Our next assumption is D,gx, € L*(§2), hence
(4.2) Je;>2¢>0 Ve€EL Dagau(r)eapery < Creapeas, ae € £,

Let C = C C E? be a bounded convex set of plastically admissible moments such
that 0 € int C'. For instance, in the case of the Huber-Mises yield criterion the elasticity
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convex set C' has the following form [34, 42, 43]:
(43)  C={M=(Map) | M}, — My My, + M7, + 3M}, - M§ < 0},

where M|, stands for the limit bending moment.
Let us set

l .
% — —Aag)\ MaﬁM,\ 5 if Me(C,
(4) 7"M) { %o, | i mec,

where A = D~!. Equivalently one can write
- 1
(4.5) J°(M) = EAaﬁAﬂMaﬁMAu + Ic(M).

Here I denotes the indicator function of the elasticity convex C' [40]. It is worth noting
that C represents also the effective domain of the function j*, or C = domj*. Moreover,
we have

(4.6) j€)=(")(e), e€ES,

where

(4.7) j)=sup{M:e—j*(M) | M€ E2} =sup{M:e—j"(M) | M€ C}, ec E2.
The function j is convex, lower semicontinuous and has the following property [19, 54]
(4.8) A4 > A >0,  Ao(le] — 1) <j(e) < Ay(1+e]), ecEL.

Moreover, 7(0) = 0 and j(e) > 0 for each e € E2.
The constitutive equation describing the elasto-plastic plate, within Hencky—Nadai—
Ilushin model, has the following subdifferential form:

4.9) K € 07"(M) = (AapruMyy) + 0Ic(M).
Thus we have

(4.10) K= K®+ kP,

where

(4.11) ﬁgﬁ = AapruMyy, kP € 0Ic(M).

The recession function j4 is now the support function of the elasticity convex C' and is
calculated according to

jd(e) = lim pj(g) =sup{M:e|MeC}, ecE:.
p—+ p

The function j4 is convex, lower semicontinuous and positively homogeneous on EZ;
moreover it satisfies the following condition

(4.13) 345> Ay >0, Ajle| < ja(e) < AY1 + |e]), e€EL.

In the case of limit analysis 74 is the density of plastic dissipation. For nonhomogeneous
materials the functions j, 7* and j4 depend explicitly on € §2. However, nonhomo-
geneities are not essential for considerations of the present and next sections. Nevertheless
it should be noted that developments of these two sections remain valid in such a more
general context. Both the function j, given by (4.6), and the function jq are finite and
convex, hence they are continuous [40]. Their growth is only linear, that is they are sub-
linear functions. The last property leads naturally to assuming the space HB(f2) as a
space of kinematical fields.
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EXAMPLE 4.1. Let the elasticity convex of plastically admissible moments be given by
(4.14) C={M= (M) | aM) < k}.

Here the function a is not necessarily isotropic. If £ depends on z € 2 then obviously
also C does. In such a rather general case it seems impossible to find explicit forms of the
functions j and j,. Especially complicated is the problem of finding j. Some particular
examples are given by Demengel for isotropic plates [19, thése].

If the function a has the following form

1
(4.15) a(M) = EFaﬁAuMQﬁMAu s
then
(4.16) ja(e) = 2Gaprueaperk)’?, G =F71,

provided that F is positive definite.

For more information on mechanical aspects of plastic plates, see Refs. [34, 42, 43].

Let I' = 902 = TyuUT,, I)yn I} = 0, and assume that the measure (length) of
I is strictly positive. The bar over a set denotes its closure and () is the empty set.
Along the part I} of the boundary kinematical conditions will be imposed. By B the
transverse loading of the plate is denoted. We assume that B € M(§2) = [C(2)]*.
It means that concentrated forces are admissible. One observes that the embedding
HB(£2) C C(42) is continuous, provided that 2 has piecewise uniform C?-regularity
property [21, Remarque 3.2]. For instance, such an imbedding holds for rectangular
plates. Hence we conclude that the linear form

(4.17) Li(u) = (B,u)M(me(ﬁ),

is continuous on HB(f?2), thus it is also weakly continuous. The functional L of the total
loading of the plate is assumed to be given by

@18)  L(w)= L+ [ Qudl- | M,‘{Ql—LdF = Li(w- [ M}{a—"dr.
n Jn
I I T

To conform to notations used in structural mechanics we prefer to employ the notation
Ju/On instead of v u in the loading functional L. The largest domain D(L) of L is
the space HB({2); particularly, L is well defined for v € W»(2 C HB(f2). Here
Q" € Le°(I), MY € L°°(I}) and @, M are prescribed shearing forces and bending
moments, respectively. Unfortunately, the functional L is no longer weakly continuous
on HB(f2), except the case when M} = 0.

Let us pass to the formulation of dual extremum principles. To this end we introduce
the set K of kinematically admissible fields

(4.19) Ky={ueW»(2)|ymu=0u=0,onl,}.

For a given load multiplier A the kinematical principle is formulated as follows.

PROBLEM P,
Find

inf{ [ ik de — AL(u) | u € I\q,} .

”
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The dual problem can be derived by using Rockafellar’s theory of duality [19, 54].
PROBLEM Py
Find
sup{ - [i*mydz | Me S,\},
2

where
(4.20) Sy={M€ L®(2,EY) | Myppa+AB =0, inf;
Q=2Q", M,=2M! onl}; M(z)eC, ae.zc2}.
Here () is the effective shear force. Strictly speaking, instead of () and M,, we should
use trace operators, say by and b;. In general we have by(M) € [yo(W2!(£2))]*, b)(M) €
L* (1), provided that M € S(£2) = {M € L*°(£2,E2), Mup pa € L'(12)}, see [19, 54].
For M € C?({2,E?) we have

d
(4.21) Q = Magp,pna + 5-(MapnpTa),
(4.22) M, = M,gnang.

In this formulae n is the outward normal unit vector to I' = 942, 7 is the tangent unit
vector and s denotes a curvi-linear abscissa on I' measured positively in the direction of
t. Obviously, the load parameter A cannot be arbitrary. It is limited by the limit load
multiplier A = inf Pr, 4.

We pass now to limit analysis problems.

PROBLEM Pp 4

Find

inf{ [ ddx()]dz | v € Ky, L(v) = 1}.

kr]

PROBLEM P74
Find

sup{\(M) | M € S,}.
We recall that a field u occuring in the problem P, is the displacement field, while for
the problem Pr,4v is a velocity field.

The above problems are essential for developments which follows. The next lemma
provides deeper insight into some interrelations between them, cf. Ref. [19-22, 54].

LEMMA 4.1. The following conditions are equivalent:
(i) inf Py = sup P > —oo.

(i) Sy # 0 (0—empty set).

(iii) X=infPp4 > A

5. Relaxation

In perfectly plastic solids and structures like plates discontinuities are often present
[34, 42, 43]. The presence of kinematical discontinuities implies that the space W21(2)
is too small to incorporate them. Hence the need for the space HB(f2) to which a mini-
mizer of the kinematical problem belongs, cf. [19-22, 54]. Further, the weak convergence
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of a sequence {u,} C HB(f2) to u € HB(f2) does not necessarily imply the strong
convergence of ¥;u,, to y1u in L'(I"). An additional condition is required to ensure such
convergence [22].

A relaxation of some boundary conditions turns out to be a convenient method in the
mathematical treatement of boundary value problems of perfect plasticity, cf. Refs. [19-22,
44, 46, 54].

Let us set

(5.1) E(u, (%) ) = Ly(u) + FfQ“udI‘—

. ou\ " .
where the functions « and (— are two independent arguments of the loading functional

On

+
L. The function (gﬁ) may be thought of as the external trace (y,u)* on I, provided
n

that u € HB(2). Physically, the kinematic field on which the moment M acts is treated
as an independent field. The domain of the functional [ is the space W2!(2)x L'(I}). In

the next section we shall also have D(L) = HB(2)xM"(I}), provided that M € C\(I).
The symbol (-)* should not be confused with the positive part of a function.
Now we pass to the formulation of the relaxed problems.

PROBLEM R P,
Find

int { J tecotde + Ff jalF(—mu)dl + Ff jd[z((g—:f—m)]dr

+ +
-,\E(u, (@) ) ) u € WH(2), (g—") € LY(I),yu =0, on F“},
n

N
f (a_n) Mbdr,

I

JOn
where
(5.2) Fop(p) = pnang.
PROBLEM R Py 4
Find
int{ [ Jabew)da + [ jal E-ro)dr

7] Iy
v e W),

av\*
« LilE((G) - me)lor
1;1[ Jn
+ +
(gs) € L'(I),yw =0 on Ft)sL[Ua (gﬁ) ] = 1}’
We shall prove that

(5.3) Pr,=RP[,.
To this end the theory of duality presented in [28] will be employed. Let

1t (1 (35 = () ), )
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Vi={veW?(@)|v=0, only}, V=V,xIL(}),
A:V =Y =LY (Q,E) x L(Ly) x LNIY), p=(pupups) €Y,
p* € Y* = L®(2,E2) x L®(Iy) x L=(I1), G(p) = Gi(m) + G2(p2) + G3(p3)
where
Gip) = [ dap)dz,  Gap) = [ julE(-p)ldI,
n Iy

Ga(ps) = [ jdlE(p))dT .

I

) x )

+00, otherwise.

We set

Under the above notations the problem R P 4 means finding

. v\ av\" ov\
se{o[a(e &)+ # (@D (&) ) <)
The dual problem has the following form [28]:
(RPF 4) sup{~G"(p") — F"(=A"(p") | p" € Y"}.

Because the dissipation density j4 is a support function, hence

wroxy _ ) 0, if pf(z)eC forae. €S2,
(2 Gi(p) = { +00, otherwise.

By using DEMENGEL'S results [19], we have

seowy — [0, if  py € Sy, bi(py) = —p3, on Iy,
(7a) G2(p2) = { +00, otherwise.

Similarly one obtains

wiawy — )0, it py € Sy bi(p}) = p3, on I,
(346) G3(p3) = { +00, otherwise.

Setting M = p} one has b;(M) = M, = M,gnang (on the boundary I'), provided
that M is sufficiently regular, for instance M € C?(§2,E2). It remains to determine
F*(—A*p*). We have

1) )
cn{(wa(e () 10 ) -6 () )




728 J. J. TELEGA

* " . v\t
57 s~ [otmatrie foivoar [ 55[(%)
7 Iy A
~ ov\" '\
_'hv]df 1 L(U, (B_n) ) =1, (’u, (B_n) ) & V}.
(9?)1) ¥ 5 av“ + ~ . PYRN
Let (vu, (a) ) € V be such that L[vo, (%) ] = 1. For an arbitrary (v, (an) )

@ (5()- () [oife ] ).

~\t ~\+
Hence it follows that (5, (?) ) € V and i(%, (?) ) = 1. Taking a function
n n

~ N\ + +
(5, (@) ) in (5.7) instead of (v, (@) ) we get
On On

(59) F*(_A*p-u) = Sup{ — fp;aﬂf{aﬁ(v) dz — f p;ﬁ/,vdf
2 Iy

- Jl) a2 p-2( G- ) ) e

»* * 8v - *
A= f‘?fPlaﬁ"{aﬁ(vu)di’i'+ r{l’z’hvudr‘* rf (3_1:)) pydl’.
) 1

where

+
To calculate the supremum in (5.7) we first take (?) = 0 and v € D(S2). Then we
n

readily obtain
(5.10) F*(=A"p*)> A + sup{ f [=Plapiap(v) — ABv]dz | v € 'D(.Q)}
n

_ /\, if p;aﬁ,ﬂa + /\B ] 0, in Q,
~ | +0o0, otherwise.

Let us return to (5.9). Integrating by parts one obtains

F*(—A*p*)=A+sup{— [ @tappav + ABvYdz + [ [P} = bi(p])vavd ]
2

Iy
+ f [b()(pf)—/\Qo]')'()vdF'F f[—bl(pf)-{-p;]‘ylvdf
Iy n
ov\" ov\'
o [ (2) o ormmar | (o, (2 ) e},
I{(Bn) 4 an)

Taking into account of (5.10) and knowing that v and (?

+ .
) are independent functions
n
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one finally arrives at the following relation:
(5.11) F*(—A"p")
Aa ifpra,ﬁ,ﬂa +AB = 0, in 'Q’ bl(p;) = _p;’ on I‘(h
= and  by(py) = AQ",  p3 =bi(p}) =AM, onIy
+00, otherwise.

By taking now account of (5.4)—(5.6) and (5.11) in the general form of the problem
RP}, and setting p; = M, we deduce that P;, = RPy,. Thus by employing the
duality theorem [28] we write

(5.12) infPrLs =supP;, =supRP[, =infRPp4.
Similar considerations can be carried out for the problem RP,. Thus one can show
that RPy = Py and inf P\ = sup Py = sup RP; = inf RPy.

3 +
Let us find now the infimum over (;')_v) in the problem RPp 4. To this end for a
n

fixed v one has to investigate the following minimization problem

P, inf Fll=—| - dr'| Llv, | — =1, 4T
G {F{”[—((an) b ’ *\on an e 1)
By applying the theory of duality used previously we shall formulate the dual problem

. dv\" _ (0w +
Pr. We take A(Bn) = (%) and set

G@p) = [ jadE@-nv)dl,

Iy
+ . *
(GRS
On \dn
+00, otherwise.

Let us find the conjugate functions. We have

(513) G*(p*) = sup {(P',P)Loo(rl)xy(p‘) - f Jd[_}:(p - ’7{0)](1[‘ | PE LI(FI)}
Iy

= 1 (P" s M19) Loy x Liry)» if p*(s) € Cy(s) forae. sé€ Iy,
+ 00, otherwise,

where
(5.14) Cy(s)=C -n(s)-n(s) L {z| M € C, M (s) = z} .

It should be noted that the set C} of plastically admissible bending moments along I
depends, in general, on s € I, because the normal unit vector n does.

Further one has
( ) € L (Fl)v

(5.15) F(-A"p") = SuP{< - (g:) >L°°(me1(1‘1)
2 ()] =}
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519 =sw{( -2 (50) ), Felim 0+ [ (G) Mt

Iy
v\ . o(1 - Ly(v)), if p* = oM
| (%) ek (n)} B { +00, otherwise.
By taking account of (5.13) and (5.15) we obtain
(Py)  sup{{=P*, 1Y) Loo(rpxricry) — 0(1 = L2(v)) | p* € L=(I}), p*(5) € Ci(s),
p* = oMy} = M|l - L(v)],

where
(5.16) A = sup{o € R| oM!(s) € Cy(s), ae. s€I}.

6. Homogenization

6.1 Periodic structure of the plate and some general results

In the paper [51] results concerning homogenization of perfectly plastic plates were
reported provided that M? = 0. Prior to dealing with a plate loaded by boundary bending
moments, the general theorem concerning the epi-limit on the space HB({2) will be given.
The complementary homogenized potential will also be derived.

Let a perfectly plastic plate be periodically heterogeneous. Heterogeneities enter by
means of a periodicity of the function j, or j4 in the case of limit analysis. In other
words the function j(y, k) is Y -periodic with respect to y, cf. Refs [1-3, 8, 9, 15, 23, 24,
35, 37, 4448, 50-53, 55 ]. Here, as usually in the homogenization theory, Y is the so-
called basic cell. Now it is two-dimensional, for instance Y = (0, 3{) x (0, %}). It means
that the moduli A,g, and the elasticity convex C' are Y -periodic. The plate itself has
EY-perlodlc structure defined by A%, 5, ,(z) = Aapru(z/€) and C¢(z) = C(z/e), where
€ > 0 is a small parameter and 2 € f2. For instance, the periodic elasticity convex
corresponding to the relation (4.14) is given by

(6.1) Cé(z) = {M € E | aM) < k*(2),z € 22}.

Now the yield limit k%(z) = k(z/¢) varies €Y -periodically over {2.

Before passing in the next subsection to the homogenization of perfectly plastic plates
we shall first formulate a general homogenization theorem for a sequence of functionals
with linear growth and the epi-limit on the space HB({2).

THEOREM 6.1. Let 2 C R? be a bounded domain possessing the uniform C?-regularity
property, except possibly at a finite number of points of I' = 012. Let j : (y,e) € RZxE2 —
J(y,e) € R be a measurable function, convex in e, Y -periodic in y and such that

402 X >0, Tky >0, Aole] — ko < j(y,e) < Ag(1 +[e]),
for each e € E%. For each &€ > 0 we define the functional F¢ on W11(12) by
() uenda, i wewr@),
(6.2) Feu)=4¢ 5 €
+00, i ue WI(Q)\ W(0)
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Then WhY(2) — lim, ¢ = F!, where

[ i), i ue HB),
(6.3) Fhuwy=4{ 3
+00, if uwe Whi()\ HB(R),
and
’ , 1 .
6.4) M) = "‘f{m [ 3w xy(w) + e)dy | w € Wper}, e €E;.
Y
Here
(6.5) Whier = {w € Way) l w and Bgyﬂ have equal traces at the opposite
sides of Y} 2
and
L.
vl 0Yp0ya
]

The proof of the above theorem is lengthy and is given in the paper [53]. In principle it
parallels that invented by BOUCHITTE [8, 9] for the epi-limit on the space BV of functions
with bounded variation [32]. It is worth noting that Bouchitté’s proof exploits the density
of piecewise affine continuous functions in the space W1, In the paper [53] the following
results due to DESCLOUX [26] is used.

LEMMA 6.1. Let {2 C R? be a bounded domain with Lipschitzian boundary, 1 < p <
+00, and f € W?2P(12). There exists a sequence of functions f,, € C!(§2) with piecewise
constant second derivatives and such that

7{“_’{‘(,||f = fallweray = 0.
]
Surprisingly, but this lemma seems to have been unknown till now. It is of interest
not only for homogenization problem of plates. This result can find wider applications
in numerical analysis of some two-dimensional problems, for instance in finite element
methods. Its generalization to dimensions higher than two is not known.
In order to find the function (j4)* we simply replace the potential j by its recession
function j4 in Th. 6.1. In fact, deeper result holds true

(6-6) jd = ("= Go" -

Prior to proving that (j#); = (j4)*, we shall determine the polar function or the homo-
genized complementary potential (7#)*. To this end by v = (v,) and t = (¢,) we denote
the outer unit normal and tangent vectors to 8Y’, respectively. The following formula for
the complementary homogenized potential will be derived

67 GME) = mf{ﬁ [i*@,m@) +e)dy | me zmp,,}, e €E2,
Y
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where
(6.8) Mper = {m € L°(Y,E2) | div, divym =0, inY : m, takes equal and ¢

4
opposite values at opposite sides of Y'; Z my2(0;) = 0, f m(y)dy = 0},
i=1 Y
and
amaﬁ + amt
dyp ~ 0€

(6.9) m, = maplalp, q=Vq m; = Muglatp, O;

(i = 1,2,3,4)

are vertices of the cell Y while £ parametrizes 3Y.

Let us pass to the proof. Before, however, we observe that e* is the macroscopic
moment tensor. Thus we may write e* = M”. According to the definition of the conjugate
function we have [40]

(6.10)  (5")"(e*) = sup{e*:e - j"(e) | e € E}}

e€E2
since
f e* :ky(w)dy =
Y
Setting

X = k(W) DEZ, J(8) = [ i(y,0(¥))dy,
Y
we can rewrite (6.10) in the following way
1
(")) = =
Y]
Here @ denotes the direct sum of the involved spaces and Iy is the indicator function

of the space X. The polar functional (J + Ix)* is expressed in the form of the inf-
convolution [36, 40]

(6.11) (J + Ix)"(") = (J™0lmpy,)(€"),

provided that e* is identified with a constant element of the space L>°(Y,E2). We
have [28]

(J +Ix)"(e").

J*m) = [ *(y, m(y))dy.
Y

The set My, of microscopically admissible moments is found from the following relation
Mper = X = [y (Wper)] " N (B
We have
(ED" = {m € L¥(V,E) | (m €)oo =0, Ve€cE}.
For the sake of simplificity we use the following notation

{ -)00,1 = (, ')L°°(Y,E§)XL1(Y,E§)'
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Simple calculation gives

(6.12) D) = {me L2(YV,E2)| [ m(y)dy = 0}.
Y

One has to find now [k, (Wpe)]1. The definition yields

0= (m, ky(W))oo1 = [ Map()kyap(w®))dy, Y1 € Wpe.
Y
Integrating twice by parts, at least formally, we arrive at the relation

(6.13) 0= (m,ky(W)oon = [ Magpawdy— [ growds
Y ay

4
+ [ mumwde + 3 mu(0:)w(05),
aY i=1

for each w € Wp,,. Here ¢ (the effective local shear force) and m,, (the local bending
moments) are given by (6.9). Hence (6.8) follows. Further, from Eq. (6.11) we get

choyx o * 1l . * *
(") = % inf{J"(m;) + Loy, (m2) | €7 = my + mz, my € Mper }
1. * gk
= »I—Y—‘ inf{J"(e* — my) | my € M.} .

The set My, is a linear space, therefore we can write
how . 1 i
(6.14)  (j")y*(M") = mf{ry—l [ 3"y, m(y) + M*)dy | m € fmper},M'* € E;.
Y

Thus the relation (6.7) has been proved.

Finding the function [(j4)"]* similarly as (j*)* we conclude that dom[(j4)"]* =
dom(j")*. Physically, those effective domains represent the (convex) set of plastically
admissible macroscopic moments or the homogenized elasticity convex. This set is de-
noted by C'*, in other words
(6.15) C* = dom|[(j4)"]* = dom(;")*.

Hence we obtain
(6-16) ()" (e) = supfe” e | &* € dom[(ja)"]"}

= sup{e* s e | e* € dom(j")*} = (™)ale),
what proves Eq. (6.6).

6.2. Homogenization of plate loaded on the boundary

Now we pass to the homogenization of perfectly plastic plates provided that their
periodic structure is the same as that described in the previous subsection. The loading
functional is given by (4.18). However, now we assume once and for all that M, € Cy(I1).
Why such a stronger assumption is needed will become evident from our subsequent
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considerations. At this moment we note that a generalization to the case M} € L°°(I})
remains an open problem.
We start by the formulation of the relaxed limit analysis problem for a fixed ¢ > 0.

PROBLEM RFj ,
Find

A€ =inf{ fjd{g,x(v)]dx+ fjd[g,z(—»ylv)]dr
9]

Iy
+ Jale((f -
(& v 1 ()]

By using the results obtained in Sect. 5 we can write

(6.17) /\5=inf{nfjd g,x(v)]dm+ I{jd[g,ﬂ(—ylv)]df

veW,

#X3l1- LO)l v € W,
where, cf. the formula (5.16)
(6.18) § ={eeR|oM; € C(s),s € I},
and
(6.19) Ci(s) =C*®-n(s)-n(s) = {z | IM € C(a),
T €02, Mappa€ LX), Q € L®(IN), Ma(s) = z, s € I}

After [19, 54] we could assume M,z 3, € L'(2) (or even My g € M'(£2)).
Denoting by A" the limit load multiplier of the homogenized plate we have

(6.20) b = lim A* = min QPL, .,
where
@Pha int{ [N+ [ SHECHoMr + M- L) | v e HB(®),
2 Iy
Yov = 0, on F()} N
and
(6-21) Ay = sup{o € R| oM} (s) € CJ(s)N A(s), Vs € T}

Here C{(s) = C* . n(s) - n(s), cf. (5.14) and (6.15). We recall that M € Cy(I}).
More delicate and only partially solved is the problem of determination of the set A(s).
The results of BOUCHITTE [9, Chapter 111, Th. 4.8] permit to determine this set provided
that C'¢(z) takes only two values: C and C5. Physically it means that a plate exhibiting
the periodic structure is made of two materials. For one of them the set of plastically
admissible moments is given by C, while for the second by C,.
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Let us now recall the relevant results of BOUCHITTE [9] presented here in a form
suitable for our purposes, cf. also [13]. By © we denote a compact (or locally compact)
metric space. In applications O is usually a domain or its closure. We take:

)t — a positive measure (u € ML (D)), suppp = 9;

{A.}e>0—a family of Borel subsets of the set O such that u(9A,) = 0;

C}, C; — continuous multivalued mappings with values in closed and convex subsets
of R? having 0 as an interior point;

e r _ [ Ci(z), ifz €A,
(6) G m) = {C;(m), ifzeo\ A,
(6.23) K¢ = {¢ € Cy(O,RY) | @(z) € C(z),p ae. on O}.

Of interest is obviously the passage to the limit with ¢ (¢ — 0).

LEMMA 6.2 [9]. If int A, — A and int(D \ A;) — B when ¢ — 0 then A and B
are closed sets such that A U B = 9. Moreover, the sequence {/ ¢}, is strongly
convergent in Kuratowski’s sense to a convex set i; given by

(6.24) Ky = {9 € Cy(O,RY) | 9(2) € A(z), Yz € D},
where A is a l.s.c. multivalued mapping and

Ci(x)NC(z), if z€ANB,
(6.25) Az) = { Ci(), if ze€A\B,
Ca(x), it z€B\A.

REMARK 6.1. The convergence in Kuratowski’s sense and its relation to homogeniza-
tion problems are discussed by ATTOUCH [1]. More details on multivalued mappings the
reader will find in the book by AUBIN and FRANKOWSKA [4].

The next lemma, practically very important, gives sufficient conditions ensuring that
A =B =9 [9]. By x* = x4, we denote the characteristic function of A,.

LEMMA 6.3. If the sequence {X°}.>o converges in the topology a(L%°, L}) to a func-
tion 6(z) such that 0 < [|6][ o < 1 then the sets int A, and int(D \ A.) converge to O.

Preserving the notations of the previous lemma we then have A = B = O and
A(z) = Ci(z)N Cy(z), Vz € O.
u

EXAMPLE 6.1. Let us investigate a simple example illustrating the last lemma. Suppose
that © = I is an interval [a,b], see Fig. 1. Such a plate has the form of a wafer,
with layers perpendicular to the mid-plane. The basic cell ¥ has the following form:
Y = (0,1) = (0,a4] U (ay,az] U (az, 1), where 0 < a; < a; < 1. The characteristic
function of the set (interval) A; = (a1, a;] is defined by

[, if  a; <y<ay
The set A, is a sum of intervals AS" = (af,a$);, hence A, = U A5, For a fixed

1€ I(e)
€ > 0 the set A, (or rather its closure) represents that part of I} which is occupied
by the material (2). The sequence of characteristic functions x¢ converges to (a; — a;)
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in the weak-* topology of the space L°°([I7), cf. Ref. [18, p. 21]. Thus in that case
f(z) = a; — ay, 0 < a; — ay < 1. Now we have y = ds and A = B = I}; moreover

A(s) = [Cren(s) - nS)]N[Cy-n(s)-n(s)], Vse ANB =1,

where n(s) = (1,0). Hence we conclude that the set A does not depend on s € [7.
We recall that C';(C) denotes the set of plastically admissible states for the material (1)

(D). .

Layer of material )

Layer of material @

x|
[ IVIINIINIID. VeI %//// d

TN T SN SR Ni/ii
AR VMA R A MRV VIRARY
L T T T T

77T 7TT 77T 77T T 77 777777 q=[ﬂ,b]

FiG. 1.

Let us return to the limit analysis problem RPf 4. We set

(S A )

I

The functional prl is a conjugate one and we can write, cf. [13],

(6.28) Jf, = Ug)"  (in the duality (-, i) s
where
(6.29) Ct = {p € Co(1) | p(s) € Ci(s), ae. s € '},

The sequence {/=, } ¢ epi-converges to Iab in the strong topology of the space C'y(/),
b

where, cf. [9, 13]

(6.30) Cy = {p € Co(I) | p(s) € A(s),Ys € I} .

In the particular case covered by Lemma 6.2 the set A(s) can be characterized explicitly.
Let us briefly discuss such a case. Suppose that {2 = (2f U (25, where

2 ={zeR|C@)=C1}, 2 ={zeR|C(z)=Cy}.

Thus the plate is made of two materials. C'; and (; are their closed and convex sets of
plastically admissible moments. We set A, = 2§ N I}. Thus we have

gy x _ [ Cy-n(s) - n(s), if se€ A,
Cb(S) =C*°. n(s) - n(s) = {CZ - n(s) - n(s), if sel \Ae:
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Ifint A, — A and int(I" \ A;.) — B when ¢ — 0 then

[Cy - n(s) - n(s)] N [C2 - n(s) - n(s)], if s€ANB,
A(s) = < C; - n(s) - n(s), if s€A\B,
C5 - n(s) - n(s), if s€B\A.
Now we continue the discussion of the general case. Let dr,(s,-) denote the support

function of the set Cf/(s) N A(s). The results of Sect. 3 permit to extend it to a convex
function of a measure 1 € M'([}). Hence we can write

(6.31) Inw = [dns,p, pemMdy).
I

The space M!(I7) is dual to the separable space C(I}), so one can apply Th. 2.3. In our
case we infer that the sequence {J T }e>o is sequentially epi-convergent to the functional

Jr, in the topology o(M!(I}), Cy(I1)). Summarizing we formulate

1
THEOREM 6.2. Under the assumption M € Cy(I) the sequence \¢ of load multipliers
converges to the multiplier \", where

RPL N =int] [ b+ [ SHECor
2 Iy

+ [ drls,n - (nv)dl'} | v € HB(®),
Iy
=0 only pe MI(FI),I;(’U,;L) =1}.
The sequence of functionals

de[x’x(v)]dw+ fjd[;i(—'nv)]df

£ Iy
. [z dv\* ov\"
+ Lile2((5) -mo))ar+ (v () )
1

+
where v € W21(£2) and (gﬁl) € L'(I}), is sequentially epi-convergent in the topology
n
[w — HB(12)] x a(M'(I1}), Cy(I1)) to the functional
632) [l + [ GHECoMl + [ dnls,p— w)dl]+ I, p),
2 Iy ¢l
where

s Iv\' A i
K = {(v, (6—:> € WH(2) x LMY | 70v = 0 on I, L[v, (%) ] _ 1},

&= {(v,p) € HB(2) x M'(I) | 7ov =0on I}, L(v,p) = 1}.

|

By employing an approach similar to that which lead to the final form of the problem

Py, we infer that the problem QP}, results from RP}', provided that in the latter

one calculates the infimum over 1 € M'(I). In such a case on I the duality is to be
understood in the sense of (-, *)xi1(ry)x cy(r)-
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From the preceding considerations we conclude that, see also [11],
(6.33) AP = min(A%, AP,
where A} is given by Eq. (6.21) and

(6.34) Af = mf{ f]d[x(v) f IME(n))dl | v € WD),
Iy
v =0on Ty, L(v)= 1}.

We observe that in general C(s)NA(s) C C[(s) and the inclusion can be strict. It means
that the limit load of the homogenized plate explicitly depends on materials distribution
along /. Thus the weaker material, if not appropriately distributed, can lower the limit
load of the effective plate. For instance, considering Fig. 1 once again, if I} = [c, d] then
the set A(s) is determined by plastic properties of either weaker or stronger material,
depending upon which of them is distributed along I73.

Having performed homogenization in the case of limit analysis, we can pass to the
homogenization of elastic perfectly plastic plates made of Hencky materials.

PROBLEM P5 (¢ > 0 and fixed)
Find
inf{ fj[f,x(u)] dz — M(u) | u € K(,} ,
P £

where the loading functional is given by the relation (4.18) and M € C(I}). Next we
formulate the relaxed problem.

PROBLEM RP5
Find

inf{ fj[g,x(u)]d:r+ fjd[g,]j(—mu)]dF
2

+ flE () -)or 1] ()]

| w e W2'(£2),70u = 0, on I}; (%) € Ll(Fx)} .

The following theorem solves the problem of the homogenization of the elastic-
perfectly plastic plate made of the Hencky material and exhibiting the periodic structure.
Obviously, the loading functional is given by (4.18) and M € Cy(I}).

THEOREM 6.3. For each load multiplier \ such that 0 < X < A" (cf. Th.6.2) the
sequence of problems RP5 is epi-convergent in the topology [w — HB(£2)] x o[M(I}),
C[)(F])] to

(RP}) mf{ [+ [ SMECnwr + [ dnls,n— (rud)

Iy N

—/\i(u,,u) | u € HB(£2),you = 0on Iy u € M‘(I“l)} ;
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We observe that the problem R P} represents the relaxed form of the following one
Py it [ ) = AL | u € HB), i = 0,300 = 0, on Ty}
o]

According to the considerations of Sect. 5 we have
(6.35) inf P} = inf RP .

In the last theorem the epi-convergence evidently concerns the relevant sequence of func-
tionals.

7. Concluding remarks

Tracing back the idea of an independent treating of the external trace in the study
of functionals with linear growth, one comes across the papers by FERRO [29-31]. This
author investigated some problems related to minimization of functionals defined on the
space BV of functions with bounded variation [32].

The homogenization problems solved are a particular case of the homogenization
of a thin perfectly plastic solid with fine periodic structure. In such a case there are
two small parameters characterizing it. One of them is the thickness, say h, while the
other one is ¢, the parameter of periodicity. In our study we have started from the
two-dimensional model. Thus it has been tacitly assumed that the passage h — 0 had
been a priori performed. KOHN and VOGELIUS [35] proved that for linear elastic plate
two-dimensional homogenization is justified provided that ¢ & h%, a < 1, see also [15,
37]. Intuitively it seems that the same should hold for plastic plates. However, there
is a delicate problem of boundary conditions. It is known that asymptotic methods of
justification of elastic plate model cannot actually deal with mixed boundary conditions
[17, 27]. Hence it follows that the problem of homogenization of a thin perfectly plastic
body with periodic structure loaded on the boundary is a very complicated one. Obviously
we mean the construction of two-dimensional models when h — 0 and ¢ — 0 for various
combinations of these parameters. This challenging problem remains open.

Multi-layer plates are often used as structural elements. Suppose now that a thin multi-
layered laminate made of perfectly plastic materials has a fine periodic structure in the
transverse direction. A natural question arises how to construct the effective plate model.
The answer is simple provided that the plate is clamped at the boundary. Firstly, one per-
forms one-dimensional homogenization, thus obtaining a transversely homogeneous thin
three-dimensional body. Towards this end one can use the results due to BOUCHITTE [8,
9]. Secondly, the passage h — 0 yields the effective two-dimensional plate model. The
last problem has recently been solved by PERCIVALE [39] and TANG QI [49]. It is worth
noting that the homogenization process performed at step one smears out the layers or
their number tends to infinity while A is kept constant.
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