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Classification of thin shell models deduced from the nonlinear
three-dimensional elasticity. Part I : the shallow shells
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THE PURPOSE of this paper is to construct a classification of asymptotic shell models
(inferred from the non linear three-dimensional elasticity) with respect to the applied
forces and to the geometrical data. To do this, we use a constructive approach based
on a dimensional analysis of the nonlinear three-dimensional equilibrium equations,
which naturally gives rise to the appearance of dimensionless numbers characterizing
the applied forces and the geometry of the shell. In order to limit our study to one-
scale problems, these dimensionless numbers are expressed in terms of the relative
thickness € of the shell, which is considered as the perturbation parameter. This leads,
on the one hand, to distinguish shallow shells from strongly curved shells which have
a different asymptotic behaviour, and on the other hand, to fix the applied force level.
For each of these two classes of shells, using the usual asymptotic method, we propose
a complete classification of two-dimensional shell models based on decreasing force
levels, from severe to low. In the first part of this paper, we present the classification
for shallow shells. We obtain successively the nonlinear membrane model, another
membrane model, Koiter’s non linear shallow shell model, and the linear Novozhilov-
Donnell one, respectively for severe, high, moderate and low forces.

1. Introduction

THE sTUDY of thin shells is the subject of numerous works in mechanical struc-
ture area. The main goal of these works is to predict the behaviour of the shell,
when it is subjected to a known level of applied loads. To this end, many authors
have proposed two-dimensional shell models whose resolution is less difficult
than the classical three-dimensional equations. These two-dimensional models
may be obtained from the three-dimensional elasticity using essentially three
approaches!). The first one is a direct approach which consists in introducing a
priori assumptions in the three-dimensional Eqgs. |27][17]. The second one is a

Y Even if other approaches exist
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direct or surfacic approach where the shell is modelled as a surface embedded in
R3 [3]-[5][16][48][25]. Finally, the third possible approach is based on asymptotic
techniques. Contrary to the two first approaches, the asymptotic approaches,
based on mathematical techniques developed by J. L. LiONs [28] for problems
containing a small parameter, lead to a rigorous justification of two-dimensional
shell models.

In linear shell theory, H. S. RUTTEN [40] and A. L. GOLDENVEIZER [24] have
developed some ideas concerning the application of the asymptotic expansion
method to the shell theory. F. JOHN [26] has also proposed another approach
which is based on the estimation of the stresses and of their derivatives in the
interior of the domain.

However, the first rigorous results have been obtained by P. DESTUYNDER
[4][5] within the framework of linear elasticity. In these works, the author uses
an intrinsic variational approach which makes appear explicitly the curvature of
the shell middle surface. The application of the asymptotic expansion method
leads to the Novozhilov-Donnell model in the case of shallow shells and to the
linear membrane model in the case of strongly curved shells, also called general
shells by other authors.

Another approach using local coordinates has been developed in [11][21][22].
For “general shells”, the asymptotic expansion of linear three-dimensional vari-
ational equations leads to the classical linear membrane or to the pure bending
model [14][21], according to whether the middle surface of the shell admits or
not inextensional displacements. The importance of such inextensional displace-
ments in shell theory, which does not modify the metric of the middle surface,
is known since V. V. NovozHILOV [17] and A. L. GOLDENVEIZER [9]. The
study of inextensional displacements in linear theory has been systematized by
P. DESTUYNDER [14], E. SANCHEZ-PALENCIA [19](20], G. GEYMONA et al. [8]
and D. CHol [2].

These two asymptotic approaches have been extended to non-linear shell
theory. For shallow shells, the Koiter nonlinear shell model? and the non-linear
Marguerre-von Kdrmén one have been deduced from three-dimensional non lin-
ear Egs. [7][19][10]. For general shells, the non linear membrane model has been
obtained whatever the geometric rigidity of the middle surface is [13]. The
nonlinear pure bending model has been deduced in the case of non-inhibited
shells®) [11]. Let us cite also the works of W. Z. Chien [6] who tried to clas-
sify the geometrically two-dimensional nonlinear shell models by evaluating the
respective order of magnitude of the membrane and bending stress tensor con-
tribution in 2D general equations.

2Which is also named Donnell-Mushtari-Vlasov model.
3)In the nonlinear sense.
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However, on the one hand the these approaches generally use a priori scaling
assumptions on displacements which are unknowns of the problem. On the other
hand, the results obtained do not enable to deduce a general classification which
specifies the domain of validity of the two-dimensional shell models. In particu-
lar, the following paradox still subsists: when the nonlinear Koiter shallow shell
model and the linear Novozhilov-Donnell one are deduced, respectively from the
nonlinear and the linear elasticity, they are obtained for the same level of forces
and the same deflections. However, it is well known that these two models reflect
qualitatively different types of behaviour.

The aim of this paper is to present a constructive method of classification of
asymptotic shell models from the nonlinear three-dimensional elasticity, which
specifies the domain of validity of the obtained models. To do this, the asymptotic
models are deduced from the level of applied forces and from the geometric
properties of the middle surface of the shell.

In this approach, we use the following classical assumptions which enable to
simplify considerably the calculations :

e Shallow shells are assumed to be totally clamped on the lateral surface, to
avoid boundary layers. The study of these boundary layers is not the subject of
this paper?).

e The fields of applied forces and displacements are assumed not to vary rapidly,
in order to be able to use only one scale to characterize the displacements, and
only one scale to characterize the forces®. This is equivalent, as in [26][27][18],
to consider that the wave length of strain is of Ly order.

However, contrary to most of works on asymptotic justification of shell mod-
els, the scale of the displacements® is not a data of the problem, but is deduced
from the scale of applied forces. It is in this sense that the expression “without
any a priori assumption” can be used to characterize the approach presented in
this paper. This approach has been already validated in nonlinear plate theory
[34] - [35], in linear shell theory [15] and extended to nonlinear shell theory [6].
Let us notice as well that our approach can be applied to elastic-plastic plate
and shells [36].

First, using geometrical and physical reference quantities, we write the three-
dimensional nonlinear equilibrium equations in a dimensionless form. This nat-
urally makes appear dimensionless numbers F and G characterizing the level of
body and surface forces, and two shape factors £ and C, which characterize the

OThus we have no number characterizing the distance from a current point to the lateral
boundary, as in [26].

%)This assumption is not necessary and can be dropped. In this case, we have multi-scale
problems which are much more complicated. It is not the subject of this paper.

8 Which characterizes the order of magnitude of the displacements and is a priori an unknown
of the problem.
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thickness and the curvature of the shell. Then, to obtain a one-scale problem, the
dimensionless numbers F,G and C are linked to €. This leads to distinguish, as
in [4][5], shallow shells (where C = €?) from strongly curved shells (where C = ¢),
which have different asymptotic behaviours. For a given force level”), we make
the asymptotic expansion of equations with respect to the small parameter €.

Finally, to make out the classification of asymptotic shell models, we study
decreasing force levels, from severe to low. For each force level, the order of
magnitude of displacements and the corresponding two-dimensional model are
deduced from asymptotic expansion of three-dimensional nonlinear equations.
To each two-dimensional model that we obtain, we associate a minimization
problem. When we consider lower force levels, two cases are possible. If the
leading term of the expansion of the displacement is equal to zero, then we make
a new dimensional analysis of the displacement. If it is different from zero, we
continue the expansion of the three-dimensional equations. This constitutes the
original character of this approach. Indeed, the scalings on displacements are
progressively deduced from the level of applied forces.

For shallow shells, the classification leads to four kinds of models : a nonlinear
membrane model, another membrane model®), the non-linear Koiter shallow shell
model and the linear Novozhilov-Donnell model, obtained respectively for severe,
high, moderate and low force levels. These results can be summarized in the
following table:

Shell model In-plane Normal
surface forces surface forces
Nonlinear membrane model € £
Another membrane model g? £
Koiter’s non linear model €3 g3
Linear Novozhilov-Donnell model gh2t g+l

In the case of strongly curved shells, the classification obtained is more complex.
It depends not only on the force levels, but also on the inhibited or not inhibited
character of the middle surface in the linear and nonlinear sense. The classifica-
tion of asymptotic shell models for strongly curved shells will not be presented
here. It will be the subject of the second part of this paper.

2. The three-dimensional problem

In what follows, we index by a star (*) all dimensional variables. On the other
hand, within the framework of large displacements, the reference and the current

) A force level corresponds to a relation between F, G and ¢?, which is chosen as the reference
scale.
8Which has to our knowledge no equivalent in the literature.
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configuration cannot be confused. So the reference configuration variables will
be indexed by (g).

Let w} be a connected surface embedded in R®, whose diameter is Ly, with
a “smooth enough” boundary 3. We note Ny the unit normal to wy and Cj
its curvature operator. Let i;a be the identity mapping on w§, Twy the tangent
bundle of wy (the collection of all tangent spaces corresponding to all points pj
of wg), I the identity on Twy , II§ the orthogonal projection onto Twg and Jj
the m/2 rotation around Np.

Let us consider a shell of 2hg thickness, whose middle surface is wj. The
shell itself occupies the domain (I in its reference configuration where Q3 =
wix] — ho, hol is an open set of R*. We denote g the generic point of £ and
I‘Bi = wo*x{xho} the upper and lower faces of the shell. To simplify the problem
without loss of generality, we assume that the shell is clamped on all its lateral
surface 'y, = g x [—ho, hol.

We assume that the shell, subjected to applied body forces f* : ﬁ; - R3
and to surface forces g** : T§¥R — R?, occupies the set O in its deformed
configuration. In what follows, we set f* = f; + f*Ny (respectively g** = g:i +
g:* Np), decomposition of f* (respectively of g**) onto Twy & RNg. Moreover
we consider only thin shells (such as hg << Lg and hg||Cj|lc << 1), subjected
to dead loads which are independent of the configuration.

The unknown of the problem is then the displacement U* : ﬁ; — R3 (or the
mapping ¢* : 5 — R%) such that if ¢} € Q, denotes the initial position of a
material point, its position in the deformed configuration is ¢*(g5) = g5 +U*(g5)-

Fic. 1. Initial and final shell configuration.
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d
In this paper we will use the following notations: — and Div* denote re-
90

spectively the gradient and the divergence in the three-dimensional space, o
Po

gp—* and div* denote respectively the two-dimensional gradient, the covariant
der(ivative and the two-dimensional divergence defined on wj. The overbar de-
notes the transposition operator with respect to the metric and TrA the trace
of the endomorphism A.

Within the framework of nonlinear elasticity, the displacement U*: 0} — R3
and the second Piola-Kirchhoff tensor £* solve the nonlinear equilibrium equa-

tions

Div*(Z*F) = —f* in QF,

(2.1) (F*2%)* Ny = +¢**  on I},
Uur=0 on T},
where F* = M =13+ L denotes the linear tangent map to the map-

95 945
ping function ¢§ — ¢*(g5) = g5 + U*(gg). Limiting our study to Saint-Venant
Kirchhoff materials, the constitutive relation takes the following form :

B* = A Te(E*)]; + 2uE*

where E* = (F'F* — I3)/2 denotes the nonlinear Green-Lagrange strain tensor,
I3 the identity of R®, A and p the Lamé constants of the material.

These equilibrium equations can be completed with the equation of continuity
p*detF* = pj where pj and p* denote respectively the voluminal mass of the
material in the reference and in the deformed configuration. In what follows, we
assume p* to be bounded, which can be written

*(, %
(2.2) detF* = det (M) >a>0 in Q,

aq
where @ > 0 is a constant independent of the geometry. This condition will be
used later.

In the case of thin shells, for all material point ¢ in Q_5= we have the unique
decomposition g = py + 2* No where pj EE and z* € [—hg, ho] denote respec-
tively the orthogonal projection of gj onto wj and onto the normal Np. It is then
possible to decompose the displacement U” onto Twj @ RN, as follows:

U*=V* +u"Ny
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where V* is a field of tangent vectors and u* a scalar field on w.
In what follows, we set

G* = BU* and W =P,
Oqp
Then, using the matrix notation, G* can be decomposed onto Twj & RNy as:
Gi G
(23) B i
G, G,
with )
* GV* * vk *— * 8V¥
a- (G -va)s @ G

du* ou*
[ J o | Y 7% ¥
Gy = Ky (COV + Bpa)’ G, = e

and k8§ = Ip—2*C}. As K} is invertible”), we have : 657! = Ip+2*C+2*2C32+ ... .
In the same way, E* can be written :

Ef E;
(2.4) E* = S

E; E,
where

2E; = G,G: + GG, +G, + G},
2E; = G,G; + GG + G: + GY,
2E% = G,G% + G2 + 2G=.

Therefore, the second Piola-Kirchhoff tensor £* takes the following form:

uy X3
(2.5) A
X, X
with
B = MTr (E¢) + E}) + 2uEy, i = 2uE;,

Xy = ATr (Ef) + (A +2u)E;,.
Finally, the matrix form of H* = £*F* becomes:

Mg, H
(2.6) H=| _,
H's Hy

®)Because ho||C§|loc << 1 for a thin shell.
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with
S =ML R BN, M; =E; + G35 + 5iGY,
H* = 5 4+ GITt + S1GY, My =Th+ GhZn + G2

To finish, let us decompose the three-dimensional divergence onto Twy & RNj.
Then the equilibrium Eqs. (2.1) can be written in Twj ® RNy as :

div* (k371HE) — div* (k) H; - Hiwy T CE - Tr(sy ' COYH,

oH™* 3

4 ;{: =—F;,

(2.7) ‘ B
div* (§1HE) — div* (ki ™Y) HE + Te(Hisg~1CF) — Tr(s§ ) H,,

oMy .

Oz* i

where we recall that div* denotes the two-dimensional divergence on wg. The
boundary conditions on the upper and lower faces I’Si become:

(2.8) HO= = chgl™ and HIE = +g2E,
The boundary conditions on the lateral surface I'y are given by:

(2.9) ¥ =0 and a" =0

3. Dimensional analysis of equations
3.1. The dimensionless numbers governing shell problems

Let us define the following dimensionless physical data and dimensionless
unknowns of the problem :

o z” Cy v u*
=== 2= T, Co = T~ V= ) =
o Ty Y | AN
' It 5 g 9
fo = = ) gn = —, gt = —,
B ftr r for " Gtr 9nr
where the variables indexed by r are the reference ones. The new variables which
appear without a star are dimensionless. In particular, C; = ||Cj|,, denotes the

maximum curvature of the shell in its reference configuration.

To avoid any assumption on the order of magnitude of the normal and the
tangential displacement components, the reference scales V; and u, are first as-
sumed to be equal to Ly. Thus we allow a priori large displacements. If necessary,
it will be always possible to define new reference scales for the displacements.
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In what follows, to simplify the calculations, we set:

g2 g*
(3.2) G= eG*, E=¢’E*, £= =% and H=—H".

2 p
The so defined dimensionless variables naturally depend on €. However, it is
important to notice that this definition does not constitute any assumption on
the order of magnitude of G*, E*, * or H*. It only enables to use dimensionless
quantities which will be more practical for the asymptotic expansion of equations.

According to the previous notation, the dimensionless components of G are

given by:

Gi= (Ea—v = 'UCC(]) wely Ge= B_V,
Opo

0z
(3.3)
Ju du
11 g e
GS K’O (CC(]V + Eapo) 5 Gn Bz )
where

ko = Ip — C2Cy and ko' =1Io+2CCo + 2C°C + ...

This dimensional analysis naturally makes appear the dimensionless numbers
€ = ho/Ly and C = hyC; which characterize the geometry of the shell:

i) The first one, € = hgy/Ly, ratio of the initial half-thickness of the shell to
the diameter of the middle surface wg is a known parameter of the problem.

ii) The second one, C = hyC}, product of the half-thickness by the reference
curvature of the shell, is as well a known parameter of the problem. For thin
shells, € and C are small parameters.

On the other hand, the dimensionless components of E are given by:
2E; = GGy + GG, + ¢(Gy + Gy),
(3.4) 2E, = G1Gs + GG, + €(G., + Gy),
2E, = G,G; + G + 2:G,,

and the dimensionless components of ¥ become:
Yy = B(Tr(E) + Ex)Io + 2B, %, = 2E;,

(3.5)
Zn = BTr(E) + (B + 2)En,
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A ;
where 3 = =. Finally, the dimensionless components of # are given by:
J7

Ht = Ezt -+ Etﬁt 7 EsG_Sa ’Hs = Ezs + ans T EIG;’
(3.6)
H. = €Xs + GiZs + ZnGs, Hp=eZp + GpZp + GLE,.

Accordingly, the equilibrium Eq. (2.7) can be written in £y = wox] — 1,+1[ in
the dimensionless form:

€ (div (nal’}-tt) —div (mn'l) ’Ht) -C (ﬁsn(;ng + Tr(rzo_lco)—??s)

+5mo = _53]:?23
(3.7) o
e (div (kg1 Hs) — div (kg ) Hs) + C (Tr(Hewg ' Co) — Tr(rkg ' Co)Hn)
L
0z

The dimensionless boundary conditions (2.8) on the upper and lower faces Fg =
@Wo % {1} are given by:

(3.8) H'E = +e3GgF and  HE=15GgF
and the boundary conditions (2.9) on the lateral surface I'y = g x[—1, 1] lead to:
(3.9) V=0 and u = 0.

Thus the dimensional analysis of equations makes appear the other dimensionless
numbers, already obtained in [33]-[35], which characterize the applied forces:

ho fir ho for
(3.10) %= oft My A ofn B gtr and G, = gnr.
H e H H

Indeed, the numbers F; and F, (respectively G; and G,) represent the ratio
of the resultant on the thickness of the body forces (respectively the ratio of
the surface forces) to p considered as a reference stress. These numbers only
depend on known physical quantities and must be considered as known data of
the problem.

3.2. Reduction to a one-scale problem

To obtain a one-scale problem, ¢ is chosen as the reference parameter. There-
fore the other dimensionless numbers must be linked to e.
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On one hand, € must be linked to €. This leads to distinguish shallow shells
where C = £2 (whose middle surface is close to a plate) from strongly curved
shells where C = €. These two shell families have different asymptotic behaviours
which have been already studied in the linear case [4][5]. In the first part of this
paper, we will limit our study to shallow shells. On the other hand, the force
ratios F¢, Fn, Gt and G, must be linked to the powers of € as well. This determines
the level of applied forces. To make out a general classification for all the force
levels, we should consider all the combinations F; = €™, F,, = €}, G; = €? and
G, = €9, for m, I, p and ¢ strictly positive integers. However, such a tiresome work
is not necessary because the different two-dimensional shell models obtained are
essentially determined by the first member of equilibrium equations. Hence, the
study of all the combinations of force levels can be reduced to some particular
ones. Let us define

(311) T = Ma.x(.ﬂ,}'n,gt,gn)

which will determine the corresponding two-dimensional model. If 7= €?, we
will say that the force level is of € order. The classification will be deduced with
respect to decreasing values of 7, from 7= ¢ (severe force level) to T=¢", n > 4
(low force level).
e For severe applied forces we will consider the same level of normal and
tangential forces 7, = G = F, = G, = €.
e For high to low applied forces, we will consider a level of tangential forces
more important than the level of normal forces : F; = G; = €™ and F,, =
Gn = €™t for m > 2. This gap which naturally appears is due to the fact
that the tangential and the normal direction do not play a symmetrical
role for shallow shells. Once reduced to a one-scale problem, we make the
asymptotic expansion of Egs. (3.7)—(3.9) for decreasing force levels.

4. The nonlinear membrane model
4.1. Asymptotic expansion of 3D equilibrium equations

Let us consider in this section a shallow shell where C = €2, subjected to a
severe force level Gy = F; = € and G, = F,, = €. Thus problem (3.7)-(3.9) is
now reduced to a one-scale problem with € as the small parameter. The standard
asymptotic expansion method leads to write the dimensionless solution (V,u) as
a formal expansion with respect to €:

41) V=V'+V4+2224 .. and n=1u"+e'ut 4 v+
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The expansion (4.1) of (V, ) implies an expansion of G, E, ¥ and H :
G2t tpit LG 4. B=E 4l B4
(4.2)
T=204eB 42824+ L HO =0+ eH + M +
To simplify the presentation, the expressions of G°, G! ..., E°, E! ..., &0, Bl .

and H®, H' ... will be detailed later when necessary. We only recall that, for
shallow shells where C = €2, the dimensional components (3.3) of G become :

Gtze(d—v—euC'g‘) n'gl, Gsz@

dpo 0z’
(4.3)
ou ou
/. -1 S Loy
& = gnp (ECQV+ Bpo) ,  Gn 3%’
where s = Iy — €22Cg and k5! = Ip +€22Cy + €*(2Co)? + ... . Then we have

the following result:

REsuLT 1.

For a severe force level G = F; = € and G, = F, = ¢, the leading term
(V0,u%) of the asymptotic expansion of (V,u) only depends on py and solves the
following non-linear membrane problem:

avo
div ( n? (Io + %) ) = —pt in  wp,

oul
div[nl=— ] = - in  wg,
( t apo) Pn 0

(V%4 = (0,0), on 7o
=" _Tr(AY) I + 4A?,

m+5vo+ﬁéve 90

2&0 = L i o ¥
Y 8py  dpo  Apo Opo  Opo o

+1 +1
Dt :g;‘“ +9; -i-/ftdz and p,=g! +g, + /fndz.
~1 |
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P r oo f. The proof of this result is decomposed into 3 steps from i) to iii)

i) (V?, u%) depends only on pg
We replace H by its expansion in the dimensionless equilibrium Eq% (3.7) -
(3.9) where the dimensionless numbers have been replaced by C , Gy =
Gn = Ft = Fn = €. We then obtain a chain of coupled problems 730, Pl
P? ..., corresponding respectively to the cancellation of the factor of &,
1 .2
BB
Using (3.4) - (3.6) and (4.3), let us write explicitely the expressions of G,
E° 2% and H°. We have:
ov?o o’
@ =0, G==—, 6% =0, Gﬂ:i—,
9EY =0, 2E°=0, 2EO= G_QGS +60%,
=BE L, E(=0, I} =(8+2)E,

0
HY =1, Hi=0, #H, = G°22, HE = G270,

The cancellation of the factor of €? in the expansion of dimensionless equa-
tions (3.7) - (3.9) leads to problem P°:

10 0
%:0 and %:0 in Q,

H®* =0 and H% =0 on TZ.

So we have

H?=0 and H2=0 in Q.
. 2 0 :
Using the expression (4.4) of H'; and H2, we obtain:

(I (%)) 2 =0 wa (|22

which leads to

2 0
- (5)) %
0z 8z
in Qo

avo o 3
Fz— =0 and E =0 in Q()

and implies that

(4.5) VO=v%py) and u®=u’(pp).
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Hence we get H0 = H! = H? = 0, and problems P! and P? are trivially
satisfied.

ii) Expression of (V!,u!)
The cancellation of the factor of £3 in Egs. (3.7) - (3.9) leads to the problem
P3:
oM OH3
0z 0z e
+ +
H= =™ =0 on Foi,

where the expression of H? is obtained from (3.4)-(3.6) and (4.3) as fol-

lows:
M} = DGl + 1) + B2G],  H}=32Gh+1)+EiG),
He = (G +1)Z +GBL, Hy = (Gh+1)Tn+ GYE,
5 = B(Te(E}) + EX)Io + 2B},
T2 =2E:,
(4.6) zh = ATx(EY) + (8 +2) By,

2E} = G|G} + G} + G + GG,
2E? = GIG! + GLG" + G + G,
2] = GiG; + (Gp)* +2Gy,
Gi:%—z, G;=%‘2—1, G'sl:g—;‘)z, G#:%—f.
Problem P3 then gives us :
HB=H3=0 in Q

Replacing H'2 et H2 by their expressions (4.6), we get:
A7) (G1+ )22+ G2 =0 and GIZ2+(GL+1)I2=0 in
or equivalently, using matrix notations :

22

(4.8) (I3 +G"Y =0 in Q.
22

n
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Now, let us use of the equation of continuity (2.2)
detF* >a >0

where a is independent of the geometry, hence independent of € = hy/Ly.
As G° = 0, the expansion of G becomes

G =eG'+*G* +
According to (3.2), the expansion of F* = I3 + G* reduces to
F*=(I3+G') +eG* +
and the equation of continuity leads to:
det (I3 +G') >0
So I3 + G! is invertible and Eq. (4.8) then implies that:
BY=0 and 2 =0

Hence, using the expressions (4.6) of £2 and 2, we get:

E2=0 and E? =— f

2
p " = —ﬁ—_l_—QTr(E!)

So we have :

28 Vo
= 0 2N 0 0 3
a5 =By, % ﬁ+2 Tr(Ap)lo + 24, Hi =% (IO+—8pg)’
aub vl
HE =52 6; HB = 68 2 and M3 =
s B0 avo o ave  Hvo Hro  9u0 gul

e -y
dpo  Opy  Opo Opo  Opo Opo

Now, let us define the mapping ¢' = V! + (u! + 2)Np to simplify the
expressions. Then Eq. (4.7) can be written with matricial notations :

[ av!
ave 30| | as . G}
2E? = [Ip+ — — =Mo(I3 + G') —— =0,
(4.10) 7y
a¢! ||? 28
i = —
52|15 || -1 g e
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iii)

where IIy denotes the orthogonal projection onto Twy.
In the first above equation I3 + G! is invertible in B3, so Tp(I3 + G1) is
an operator of rank 2. On the other hand, we have :

v Bud

el = et e

So we deduce that IIg(I3 + G!) is independent of z. Accordingly, the image
of R® by this operator is a plane independent of z. Then the relation
1

o(I3 + Gl)—¢— = 0 implies that %i = GpN, 6y € R, where N denotes

the normal to the plane image of R® by the application (I3 + G!)II,.

ov? + L + BVO ov° + B_UO_ c’?_uf is independent of z, the
Opo  Opo  Opy Opo  Opo Opo ’

s 1 2
second Eq. (4.10) then implies that ‘(? = \/1 —ﬂﬁ—T‘r (E?) is

As 2B} =

z

independent of z as well. So we have :
(4.11) ¢' = U'(po) + 260N

. 28
with 6y = /1 — ﬂTr(Ef),

where N is an unit vector such as Ilg(J3 + G')N = 0, and where U’
depends only on pg

Nonlinear membrane equations
The cancellation of the factor of e in the expansion of Eqs. (3.7)-(3.9)
leads to problem P*:

L
oH,, —

div (M) + ==~ in Qo HE =+gf on TF
4
div(?{g)+8;i“=—fn in HAE =2gFf on T

Using (4.9), an integration from —1 to 1 with respect to z of the above
equations leads to the equilibrium equations of Result 1.

The boundary conditions on -yp are obtained by assuming that the leading
term (VO u%) of the expansion of (V,u) satisfies the clamped condition

on .
]
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4.2. Comparison with existing models

In the literature, the two-dimensional shell models are generally obtained in
a weak formulation. So the nonlinear membrane model obtained in Result 1 in a
local formulation must be written in a weak formulation to be compared to other
existing ones. To do this, let us define the space of admissible displacements :

Viwo) = {U = (V,u) : wo — R, “smooth”, (V,u) = (0,0) on 70}

where V' and u denote the tangential and normal components of the displacement
U. Then, the two-dimensional membrane equations of Result 1 can be written
in the following weak formulation:

REsuLT 2.

For applied forces such as G; = G, = F;y = F, = ¢, the leading term (V°, u®) of
the expansion of the displacement is solution of the weak problem :

Find (V?u°%) € V(wp) such that:

(4.12) [ Tr (6 A?)durg = [ BV + psu)dwo V(6VO,u0) € V(wp)
wo wo

with :

4 AV HV0  BVO BV Bud Bug
0_ A0 0 0 _ ou” oug
ng 718 ﬁTr( 1o +4A; and 2A 3o + I Bos o B s

where JAY denotes the variation of A? due to the virtual displacements
(6V0,6u®) associated to (V°,u?).

The proof of this result is classical and uses the Stokes theorem. It will not
be discussed here.

Thus, for a severe force level, we obtain a nonlinear membrane model whose
weak formulation of Result 2 is different from the one obtained in [13] for “gen-
eral shells”!%). However, it seems to be a generalization to shallow shells of the
nonlinear membrane model obtained for plates in [21][34].

4.3. Back to physical variables
The return to physical variables in equations of Result 1 leads to define :

VY = vv0 = W0 and u* = uguo = Lou®

!O1n the papers using a description of the shell with local coordinates, the “general shells”
corresponds for us to strongly curved shells. In the second part of this paper, where the strongly
curved shells are studied, we will see that we obtain the same nonlinear membrane model as
in [13] for a severe force level.
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We then have the following result:

REsuLT 3.
For applied forces f* and g* such as G; = G, = F; = F,, = ¢, the displacement
(V*0,4*?) depends only on pj and verifies the following nonlinear membrane

problem :
fV=0 -
ho di 0 I+ =—p; | o
olv(’nt (0 BPS)) Py 1N Wy
au*o
B di * *( — ¥ - *
V**=0 and u%=0 on,
where:
. 4 . "
3= HZ“%(A!“) o+ 4pA;°,

Y *0 i av*o P HV*0 g0 s HV*0 Jy*0
opy,  Opy  Opy Opy  Opy Opy’

g

ho ho
L [ frde and gh=g'F £4"s 4 f frdz",

—hg —ho
ho
Proof Letusdefine nj'=pund pf =g*t +9*; + % / fidz" and
t
—h[)

ho
pL=g"T+g* + ]g__—" / fndz*. Going back to the physical variables in Result 1,
n

—ho

V=0 j gt
Lodiv | 22| f+ =——p! in wg,
: (( ) )i e

) ou*0 1 .
Lo div* (n?o—) =——p,, in Wy

we get :

6195 Gn
V*=0 and v?=0 on, .
0O

According to the force level considered here, we obtain the equations of Result 3.
In what follows, to save space, we won’t give the dimensional equations associated
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to the other dimensionless models. However, it would be possible to obtain them
in the same way.

5. Another membrane model

In this section, we assume that the shell is subjected to a high force level
G = F: = ¢? and G, = F,, = 3. First we show that the displacement (V°,u0)
which is a solution of the Result 1 is equal to zero. This proves that the reference
scales of the displacement V, = u, = Ly have been not properly chosen and we
will make a new dimensional analysis of equilibrium equations with V; = u, = hyg.
We then show that the new asymptotic expansion of equations leads to another
membrane model.

5.1. Determination of the reference scales of the displacement

For a force level such as G; = F; = €2 and G,, = F,, = €3, following the proof
of Results 1 and 2, we obtain the same weak formulation without a right side,
whose associated minimization problem is the following one :

Find (V°,u%) € V(wg) which minimizes on V(wg) the functional J = fadwo

wo

where « =

243 2 2
ﬁ+2E(At)] +2'11(A1 8
vV v HV HV  Bu Bu
d Bl s - S R TN S
b (Vu) Opy  Opo  9dpo Opy  Opo Ipo

It is easy to show that the displacement (V°,u°) which minimizes the func-
tional J defined above is solution of Result 2.

As the density of energy « is positive and is equal to zero if and only if
A; = 0, this minimization problem implies that A;(V? 4%) = 0. We now have
to use the following lemma to prove that (V° u%) = (0,0):

LEMMA 1. In V(wy), the solution of the equation
W v W o
Opo  Opo  9po Opo  Opo Opo
is (V0,10 = (0,0) in wy
P roof. Let us explain /Tr(At)dwO. We have :

wo

v\ 1. (év av 1 :
Tr(A)=Tr | — | +=-Tr | — — | + =
(Be) (BPU) 2 (apo 3100) 2

B
dpo
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As V =0 on 7y, using the Stokes formula, we get:

/ﬁ(a_‘f) e
BPU

Wo

1 ov oV Ju ||
Tr (Ay)dwy = = TE | e o [ M dewn.
/ bpin 2/( (apo 3100) Hapo ) g
wo wo

Thus the equation A¢(V,u) = 0 implies that / Tr(A¢)dwoy = 0 and we have:

wo
2
a0

dpo Opo dpo
wo

2
is positive, we obtain:

So we have:

ou

Asﬁ(a_va_V)Jr(*
Opo

Tl e 0
oV oV du
Tr{ =——=—] =0 and —I =0 in w
(5170 apo) H dpo 0
which leads to :
v du
— =0 and — =0 in  wp.
dpo Ipo :
Finally we have:
10— ou .
— =92V — =0 and — =0 m w
Opo dpo dpo 0

which proves that ||V|| and « are constant in wp. As V and u are zero on the
boundary 7y, they are equal to zero in all wg. This ends the proof of Lemma 1.
a

Remarking that since (V°,u%) = (0,0), the expressions (4.11) of 8y and N reduce
to 8y =1 and N = Ny. So we get:

(5.1) Vi=Vipy) and wu'=ul(p).



CLASSIFICATION OF THIN SHELL MODELS. .. 155

As we have proved that (V°,u%) = (0,0), we get

Tar =i
V=r=—=eV4+eV2+...
V, Lo
u_ul 1 2,2
U=—=—=¢cu +eu"+---
Uy 0
which is equivalent to :
~ Vv vV —~ ~ ~
Ve—r=—=V4eV24+. . = V04 eV +£2V2 ...
EVT ho
= Rt u* -~ o~ —~
U = :—:u1+5u2+...:u0+gu1+52u2+...
eur hg

Accordingly we have proved that for the level forces considered here, the reference
scales of the displacement V; = u, = Lo have not been properly chosen. For the
leading term of the expansion of the displacement to be of the order of one unit,
the reference scales of the displacement must verify (Vr,u,) = (ho, ko). Therefore
the dimensionless equilibrium equations must be written again with V. = hy and
u, = ho as the new reference scales. The new dimensionless displacements will
still be denoted V = V*/V; and u = v* /u,.

5.2. The associated asymptotic model

With these new reference scales of the displacement (V;., u,) = (ho, ko), which
are directly deduced from the force level considered, we make a new dimensional
analysis of equilibrium Egs. (2.7) - (2.9). We obtain the same dimensionless Egs.
(3.7)-(3.9) where V and u must be changed into €V and eu in the expression
(4.3) of G. Thus we have with these new reference scales of the displacement :

1% v
o [T 1 s
Gi=c¢ (6pg uaCo) K, Gs=¢ 9%
(5.2)
ou Jdu
gy B = P
G, =€k (ECQV + Bpo) iR

The new expressions of E, ¥ and H can be obtained from (3.4)-(3.6) and (5.2).

On the other hand, the asymptotic expansion of equations enables to write
again the new dimensionless solution (V,u) of the new dimensionless problem
as a formal expansion with respect to €. This is equivalent to changing (V?,u?)
into (V*~!,u*!) for ¢ > 1 in the previous results. In particular, relation (5.1)

becomes:
VO =Vpy) and u®=u’(p)
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Then, we have the following result:

RESULT 4.

For a force level such as G; = F; = €? and G, = F,, = &3, the leading term
(V9,u%) of the expansion of (V, 1) depends only on pg and satisfies the membrane

equations

div (n?) = —p m o wy,
. f Bl " . .
(5.3) div | n a—po + Tr (n;Co) = —pp — div(M;) in  wy,
Ve=0 and u%=0 in Yo,
44 ave  gyo
h 0 T T (AN I 4 4AY, AP = g
where nj 513 (AF) Ip + 44, : 3p0+3po

1

s 1
Pt=9t++9t_+/ftdz, MtZQZL—gEJerft dz and pn=gf{+95+/fn dz.
| 1 —1

Proof
i) Expression of (V1,ul)

According to the new dimensional analysis (5.2), we have:

Vo avl Aud Aul
2 2 12 2
= e —, G = —_— = —
Gt Ipo’ G a,’ 4 opo’ o8z’
ovo  Hy° vl gyl ou!
P s ., B e G gt
By Opo b 9py’ ' Oz S dpo’ i 0z’

(5.4)
%} = B(Tx(E}) + E3)Io + 2E7, %3 =2E3,

= = BTr(E}) + (B +2)Ep,
Hi=%} Hi=3 H,=1I} #H,=5]

The cancellation of the factor of £* in the new expansion of Egs. (3.7)-(3.9)
leads to problem P*:

14 4
oM, L s oM,

= S =0 in O, HA* =0 and H*=0 on I
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which implies that
Hy=0 and Hz=0 in @
Using (5.5), we get:

(5.5) BEl=0 apd 2E = -—ﬁ-—ﬁ(EE)

B+2

which can be written in terms of displacements :

vl aul oul B

o B0 and % T 2’1‘r(At) in Qo
and leads to
B
yl =gl —zﬁ+2Tr(A?)
(5.6)
Oul
Vi=V!i——
2 Opo

where the fields of tangent vectors V! and of scalars u' depend only on py.
On the other hand, we have according to (5.4):

1
(5.7) EE=A) ®=#l= §n§’ and Hi=H}=0
where the expressions of n{ and A? are those of Result 4.
i) First membrane equation

The first equation of problem P% then reduces to :

; AR v 15% & =
div ('Ht)+—£=—f¢ in Qg HY =xg; on Iy,
(5.8)
5
%;l =0 in Qo ’Hf’li =0 on. Tx

Using (5.7), an integration upon the thickness (from —1 to 1 with respect to z)
of the first above equation leads to the first equation of Result 4:

div(n]) = P

1
where p; = g/ +g; +[ft dz.
¢
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On the other hand, an integration of Eq. (5.8) with respect to z enables to
calculate H?> and H3. We obtain :

1 z
1 i
HISSZE Zpt—f—g?—gz +/ftdz_/ftdz 5
z -1

Hy =0,
Moreover Egs. (3.4) - (3.6) and (5.2), lead to :

0
30U

" 9o ad | Hp =T

H:=Zi+ L

which implies that:

(5.9) My =3 | 2pe +g9 —g + ft dz ft dz | + .

ili) Second membrane equation

The second equation of problem P® reduces to :

5 OHS .
div(H; )+Tr(’H Co) + B — —fn in g,

?{gi::{:g;f on IE

Using (5.7) and (5.9), an integration upon the thickness leads to the second
equation of Result 4:

di o 0u 9Co) = —pn — di i
v ”tapo + Tr(nyCo) = —pn —div(My) in wp

1
with p, = g + g +/fndz and M; =g} —g} +[z ft dz. Let us notice that
i

we have used the relation :

1 1 z 1
[1 [ftdz—[ftdz dz=2/zftdz.

=i
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The expansion of the clamped condition U = 0 on I'y leads at the first order to :
(V(J’u(]) i (030) on o

which concludes the proof of Result 4.

5.3. A few comments

The membrane model obtained in Result 4 for a high force level has to our
knowledge no equivalent in the literature. If we set Cy = 0, it is different from the
FOPPL plate model [20] given also in [46]. There is no nonlinear term coupling the
deflection u® to the tangential displacement in the expression of the membrane
strain, as in the von Karman model.

On the contrary, the model obtained here is linear in the sense explained
later. It can be split into two linear problems verified by V°? and u?, as the
simplified version of the FOPPL model given by H. M. BERGER'D [1].

Indeed the first equation of Result 4:

div (n?) =—p; in wy,
V=0 on 7,
4 VO Vo
where nf = o Tr(AO) Iy + 4A and 2A9 = 3_ + ——, is a linear equation
2+p dpo  Opo
which depends only on the tangential displacement V°. To prove that this prob-
lemn has unique solution V0 in [H} (wp)]?, let us write the above equations in the
following weak formulation:

Find V° € [H} (wo)]? such as

(5.10) / ’I\" 6At dwu = / p0Vo%wy,  VoV0 € [H} (wo)]?

wo

where the expressions of nY and A} are those of Result 4.
It is possible to prove (see [4][5]) that the mapping
1/2

H. M. BERGER [1] used the Féppl-von Karman theory to formulate the strain energy
density of a deformed plate. He then made the simplifying (but irrational) assumption of
ignoring the term containing the second invariant of strain (relative to the first invariant of
strain). This leads to a set of two uncoupled problems. For further comments see also [25].
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is a norm on [H}(wp)]? equivalent to the usual one, provided that the Christoffel
symbols of the middle surface are small enough. Therefore the first term of the
weak formulation is elliptic in [H{(wo)]?. Then if the forces are smooth enough
(L%(wyp)), this problem has an unique solution in [Hg (wo)]?.

Once V? and n? determined, the second equation of Result 4 becomes a linear
second order equation with respect to the normal displacement u".

Therefore, in the case of shallow shells and for a high level of surface forces,
this asymptotic approach enables to construct a membrane model which is in fact
linear, but which cannot be deduced from the linear three-dimensional elasticity.

6. The Koiter’s nonlinear shallow shell model
6.1. New reference scales of the displacements

In this section, we consider a shallow shell subjected to a moderate force level
such as G; = F; = €3 and G, = Fn = €*. Then, for this force level, following
the proof of Result 4, it is possible to prove that the tangential displacement
VY is solution of (5.3); without a right side. As this equation has an unique
solution provided that V? is smooth enough, we have V¥ = 0. Let us notice
that the second equation of Result 4 is then trivially satisfied and the normal
displacement u® is undetermined.

Therefore, as V? = 0 for the force level considered here, the reference scale
of the tangential displacement V, = hg is still not properly chosen. We have
to consider V, = ehg for V° to be different from zero. Thus the dimensionless
equilibrium equations must be written again with V, = ehy and u, = hy as
reference scales. The dimensionless components of the displacements will still be
denoted V and w. As previously, the new dimensionless equations so obtained
from (2.7)-(2.9) are the same as (3.7)-(3.9) where V must be changed into eV in
the expression (5.2) of G. Thus we have :

Gt=£3 —BV — wly |x=L, GSEEQ—GV,
(6 1) Bpo Oz
& =gtx] (52001/ + ﬂ) ) G, = s@.
ap() 0z

The new expressions of E, ¥ and H are then deduced from (3.4) - (3.6) and (6.1).

6.2. The asymptotic model

We write again the new tangential displacement V of the new dimensionless
problem obtained with V, = ehy as a formal expansion with respect to €. This is
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equivalent to change V* into V*~! for 4 > 1 in the results of the previous section.
Thus relation (5.6) becomes :

(6.2) = (po), V= po) 222 and u! =ul(py)

and implies that (V?, u?) is a Kirchhoff-Love displacement. Then, the new asymp-
totic expansion of equilibrium equations leads to the following result:

REsuLT 5.

For given applied forces such as G; = F; = €3 and G, = F,, = €*, the leading
term (V?, u®) of the expansion of (V,u) is a Kirchhoff-Love displacement which

satisfies:
. 0 0 0 _ a¢p
i) u’=(alpo) and VO =(l(po) — 25>
Po

i) ¢%=(¢?,¢Y is a solution of the following equations :
div(nd) = —p¢ in  wy,
le(le mf) + div (”t af)ﬂ) + Tr (n?Co) = —pp — div(M;) in  wy,
0

N e aCn =0 and (=0 on 7y,

where vy denotes the unit external normal to vy and where

43 o B B8 aeo

0 0 0 ) t t n n _ 5.0

n,_%Hqugh+4m, . 30+3F B o 2600,
48 4 a ol

0= —" __Tr (KN + K} d=—— o0

my 321 7A) (K;) |3+3Kt, K; B0 Bin”

1

pt=gt++g;+fftdz, Mt=g:f—g;+fzftdz
-1

wdm=ﬁ+%+/hw
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Proof. The proof of this result is similar to the previous ones. Let us just
give the main steps.

i) Problem Ps leads to the following expression of 4! and V! which will be
used later :

u! = u'(po)

(6.3) 51
g

dpo

where V! and u? only depend on pyg.

ii) On the other hand, using (3.4)—(3.6), (6.1) and (6.2), we get:
1
(6.4) Ef=Al42K0, H=X%{= §(ng + 32m))

where the expressions of n?, m A9 and K are those of Result 5.

iii) After a few calculations, the first equation of problem Pg leads to

¢ T =l zpe+gF — g7 /ftdz —/ftd.’z+ )dw( )+EOdC’9
s 2 t t 2 BPO

Finally, the integration upon the thickness of the first equation of problem Pg
and of the second equation of problem P7 leads to the equations of the Koiter’s
nonlinear shallow shell model of the Result 5.

6.3. Comments

Accordingly, the nonlinear Koiter’s shallow shell model has been rigorously
justified by asymptotic expansion, without any a priori assumption. On the con-
trary, the order of magnitude of the displacements has been directly deduced
from the force level considered. We so justify the scaling assumptions on the
displacements generally made in the literature [11][19].

Let us notice that the existence of a unique solution of Koiter’s shallow shell
model has been proved in [2] when the applied forces are weak enough.

We recall that there exists two other shallow shell models, the Marguerre-
von Karman and the Marguerre one, which are very close to the Koiter’s one.
These two models, which only differ by the boundary conditions on the lateral
surface, have been obtained by asymptotic expansion in the case of a particular
description of the middle surface in local coordinates [10][7].
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At last, let us notice that Koiter’s shallow shell model is a generalization to
shallow shells of the usual nonlinear plate model whose justification by asymp-
totic expansions can be found in [9][21][34].

7. The linear Novozhilov-Donnell model

The Novozhilov-Donnell model is generally obtained from the linear three-
dimensional elasticity by making a priori assumptions (Kirchhoff-Love assump-
tions) and neglecting the terms of second order with respect to the curvature [17].
Later, many authors have tried to justify rigorously this model by asymptotic
expansion of the linear three-dimensional equations. One finds a justification in
[11] for a particular parametrization of the middle surface in local coordinates,
in [4][5] by using an intrinsic variational formulation and in [15][17| from the
local equilibrium equations. In this section, we propose to justify rigorously the
linear Novozhilov-Donnell model from asymptotic expansion of the nonlinear
equilibrium equations. This will enable us to determine precisely its domain of
validity.

7.1. Order of magnitude of displacements

For a low force level such as G; = F; = ¢* and G,, = F, = €, we obtain the

same equations as in Result 5 without a right side. The associated minimization
problem implies that AY = K = 0 and then that (¢?,¢2) = (0,0) (see [6]).
Since we have proved that (V° u°) = (0,0), the reference scales of the dis-
placements V,. = hge and u, = hg don’t correspond to the low force level consid-
ered here. We have to make a new dimensional analysis of equilibrium equations
(2.7) - (2.9) with V; = e2hy and u, = ehy as the new reference scales. We then
obtain the same dimensionless Eqs. (3.7) - (3.9) where V and « must be changed
into €V and eu in the previous expression (6.1) of the components of G. Hence

we have now:
)%
Gt = E4 '-a—'— = ‘U.C[) ﬁ‘,_l Gs = Ega—V,
dpo 0z

(7.1)

GL =371 [ 2CV + L Gn = 52@3
Jpg 0z

and the new expressions of E, ¥ and H will be calculated using (3.4)—(3.6).

7.2. The associated linear asymptotic model

The asymptotic expansion method enables to write again the new dimension-
less solution (V,u) corresponding to V, = e2hy and u, = ehy as a formal expan-
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sion with respect to e. This is equivalent to the change (V*,4?) into (V*~1, '~ 1)
for 2 > 1 in the results of the previous section. In particular (6.3) becomes

QR

(72) W = Qpo), VO = CPloo) 25"

which proves that (V?,u°) is still a Kirchhoff-Love displacement. On the other
hand, according to (3.4)-(3.6) and (7.1), the first non-zero terms of the expan-
sion of G, E, ¥ and #H are now given by:

H? = E?’ HS 5 227 H’g = E?, HTGE = 27517
%} = B(Tx(E7) + E})Io + 2E;, X) =2E;,

B8 = BTx(E}) + (B + 2)E3

dvo  Hyo
2F} = — + — — 24°Cy,
7 dpp | Opo 3
avl  ul
(7.3) 3 R et A W
= 5z T
Ov?
5
2E] = 2—,
dvl vl
ik nad - | a4
Gﬁ —apo u CO, GS az 3
o du! 4 8u2'
0 ap() g il 0z

We then have the following result:
REsSuULT 6.

For a low force level such as G, = F;, = ! and G, = F,, = £, the leading
term (V9 u%) of the expansion of (V,u) is a Kirchhoff-Love displacement which
verifies :

a¢3

i) uo = Cg(pg) and VO = C?(po) = za—po-.
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i) ¢%=(¢?,¢Q) is solution of the dimensionless Novozhilov-Donnell model:

div (no) = —P¢ in  wo,
div(divmy) + Tr(ndCp) = —pp, — div(Mg) in  wy,

@-%

" B =0 and {? =0 on 7o,

where vy denotes the unit external normal along 7o and where

43 1 {8¢0 ¢
0 _ 0 0 T t t o0
43 4 b aco
9 e T R ZKY K} =22t
mg 32+ 4) r(K; )l + 3Kt, h Bpe 3po”

1

1
pt=g;*+g;+fftdz, Mt=g?—g;+fzftdz
ok -1

1
and pnzg,“:-*-g;-%/fndz.
=

P roof. The proof of this result is similar to the previous ones and is left
to the reader.

Contrary to the existing justifications of the Novozhilov-Donnell model, the
approach explained here enables us to deduce it directly from the nonlinear
three-dimensional elasticity. This result is fundamental because it specifies its
domain of validity.

Indeed, the linear Novozhilov-Donnell model is proved to be valid for weaker
force levels as the nonlinear Koiter’s shallow shell one. These forces lead to
deflections of ehg order and not of hy order, as we could think according to the
existing justifications of the Novozhilov-Donnell model from the linear elasticity
[5][15].

On the other hand, let us notice that the so obtained Novozhilov-Donnell
model is an extension of the linear Kirchhoff-Love plate model. Indeed, if the
curvature operator Cp takes the value zero, we find again the classical linear
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Kirchhoff-Love model, which has been already justified by asymptotic expansion
from the linear three-dimensional elasticity in [8][4][33]. One finds also in [12][35]
a justification from the nonlinear three-dimensional elasticity. At least, we recall
that the existence and the unicity of the solution of the Novozhilov-Donnell
model has been proved in [4] for shallow shells.

7.3. Domain of validity of the Novozhilov-Donnell model

We have proved that the linear Novozhilov-Donnell model is valid for a low
force level Gy = F; = ¢* and G,, = F,, = €° which leads to deflections of ehg order.
In fact, the linear Novozhilov-Donnell is valid for lower force levels G, = F; = €P
and G, = F, = ePtl p > 5. These force levels lead to deflections of e?~3hg
order.

Indeed, for a force level G, = F; = €? and G, = F,, = P, p > 5, we
obtain the Novozhilov-Donnell model of Result 6 without a right side, whose
unique solution is (V°,u%) = (0,0). Therefore according to the same argument
as previously, the reference scales (V,,u,) of the displacement must be chosen
equal to (hoe?2,hoeP3). A new dimensional analysis of the equations with
Vi = hoeP2, u, = hoeP™2 and a new asymptotic expansion lead again to the
Novozhilov-Donnell model of Result 6.

It is important to notice that for sufficiently weak force levels (of €” order
with p > 4), the problem becomes linear with respect to the displacements and
the asymptotic model that we obtain is the Novozhilov-Donnell one. This result
means that the linear Novozhilov-Donnell model can be used for sufficiently
weak force levels of €24 order, where the dimensionless numbers G;, i, Gn, Fn
are known quantities of the problem.

8. Conclusion

The method of classification of asymptotic shell models developed in this
paper is constructive. It leads to a classification from the level of applied forces
without any a priori assumption'?). On the contrary, the order of magnitude
of the displacements (characterized by the reference scales V, and u,) and the
corresponding two-dimensional model are directly deduced from the force levels.
These force levels are characterized by the dimensionless numbers Fy, Fy, G;,G,
which are known data of the problem.

In this paper, we have studied only a combination of (F;, F,, Gy, G,) for each
value of 7 = Max(Fy, Fy, Gt, Gn). However, the study of the other combinations
is not fundamental; it would lead to the same two-dimensional models with a

121n the sense defined in the Introduction.
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different right side. The following table resumes the so obtained classification

with respect to 7:

T (Ve usr) Shell model A K?
non linear membrane model
{ _— 2A0 — @ P B_VO.+
| i | e (ne T = B
div (nf 3u’/9p%) = ~pa Bpo Bpo T Opo Opo
V(I)‘m T u0|‘70 =0
another membrane model
div(nf) = —pt A0 = BVO | V0
o) Hboghay div (n,t auO/ap Bu/0p° ) + Tr(n?Co) T o e
= — div(M,)
Vl‘m U’y =0
non linear Koiter’s shallow
shell model
ang = 560 4 860,
s div(nf) = —pt 5 ot 2;:2
g (€ho, ho) div(div m{) + div (ﬂg 3(2/6190) %m0 Bp0 Ym0
+Tr(nYCo) = —pa — div(My) sy
t — " dpo Bpo
Ct()"ro = Cgl‘m = 3"0 I"ru =0
linear Novozhilov-Donnell model
‘ZAO = a_(L 19
>4 -2 3 div(nf) = —p: 3ps * Tpg
el hO(EP ,Ep ) div(div m?) + T]:(n?CO) ”242 G
= —pn — div(Mt) bl
£ D¢
C!?l‘?o :C?L'“ro =5 3,,G|'m =0 K?__a_a'?i"%
43 43 4
0 0 0 0 _ 0 0
where nY = ——Tr(A})I; +4A;) and m{ = ——Tr(K; )y + - K.
t ﬁ+2 ( t)O % t 3(ﬁ+2) ( t) 3 t

On the other hand, the classification deduced from the three-dimensional
nonlinear elasticity enables us to specify the domain of validity of the obtained
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two-dimensional shell models, thanks to the dimensionless numbers naturally
introduced.

In particular we have proved that the usual linear Novozhilov-Donnell model
is valid for applied force levels weaker than the ones for which the nonlinear
Koiter’s shallow shell model is obtained.

These forces lead to deflections of ehg order and not of kg order. This result is
important and underlines the pathology of the results obtained from asymptotic
expansion of linear three-dimensional equilibrium equations, which are already
an “expansion at the first order” of nonlinear equilibrium equations. Indeed,
when the linear Novozhilov-Donnell model is deduced from the linear three-
dimensional [32], it seems to have the same domain of validity as the nonlinear
Koiter’s shallow shell model (deflections of hg order).

Finally, let us notice the constructive character of this approach. Indeed an-
other membrane model, which has to our knowledge no equivalent in the liter-
ature, has been put in a prominent position for high force levels. This model
cannot be obtained from the linear elasticity.

In the second part of this paper, we will study the strongly curved shells
which have a different asymptotic behaviour. In this case, the classification is
more complex : it depends not only on the force levels, but also on the existence
of inextensional displacements which keep invariant the metric of the middle
surface of the shell.

Appendix A. Intrinsic formalism of surface theory

We recall here the principal notations of the intrinsic formalism of surface
theory used in this paper. It is inspired from the works of J.M. Souriau [45], R.
Valid [47][48][25], J. Breuneval [3][4][5] and P. Destuynder [4][5].

Parametrized surface

Let U be an open set of R? and
2 U — R3
z=(u,v) —p=f(z)
an embedding in R3 (see Fig.2). Then w = f(U) is called a surface embedded

in R? and U the open set of reference of the system of local coordinates (f, U).
We assume here that f is smooth enough (C?(U)).

Local basis of w

0 a
The independent vectors a; = —f and ag = 3_£ span a vectorial space called

u
tangent space at p = f(z) to w and denoted T,w. We denote (a1, az2) the natural
or the local basis of Tpw and S the matrix defined by S = (a1, ag).
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ay A az
| a1 Aaz |l
vector W of R® can be split into

Finally we define N = the unit normal at p to w. Therefore, each

W =IW + NNW =V +uN

where V = [IW and u denote respectively the orthogonal projection of W onto
Tpw and the normal N, the overbar the operator of transposition.

P,

X X U

Fic. 2. Parametrization of the surface w.

First fundamental form.

At each point p of w, the scalar product of R? implies a scalar product on Tpw :
dpV = dz(SS)Y

where dp = Sdz and V = SY denote two tangent vectors of T,w. We can so
define, when p varies on w, a field of covariant tensors g € Tyw ® Tyw where Tjw
denotes the dual space of Tpw.

DEFINITION 1. The field of quadratic forms associated to g is called the first

fundamental form of the surface w. In the local or natural basis, it is represented

by the matriz: G = gp P = B,
oz Oz

Covariant derivative of a field of tangent vectors

Let p — dp = Sdz and p — V = SY be two fields of tangent vectors at p
to w. The derivative dV of the vector field V in the direction dp is not generally
tangent to w.
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DEFINITION 2. We define on w a derivation V for which the derivative of a
tangent vector field is tangent :

V. 1 TaxTw — T,
dp,V) — ViV & T4V,

VapV is the covariant derivative of the tangent vector field V' in the direction
dp, denoted also dV . In the local basis, we have:

VgV = S[dY + T'(dz,Y)).

T is the Christoffel operator whose components in the local basis are the Christof-
fel symbols Fiﬁ and II the orthogonal projection onto Thw.

Second fundamental form

The normal part of the derivative dV in the direction dp of the tangent vector
field p — V can be represented in the local basis by the bilinear symmetric form
F such as NdV = dzFY. We have

N dp  OpoN

G S

N
where %— . R? 5 R denotes the linear tangent mapping to the field z +— N.
z

DEFINITION 3. The quadratic form assoctated to F' is called the second fun-
damental form of the surface w.

Curvature operator
N ON
The linear tangent mapping %—p tdp — dN = %?dp of the field p — N(p)

defines an endomorphism of the tangent plane Tpw. Indeed, as NN =1, we have
NdN = 0 which implies that dN € Tpw.
. ON |

DEFINITION 4. The endomorphism C = __6? is called curvature operator
of the surface w. It is symmetric with respect to the scalar product.

Let us notice that in the local basis associated to the system of local co-
ordinates (f,U), the operator C is represented by the matrix G~!F. Indeed,
we have:

_ 9,0 _

F=—C—==5CS§ and S0 = (887808 =6"\F.
Or Oz
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Derivative of a field of tangent vectors

Let p — dp and p — V be two tangent vector fields. Then the derivative dV
of the tangent vector field V in the direction dp can be written in the intrinsic
form :

dV =dV + (dpCV)N

where C denotes the curvature operator and dV = o dp — the covariant deriva-
tive of V in the direction dp. We have also :

ov v s
g—a—pﬂvvc

Derivative of a vector field of R? defined on a surface

Let p— W = V + uN be a vector field defined in w which takes its values
in R and p — dp a field of tangent vectors. We then define the derivative dW
of the vector field p — W in the direction dp as : dW = dV + duN + udN. The
associated tangent linear mapping

?;LV- Thw — R3,
p ;
dp +— ﬂclp = dW,
op
can be written: y
ow 10)% = ou

Classical two-dimensional divergence

The divergence of a tangent vector field V defined on a surface w is given by:

: av
div(V) = Tr (8_19)

0 ) T
where Tr denotes the trace operator and — the covariant derivative on w.

ap
The divergence of a field of endomorphisms A; of the tangent plane Tpw can
be defined as follows

div(A)V = div(4,V) — H(At%)

for all tangent vector field V' defined on w.
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Particular divergence divy

It is possible to generalize the classical two-dimensional divergence of a field

of endomorphisms of T,w to a field of operators Ay, : w +— L(R3, Tpw), denoted
divy, as follows (see [47][49]) :

: . 1%
dive, (A )W = div(A, W) — Tr(Ata—p>

for all vector field W: w — R3of w.

The divergence div,, enables to write equations in a more compact form and
to simplify the calculations. However, it can be linked to the classical two-
dimensional divergence as follows:

LEMMA 2. Let A3 be a field of operator defined on w which takes its values

in £(R3, Tpw). Then the field A3 can be split as follows: A;3 = A; + A;N where
Ay = Agll is a field of endomorphisms of Tpw and Ag = A;3N a field of tangent
vectors to w. Moreover, it can be proved that:

divsg(Ag) = div (4) — A,C + (div (4,) + Tr (4,C)) V.
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IN THE FIRST part of this paper we have deduced a classification of asymptotic shallow
shell models with respect to the level of applied forces, from the non-linear three-
dimensional elasticity. We have used a constructive approach based on a dimensional
analysis of the non-linear three-dimensional equilibrium equations, which naturally
makes appear dimensionless numbers characterizing the applied forces (F and G) and
the geometry of the shell (¢ and C). To limit our study to one-scale problems, these
dimensionless numbers are expressed in terms of the relative thickness & of the shell,
considered as the perturbation parameter. In the first part, we have studied the case
of shallow shells corresponding to € = 7. In the second part of this paper, we will
study the case of strongly curved shells for which C = e. The classification that we
obtain is then more complex. It depends not only on the force levels, but also on
the existence of inextensional displacements which keep invariant the metric of the
middle surface of the shell.

Key words: Nonlinear elasticity, Shell theory, Dimensional analysis, Asymptotic
methods

1. Introduction

THIS PAPER is a continuation of [10] to which we will refer for the definitions
and notations not explained here.

We recall that in the first part of this paper we have developed a constructive
approach which enables us to deduce a classification of asymptotic shell models
from the three-dimensional nonlinear elasticity. This approach is based on a
dimensional analysis of nonlinear equilibrium equations which naturally makes
appear dimensionless numbers, € and C which reflect the geometry of the shell, 7
and G which characterize the applied forces. The reduction to a one-scale problem
leads us to link C, F and G to the small reference parameter €. In the first part,
we have established a classification of shallow shells models (corresponding to



178 A. HAMDOUNI, O. MILLET

C = €2) with respect to the level forces, from asymptotic expansion of the three-
dimensional equations of nonlinear elasticity. In the second part of this paper, we
propose to apply the same approach for strongly curved shells for which C = e.
The classification obtained also depends on the geometric rigidity of the middle
surface of the shell. However, contrary to the first part of this paper, the shell
is now assumed to be clamped only on a part of the lateral surface and free on
the other part.

The geometric rigidity of the shell is characterized by the existence of inex-
tensional displacements which keep invariant the metric of the middle surface, in
the linear and the nonlinear case. As the shell is assumed to be clamped only on
a part of its lateral surface, such inextensional displacements are possible. Thus,
in what follows, we will use the following terminology :

— a non-inhibited or inhibited shell in the nonlinear range (or just non-inhibited/
inhibited shell) will characterize a shell whose middle surface admits or not non-
linear inextensional mappings or displacements!) (see (5.2) for the mathematical
definition).

- a non-inhibited or inhibited shell in the linear range (or linearly non-inhibited/
inhibited shell) will characterize a shell whose middle surface admits or not linear
inextensional displacements?) (see (5.64) for the mathematical definition).

Let us notice that the definition of a non-inhibited shell in the nonlinear
range used here is different from the one of “bendable surface” according to the
terminology of SzwAaBOWICZ [24]. It is to be reminded that the importance of
such inextensional deformations in shell theory is known since a long time (see for
example LOVE [12], NovozHILOV [17], GOLDENVEIZER [9]). However, whereas
the study of inextensional displacements in linear theory has been systematized
in[2][8][19][20][26], only a few works on nonlinear inextensional displacements
exist [24].

Moreover, to our knowledge there is no work which studies the link between
linear and nonlinear inextensional displacements. In many practical cases, if the
shell is inhibited (respectively non-inhibited) in the nonlinear range, then it is
linearly inhibited (respectively non-inhibited). However, some examples exist
which refute this observation. Indeed, let us consider half a sphere clamped on
its lateral surface. If it is deformed so as to obtain the symmetric configuration
with respect to the base, the transformation is inextensional in the nonlinear
range, whereas it is well known that half a sphere completely clamped on its
lateral surface is linearly inhibited (see [2]).

DThe nonlinear inextensional mappings keep invariant the nonlinear metric of the middle
surface.

The linear inextensional displacements keep invariant the linearized metric of the middle
surface.
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2. Decomposition of the three-dimensional problem

As in the first part, we consider a shell of 2hg thickness, whose middle surface
Is wy, which occupies the domain ﬁ; in its reference configuration, where
) = wix] — ho, ho[ is an open set of R®. We recall that wp denotes a connected
surface embedded in R®, whose diameter is Lg, with a “smooth enough” boundary
7. We note Ny the umt normal to wy , Cj its curvature operator, g5 a generic
point of Q and FO = x {£ho} the upper and lower faces of the shell.
Contrary to the first part of this paper, the shell is now assumed to be clamped
only on a portion I'}* = 'yé“ X [—ho, ho] of the lateral surface I'j = ')/0 X [—ha, ho],
and free on the other portion I'3* = +2* x [—hq, ko], where (70 ,7a*) denotes a
partition of ;. Thus inextensional displacements are possible.

¢l&

\

2%
1= [
Eg’
FiG. 1. Initial and final shell configuration.

Within the framework of nonlinear elasticity, the unknown mapping ¢*: Qg— R?
and the second Piola-Kirchhoff tensor £* solve the equilibrium equations :
Div*(H*) = —f* in 9,
ENy— £ B e

(2.1)
¢t =iy g Ty,
H*ng =0 1
= a * * *
with H* = E*F*, where F* = M =13+ i denotes the linear tangent

aqp 9
mapping to ¢*, ng the unit external normal to ', f* : ﬁ; — R® and g**
ng — R3 the applied body and surface forces, and 44 the identity mapping
of R3. Let us recall that in the framework of Saint-Venant Kirchhoff materials,
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¥* is linked to the nonlinear Green-Lagrange strain tensor E* = (F F* — I3)/2
by the constitutive relation £* = A Tr(E*)I3 + 2uFE*, where I3 denotes the
identity of R®, A and p the Lameé constants of the material.

To make the expansion of the boundary condition H*ng = 0 on I'#*, we must
have an explicit expression of the normal ng with respect to the unit normal vy
to 5. We have the following proposition which has been proved in [6] :

PROPOSITION 1. Let wj be a connected surface embedded in R3. Let us
consider the shell of 2h( thickness which occupies the domain

Q5 ={q, =ps+2"No where p; € w§ and z* € [—ho, +hol} -
Then the unit external normal ng to the lateral surface I'j is given by:

1 1

(22) ng = H—Ks_—lljmﬁa— 1%1]

with k§ = I§ — 2*Cj and where I denotes the identity on Twy.

Thus, the boundary condition H*ng = 0 on I'3* can be written as :
(2.3) H* Mok g =0 on T

In the case of strongly curved shells, it is not necessary to decompose com-
pletely the equilibrium Eqs. (2.1) onto Twj @ RNy as in the first part. To simplify
the calculations, we will use only a partial decomposition. To do this, we intro-
duce the two-dimensional divergence divj; defined as follows®;

Let A be an operator field defined on w§ which takes its values in L(R? Tw}).
Let us set Ay = Ally and A; = ANy. Then we have :

diviz(A) = div* (A4;) — A,Cf + (div* (As) + Tr(A,Cp)) No

where div* denotes the two-dimensional divergence on wg.

®)This definition is similar to the one introduced in [25] by the author.
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Thus, if we partially decompose H* as follows : H* = IIgH* + NgNoH*, the
equilibrium Eq. (2.1) can be written :

-

diviy (s~ oM *) — div* (k* 1)1y H*
—Tr(sy~ G NoH" + 3@3{* IR e e
(24) § AN =g on DIFE,
¢* =14 om. TL%,
i ﬂ*ﬂona_lm) =10 on Fg*.

3. Dimensional analysis and one-scale problem

As in the first part, we define the following dimensionless physical data and
unknowns of the problem :

pa qa ¢* l T* z*

= = = =y === e 1) = b = Ty
) T A e U, T
Co & f fe _Ja _ 9 9n

e ’ gn = ) g ) gt )
fer e Jor - Gtr Onr

where the variables with subscript r are the reference ones. The new variables
which appear without an asterisk are dimensionless. To avoid any assumptions
concerning the order of magnitude of the displacements, the reference scales ¢,
and U, are firstly assumed to be equal to Lg. If necessary, it will always be
possible to define new reference scales for the displacement.

On the other hand, we will use as in the first part, the following notations to
simplify the calculations :

2 3
(3.2) F=¢F*, E=¢E", E:%E* o H:%H*,

Then the dimensionless expressions of F', E, ¥ and M are given by:

(3.3) F=e—r;' +—=Np.
0

(34) 2E=FF —¢’l;, T =0T(E)3+2E, H=pT(E)F+2EF

and can be calculated from the mapping ¢.
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With these notations, the dimensional analysis of Eq. (2.4) leads to the dimen-
sionless equilibrium equations:

ONoH
0z
= —53.7-? in Qg,

edive (kg 'TIgH) — Ediv(mal)ﬂg?{ — CTr(ky 'Co)NoH +

(3.5) ﬁiNg =+e3Gg  on T,
¢=14 on Iy,

gngﬁalllo =0 on F%,

and naturally introduces the same dimensionless numbers ¢, C, F and G as for
h
shallow shells [10]. We recall that the two shape factors € = L—O and C = hoC;

0
characterize the geometry of the shell (relative thickness and curvature), whereas
ho fr _ ho far a i = i, = gtr _ Gnr

© p p

the force ratios F = F;, = Fp, =
characterize the forces applied to the shell®).

To apply the standard technique of asymptotic expansions, the problem must
be reduced to a one-scale problem. To do this, € is chosen as the reference
perturbation parameter and the other dimensionless numbers must be linked to .
In the first part of this paper, we have studied shallow shells which correspond
to C = €2. In the second part, we will consider strongly curved shells for which
€ =E.

On the other hand, as in the first part, the study of all the force levels can
be reduced without loss of generality to the particular choices F; = G; and
Frn = G,. Moreover, as in the case of strongly curved shells the tangential and
the normal direction play a symmetrical role, we will only consider force levels
such as F; = Fn = G; = G,,. However, to separate body forces from surface forces
in the equations, we have set F = F; = F,, and G = G; = G, even if we always
consider force levels such as F = G.

Finally, the classification of asymptotic shell models will be deduced for de-
creasing force levels, from severe (F = G = €) to low (F = G = £"2%).

DMore precisely, F; and F, (respectively G; and G,,) represent the ratio of the resultant on
the thickness of the body forces (respectively the ratio of the surface forces) to p considered
as a reference stress.
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4. The nonlinear membrane model

In this section, we begin the classification with severe force levels. We will
show that the asymptotic expansion of equations naturally leads to the nonlinear
membrane model.

4.1. Asymptotic expansion of equations

We consider a strongly curved shell (C = ¢) subjected to a severe force level
G = F = €. Once reduced to a one-scale problem, we postulate that the dis-
placement U or equivalently, the mapping ¢ = i4 + U admits a formal expansion
with respect to e:

U 7Y el 4 2202 &
¢ = ¢ +ep! +24%+

with ¢0 = iy, + U°, ¢! = U! + 2Ny and ¢* = U* for i > 2. If necessary, it will
be possible to decompose U into Twy ® RN as follows : U = V + ulNy.

The expansion of ¢ implies via (3.3) and (3.4) an expansion of F', E, ¥ and
‘H whose terms will be calculated when necessary. Let us just notice that we now
have :

k71 = (Ip — e2Cy) ! = Iy + 26Cy + 2%*C¢ +

Then the asymptotic expansion of equations leads to the following result:
REsuLT 1.

For applied forces such as G = F = ¢, the leading term ¢° of the expansion
of ¢ depends only on py and is a solution of the following nonlinear membrane

model: e
0

divys (n?ai) =—-p in wy,
dpo

0 — 1
¢ _Zwo on 70)

ndiy =0 on 72
where 1y denotes the unit external normal to vy and where
< B +1
A0 5¢°

— (AN +4AY, 2A) = — —— ], d p=gt+g” /d.
2+6 ( )0 t apoapo an D g+g+ fZ

o_ 48

ny =
-1

Proof The proof of this result is similar to the one of the nonlinear mem-
brane model of the first part of this paper [10]. Let us just recall the intermediate



184 A. HAMDOUNI, O. MILLET

results which will be used in what follows. On one hand, the second term ¢' of
the expansion on ¢ can be written as:

(4.1) @' = U'(po) + 260N with G = \/1 - E%’I}(A?)

where N denotes the unit vector orthogonal to the surface w = ¢°(wp) oriented
so as fp to be positive. On the other hand, according to (3.3)-(3.4), we get :

0
(4.2) F! = HDNFM- gqﬁ——
dpo

4.2. Comparison with existing results

To compare the nonlinear membrane model obtained in Result 1 to other
existing models, we must explain its associated weak formulation. To do this, let
us define the space of admissible displacements :

Vi{w) = {U : wo = R?, “smooth”, U =0 on 'yé}
and the space of admissible mappings :

Qwp) = {qb : wp = R3, “smooth”, ¢ =1i,, on 76}

Then the two-dimensional equations of Result 1 can be written in the following
weak formulation:

REsuLT 2.
The mapping ¢° € Q(wp) satisfies the following weak problem :

(4.3) [ o268 dun = [ B5%din, V56 € Vi
wo wo
with ceand®
48 04" 9¢
0 _ 0 0 VI
nh=gyp TrAND+48), 280 =35 b~ I,

where §AY denotes the virtual variation of A) due to the virtual displacement
d¢° associated to ¢C.

The proof of this result is classical and is based on the Stokes formula. It will
not be detailed here. Let us notice that the non-linear membrane model has been
also deduced by asymptotic expansion in [13] using a description of the shell in
local coordinates. The equations obtained are the same as the ones of Result 2.
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5. Non-inhibited shells in the nonlinear range

5.1. Nonlinear model coupling membrane-bending effects

In this section, we consider a shell non-inhibited in the nonlinear range sub-
jected to a high force level of €? order. First, using the previous results, we
will specify the expressions of ¢° and ¢!. Then we will continue the asymptotic
expansion of the equilibrium Eq. (3.5).

5.1.1. Characterization of ¢°. For a level force such as G = F = €2, the Results 1
and 2 are still valid. We then obtain the same nonlinear membrane model without
a right-hand side with the following associated minimization problem:

Find ¢° which minimizes the functional J = a dwy on Q(wp), where
_ Jwo
2ﬁ 2 9¢ 9¢°
a=—-=Tr(A)* + 2Tr[(A)*] and 208 = — — — I

As the densmy of energy «a is positive and is equal to zero if and only if A =0,
the solutions ¢° of this minimization problem satisfy A = 0 or equivalently:

9¢° 8"
oy dpo Opo

As the shell is assumed to be non-inhibited, Eq. (5.1) admits other solu-
tions as rigid mappings. Let us denote by [inex(wo) the space of inextensional
mappings:

(5-2) Iinex(w())

9¢p 0¢ : ;
= . R:i’ « th”, =T 4 1
{(j) wp — SImMoo B0 ——apo 0 in wp, @ = 4y, ON 'Yo}

Thus we have ¢° € Fpex(wo) and the expression (4.1) of ¢! then becomes:
(5.3) ¢ = Ul(p) + 2N
In the same way, the expression (4.2) of F' reduces to:

a¢°

5.4 F! =
(5.4) o

+ NNy

which implies that FIF! = Iy + NgNp = I3. On the other hand, the expansion
of the equation of continuity® detF* > a > 0 in Q¢ leads to detF'! > 0. Thus

5)See condition (2) in the first part [10].
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F! is a rotation of R? and we have :

FIF'=F'FT'=[; and (F)7!=FL

Then replacing the expression (5.4) of F! in F1F! = I, we get:

o¢° 0%
5.5 — — + NN=1I;.
5t dpo Ipo 3
Using the decomposition Is = I + NN on Tw @ RN, where w = ¢°(wp) and I
denotes the identity on Tw, we obtain

8¢ 040
(5.6) qo dy I
dpo Opo
This relation will be used later to simplify the calculations.
Finally, using (3.3), (3.4), (5.1) and (5.3), we can calculate the first non-zero
terms of the expansions of F, E, ¥ and H. On the one hand F! is given by (5.4),

and on the other hand we have :

2 1 0
_ ot Ul o

F? —— — 2 K?  2E}=FIF? 4 F?F,
(5.7) 0z ° " Opy  Opy !
¥} = ATr(E*) 15 + 2E3, HY = 23FT,
" 5 880 ON Y X
with K = C — Cp and where C = S = —(—9~¢—C—2— denotes the

Opo dpo dpo  Opo
pull-back on wy of the curvature operator C of the surface w = ¢°(w”). Here
K = C — Cp represents the classical nonlinear change of curvature.

5.1.2. Asymptotic expansion. Taking into account (5.1), we continue the asymp-
totic expansion of equations. We then have the following result:

REsuLT 3.

For a non-inhibited shell in the nonlinear range, subjected to a high level of
forces G = F = €2, the leading terms ¢° and ¢' of the expansion of ¢ satisfy:

i) ¢° depends only on py and @° € Iinex(wo)-

ii) ¢! = U! + 2N, where U! depends only on py and N denotes the normal to
the deformed configuration #°(wp).

iii) ¢° and U are solutions of the following nonlinear equations:
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. i
840
divs 'ntli =—P In wy
< dpo
=0 on v}
{ njvg =0 on 72
and
’ 9¢° 00}
di — OB )= I —divimO)N | = =P i
V43 ((X “mt)apo +ny Ty iv(my) m wp
J -y, =0°=0 on ¢
3__“6
xvo — mCovg = mlyy = 6 —vp—divimd)ry=0 on 3
\ Do

where x is a field of symmetrical tensors which depends only on ¢°, ¢! and ¢?,
and where:

1_ 4B a¢° aU'  AUT 9¢°

nl = ——Tr (A} + 4Al, 2A1 = s 0
tT 2+ (Be)To h t7 8py Apo | Ipo Opo
43 4
0 _ 0 _KU 0 _ Je
m,,_ _—3(ﬁ+2)T‘I'(Kt )IO+3 to Kt C Cﬂ,
- 0¢°ON g0
C:_—_.—-’ e(]: N’
Jdpo Opo 1 dpo ° )
ng++g’+/fdz, M=g+—g"‘+/zfdz,
1 =1

ot R B
P = divg (g—i MN) — Tr(Cy) M.

Before giving the proof of this result which is rather technical, let us notice
that the model obtained here is not easy to interpret in this local formula-
tion. Contrary to the asymptotic models previously obtained, this one takes into
account the two unknowns ¢° and U!, where ¢° is an inextensional mapping
generating the curvature variation K, and U! is a displacement generating the
membrane strain A},

On the other hand, let us remark that the expression of the field of symmet-
rical tensors x, which is complex and depends on ¢°, ¢! and ¢?, is not given
explicitly. It is not necessary because it will vanish in the associated weak for-
mulation which is given in the next result. For an interpretation of this model
the reader can be referred to Result 4
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P roof. The proof can be split into five steps, from i) to v).
i) Determination of ¢*

Problem P* reduces to:

which leads to H¥N? = 0 in Q. Using (5.6) we get F1X3Ny = 0 or equivalently
(5.8) »WNy=0 in Q

because F'! is inversible.
Then replacing £3 by its expression (5.7), Eq. (5.8) becomes:

—O¢? Ul ¢ ag?
2)N—— + BTr(Al —2K})| No+ -—No— —=—— =0
(B+ 2N + BTH(AL — 2K])| No+ 5 —No 5=
g0 aU' AUt §°¢°
where 2A} = — + .
©7 Opo Opo  Bpo Bpo
Now, let us project the last equation onto Twy and Ny. We get:
g0 9¢*  oU! ~0* B 1 0
—_— = —— — — ——Tr(4A; — 2K,
B B i L o By B
or equivalently, using (5.6):
8¢®  9¢° oUt ~ 99 p I 0
% I_ | e, _— - Tr A —zK;).
B  Imsgemmy W N TRk
As I + NN = I3, the two Eq. (5.9) are the projections onto Tw and N of the
2
vector Bi

Then Zwe have:

2 0 o771
e =—aiiU—N—imA}—zK£)N.

5.10 —_
et 0z Opo Jpo B+2

A integration with respect to z then leads to the following expression of ¢? :

e
(5.11) ¢® = U2 fy -‘ZEN p

B i » 1_ g0
u zapof?po zz(ﬁ+2)Tr(2At zK;)N.

where U? depends only on pg.
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Now let us calculate the expressions of E3, ¥3 and H*. First, using (5.11),
the expression (5.7) of F? becomes:

gttt . 8t g¢° NEE
(5.12) F?* = dio e —NNy + — e a;;;OKt ~ ﬁ—f_—z’I‘r(Al 2K?)NNy.

Then multiplying the last equation by FT and using the relations

a¢° — 0 8¢° 8¢’
Fl=7" NNy, -——— =1 and N_— =0,
Opo © Bpo dpy Opo
we get
— Ut out quo oUt Ié] —
FiF? = —— NNy + MyN—— + ————— — 2K — —— Tr (Al — 2K?) Ny Np.
ap U 0 6 apo apo Z t ﬂ i 2 ( t Z t) 04¥0
Finally, in view of (5.7), E3, £3 and H* can be expressed as follows :
E3 = A} —2K0 - B—% Tr (A} — zK?)No Ny,
1
(5.13) 2= S(ng = 3zmy),
1 o¢0
HY = —(n}-32m)—
48 48 4
where nf = A+ 2'1Y(At1)Ig +4A] and m{ = WT&“(KE)IO + §K?

i1) First equation of Result 3

In view of (5.13), the cancellation of the factor of &® in the expansion of
equilibrium Eq. (3.5) leads to problem P5 which reduces to:

Nt -
aivs(opt) + T~ F i q,

—_—t
HY Ny =:i:gi on I"(f,

Using (5.13) we get:

1 L 00 - 008°\  ONH® - .
§d1vt3( apo) 2zd1vta( 30 + 92 =—f in .

(5.14)
—?{_5J:Ng=igi on Ff,t.
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Let us integrate the above equation upon the thickness. We then obtain:

: ( IaUl) .
divig|n;— | =—P in wp
dpo

1
where p=g* +¢~ + / f dz, which constitutes the first equation of Result 3.
=4

On the other hand, an integration of (5.14) with respect to z leads to:
1 z ' Smml
R T LAy Lo (% e ek g 2\ 1 009"
(515) 2NOH = Zp+g+—g S de = de"—‘é(].—Z )dlvt;; mtg A
0

In what follows, to simplify the calculations, we set:

(5.16) A= NoH?®

z

1 _
1 % . A0
=g H+gt—g +[f ff —l—z)dlvw(m?ad))
z -1

l\DQD

ii1) Computation of H®
Before writing problem P, let us decompose H® as follows:
(5.17) H5 = TIgH® + NoNoH® = TIgH® + NpA
according to (5.16). On the other hand, the expression of #° reduces to:
(5.18) H = 24FT 4+ 23F?
and Eq. (5.17) can be written as:

H5 =T F! + I E3F2 + NoA.

Now, let us decompose also X* and £? as follows : &% = 241y + Z'NgNy and

3 = 2310 + B3NyNp. Then using (5.4), (5.8) and (5.12), the expression of H°
becomes:

1 0 Lt
(5.19) H° = Hoz‘inoai + SN N + 2310, s S g e L + NoA.
Apo 3100 Opo
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0
On the other hand, let us multiply (5.18) by Ny on the left and by Bi on the
Po
) 0
right. Using (5.4) and (5.8), we get Ng 'y = 4 % or equivalently
0

(5.20) MeENy =

because £* is symmetrical.
Finally, in view of (5.8), (5.13) and (5.20), the expression (5.19) of H> be-
comes:

GQSO 3(;50 ou! g0
5 4 160 L e 0
(5.21) HY =1 X%, + [)AN ( n; Bzmt) o t B

Let us notice that the calculation of IIgX4Ily with respect to the displacements
is not necessary. As already noticed, this term will vanish in the weak associated
formulation.

iv) Second equation of Result 3
Problem P® can be written as:
din3(H0H5 + 200%4) — Ty (C())—JV_(]HE = ZdiV(C())HQH4

ONgHS
0z

(5.22) + =0 in o,

miN()ZO on F(:]k

Using the expressions (5.13) and (5.21) of #* and H®, an integration upon
the thickness of Eq. (5.22) leads to:

. g0 OUT _ 0¢0 094 \ = 099"
(5.23) dives [Xap +n tapg 3110 divyg | my : N — Cymy, i

0

0 3
+ Tr(Ch)dives [m?agﬁ ] + div (Cp)m g% =—P in wp
0

Op
where the expressions of P and M are those of Result 3 and where
1
X% = / My X4 ydz + mIKY.
-1

In the last expression, y is symmetrical because m? and K? are symmetrical and
commute.
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Now using the following property
3¢0 . 3¢0 ) 0
Tr (Co)di 0 | + div(Co)m{ =~ = divez | Tr (Co)m{ — |,
(Co)divyg (mt 3;00) + div(Cop)m; o iveg (Co)my 0
Eq. (5.23) becomes:

0 1 0__ a0\
- ot 22+ 3 - T (w20

(524) divtg

“apo  Opo dpo
=—-P in w
with:
1
(5.25) x =%+ Tr(Co)m? = /H024H0 dz + mYK} + Tr (Co)my.
-1
Let us just notice that x is a field of symmetrical tensors.
Finally, as agh 3y" = Iy, it is possible to prove that :
Y, 8})0 ap() 0, P p ¢
; a0\ 0¢° ;
5.26 d 9= | == = div(m
(5.26) ivy3 (mt ap()) Fp0 iv (my)

where div denotes the classical two-dimensional divergence on wg. Thus Eq. (5.24)
constitutes the second equation of Result 3.

v) Boundary conditions

To conclude the proof, let us examine the boundary conditions. The expan-
sion of the clamping condition ¢(go) = go on T'§ leads to U® = 0, U! = 0 and
N = N on v¢. The last condition N = Ny can also be written 8% =0 on ~{,

a¢° ;

where 60 = _BiNO characterizes the rotation of the normal Ny to the middle
Po

surface wy.

The boundary conditions on the portion 4¢ of the lateral surface 7o can be
obtained formally from the three-dimensional boundary conditions as follows.
As we have

Heg'vo = e Hivp + 2 (2HCo + HO)rp + . =0 on T,
using (5.13) and (5.21), we get:
og°

(5.27) %(nguo -32mdy) =0 on T},
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5.27 09" 4 9" 0 —5;¢0
.21 g Lo Tovo + 25 (] — 3zmf)Cowo + NAZ -wo

1 v ag°
+ = (Z% - ZB;:JSOK?) (”tl = 32771?)1/0 =0 on I‘g.

The first equation of (5.27) leads to:
(5.28) nirg=0 and mdyy=0 on ~2.

0
Now, multiplying the second equation of (5.27), on the one hand by —g% and on
_ 0
the other hand by N, using (5.1) and (5.28), we get:
4 1 .1 0 —0¢° 2
Mo X *gvg + §z(nt —32m; )Corp =0 and Apo—VU =0 en I,
0

Then using (5.16), the integration upon the thickness of the above equations
leads to:

1
/HUE4HOUO dz —m)Cory =0 on 72,
(5.29) i

9¢0 : 4 91;0 9250 5
M —uvy — divy B e 0 i{
= 120 1Vys (mt . 120 on 03

)
where M = gt — g~ +[ 2f dz.
1
According to (5.25) and (5.28), the first equation of (5.29) becomes:

XV — m?Couo =0.

Finally using (5.26), the second equation of (5.29) reduces to

—0¢’ S e 2
M_—uyy—div(my)ip =0 on =
Ipo

which concludes the proof of Result 3. 0
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5.1.3. Nonlinear model with coupling effects. The model obtained in Result 3
is not usable numerically. It contains three unknowns ¢°, ¢! and ¢? coupled
together in the tensor y. However, its associated weak formulation enables to
reduce the numbers of unknowns. Indeed, let us define the following admissible
spaces of mappings and displacements :

V(we) = {U: wp— R?, “smooth”, U=0 on =},

s Wou wo _,
(5.30) Vi ox(wo) = {U € V(wo), 3pe Op0 + 30 9o in wpp,
0¢
Qinex(wﬂ) = {¢ € Jinex, a—¢ Nop=0 on 7(1]} )
PO

where Iiex is defined by (5.2).
Thus, the two-dimensional equations of Result 3 can be written in the fol-
lowing weak formulation:

RESULT 4.
(¢°,U") € Qinex(wo) x V(wp) is solution of the weak problem:

/ Tr (n{6A} + m{SK?) dwo = / (POU*L — Tr(Co)M¢° + MEN )dwy
wo wop

v (84°,6U1) € VP

inex

(wg) X V(UJQ)

with:
48 g0 U BUT g°
1= _TTr (AN + 44, gl S o CHasie
T (&) ‘ ©7 8po Opo  Opo Opo
48 4 » - 0¢8N
b= T KNI+ K] K)=C- =
my 3(16+2) ( t) U+ 3 A t CO and C 6p0 Bp(],
1

1
p=g++g‘+/fdz, M=g+-g'+[ zf d.

-1

-1

The proof of this result is long and technical, hence will not be reported. It is

based on the successive use of the Stokes formula.
O
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5.1.4. Interpretation of this coupling model. In Result 4, we have obtained a
two-dimensional shell model which couples membrane and bending effects. In
this model, the resultant mapping of the middle surface of the shell is:

()3:¢0+6U1

and the resultant displacement of a point py is represented in the following figure:

Fi1Gg. 2. Decomposition of the displacement at a material point po of wo.

Thus, the displacement can be split into:
e an inextensional mapping ¢°.
e a small displacement eU!.

On the other hand, in the coupling model of Result 4, the unknowns ¢° and
U! generate two kind of strain :

e a nonlinear pure bending strain K due to ¢°

e a membrane strain A} due to the displacement U!.
In fact, the strain A} can be written as

AY a¢°
5.31 Al — ZE AL HE
o £ dpo % Bpo
1{ _out 1
where A;o = 3 (H-E%' =+ Hg(%—) is the linear strain due to U! and calculated

at the point p = ¢%(pg) of the deformed surface ¢°(wp). Thus A} corresponds to
the pull-back on wqy of the linear strain AL, due to UL
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This coupled model is to our knowledge a new nonlinear shell model which
couples membrane and bending effects. For a non-inhibited shell it is possible
to prove formally that this model and the nonlinear Koiter’s one have the same
limit when ¢ tends towards zero. Thus, this new coupling model is an approxi-
mation of the nonlinear Koiter’s one for non-inhibited shells. In the linear case,
an asymptotic analysis of Koiter’s model has been made in [19][20]. However,
the only two models which are obtained are the linear membrane and the pure
bending ones.

5.2. The nonlinear pure bending model

In this section we consider a shell, still inhibited in the nonlinear range, but
subjected to a moderate force level § = F = 3. Then we prove that for this
force level, the asymptotic expansion of equations leads to the classical nonlinear
pure bending model.

We recall that the spaces Ve

mex
then have the following result:

(wo) and Qjnex(wp) are defined in (5.30). We

REsSULT 5.

For a shell inhibited in the nonlinear range and subjected to a moderate
force level G = F = €3, the leading term ¢° of the expansion of the mapping ¢
depends only on pg and is solution of the nonlinear pure bending model:

¢D € Qinex ((‘)0 ) 3

/ Tr (m{sK7) dwo = / pog duwy ¥ 8¢° € Ve, (wo)

wo wo
where:
43 4 : . 940 ON
{= =T (K)) o+ K}, K} =C—-Cyp, C=—-7"—-—
mt 3(ﬁ+2) ( t) 0+3 t> t 0, 3;003;00’

+1
p=/f dz+g" +g7,
=}
and where N denotes the normal to the deformed configuration ¢®(wp).

P roof. For the moderate force level considered here, following the proof
1

of Result 4, we obtain the same weak formulation with / 7 0¢° dwg as the
=
right side:



CLASSIFICATION OF THIN SHELL MODELS. . . 197

(¢°,U") € Qinex(wo) x V(wy) satisfies:

(5.32) [ Tr (nfdA} + m{oK7) dwo = / p6¢° dwg
wo wo

V (34°,6U7) € V& (wo) x V (wo).

inex

Now, if we choose §¢° = 0 in this weak formulation, we obtain

fTr (niéA}) dwg =0 v U € V(wo),
wo

which leads to

A dU AU 0¢P
5.33 07 s e G < b A
V23 t 7 8py Opo  Opo Opo

according to the definition of n} (see Result 4). Finally, as A} = 0 we have n{ =0
and the weak formulation (5.32) leads to the classical pure bending model.
O

Thus we have justified the nonlinear pure bending model for a non-inhibited
shell subjected to a moderate force level. The intrinsic approach used here makes
clearly appear the curvature change K = C — (), difference between the pull-
back of the final curvature and the initial curvature. This nonlinear pure bending
model has been justified also in [11] using a description of the middle surface of
the shell in local coordinates. However, in this case the expression of K{ which
is obtained is difficult to interpret.

Finally let us notice that the existence of solutions of the pure bending model
has recently been studied in [3]. However, the eventual uniqueness of the solution
is still to be proved.

5.3. The linear pure bending model for linearly non-inhibited shells

We now consider a shell, still non-inhibited in the nonlinear range, but sub-
jected to a low force level G = F = ¢%. It is then necessary to distinguish the
linearly non-inhibited from the linearly inhibited shells as well.

We will prove here that for linearly non-inhibited shells®) subjected to the
low force level considered here, the displacements are of the thickness order and
the asymptotic model that we obtain is the linear pure bending one.

8)Still non-inhibited in the nonlinear range.
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5.3.1. New reference scales for the displacement field. We begin to prove that
the leading term U? of the expansion of the displacement vector is equal to zero.
Indeed, for a low force level G = F = ¢4, we obtain the nonlinear pure bending
model of Result 5 without a right side whose associated minimization problem
is the following one:

Find ¢° which minimizes in Qinez(wo) the functional J(¢) = / o dwy,

wo

with

_ 2 2, 2o 502 ol __ 9% 0N
o= smrg MK + 3K, K=C-Cy, C= ,

were N denotes the unit normal to ¢(wp).

The solutions of this problem are the mappings ¢° which satisfy
K)=C-Cy=0.

As ¢° is an inextensional mapping which satisfies

g0 5¢° .
ii —Ip=0 in wy
9po Opo
0
the rigid motion lemma implies that ¢° = i,,,. We have in particular — = I,

dpo
and N = Ngy. Thus, the leading term of the expansion of the displacement
satisfies U = ¢° — 4, = 0. Moreover, according to (5.11) and (5.33), we get:

aul
0 and U?= d)2 =U?- za—poNO

Ul HU!
5.34 LA Sy 28
(534 Opo  Opo

d 9
where U! and U? only depend on pg and where — = Ilp—— denotes the
. 2t dpo Opo
covariant derivative on wy.

As we have proved that U = 0, we get

LU D on, g
U—Ur-LO—EU + g &

which is equivalent to :

LR e LR s S
EUT h[)

U=
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Accordingly, for this low force level, the reference scale U, = Ly of the displace-
ment is not properly chosen. We must consider U, = hy for the leading term
of the displacement to be different from zero. So the dimensionless equilibrium
equations must be written again with U, = hg as the new reference scale. The
dimensionless displacement will still be noted with U. This new dimensional
analysis does not modify the dimensionless equations (3.5) but only the compo-
nents of F', E, ¥ and H, where U must be changed into €U. In particular, the
expression (3.3) of the tangent mapping F' becomes:

ou =
.35 F=¢l il S SHIY bedioy T2
(5.35) el3 +¢ 3;005 +£8z 0

A new expansion of the displacement is then equivalent to change U* into U*~!
for 4 > 1 in the previous results. In particular, expressions (5.34) become:
ous  du° oU"
(5.36) 20 = — 4+ —=0 and U'=U'-2—N,
dpy  Ipo dpo
where U° and U! only depend on py.
On the other hand, with this new reference scale of the displacement, the
first non-zero terms of the expansion of F', E, ¥ and H can be calculated from

(3.3), (3.4) and (5.35) as follows:
ouv

Fl=1I, F?’=-"+0"N,,
Opo
2 1, 0 770
(5.37) 3 au A au 00 ou
PR T e el

B3 =F L F31L F?F? and E'=#°=pM(EYL; +2E

5.3.2. Asymptotic expansion of equations. For the low force level considered
here, the displacement is of the thickness order and we have the following result:

RESULT 6.

For a shell non-inhibited in the nonlinear and in the linear range, subjected
to a low force level G = F = ¢4, the leading term U? of the new expansion of U
depends only on py and satisfies the conditions:
i) UV is a linearly inextensional mapping which verifies:
U HU° _
+——=0 in wy,

2A) = —
L Y
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ii) U° is solution to the problem:
divys (X + C[]Tﬂ.? + m(mg)ﬁ()) =—Pp in wyo,
U'=0%°=0 on 4,
0 SR R Djzig 2
xvo + my Covg = mivyg = div(m;)ry =0 on 7y,

where Y is a field of symmetrical tensor which depends on U?, U! and U?, where
Ny denotes the normal to the initial configuration wg, and where :

48 4
e RO T )
ml 3(6+2) ( t) 0 + 3 ts
000 e Hu° auo
2K? = Wi A Wil g RN ) e i
7 Bpe | dpo | Bpo 0 Y dy
U0 1
PSS ol =[ d + g
© ape 0 P 1f z+g"+g

Before giving the proof of this result, let us notice that the expression of the field
of symmetrical tensors ¥, which is complex and depends on U°, U! and U?, is
not given explicitly. As in Result 3, it is not necessary because it will vanish in
the associated weak formulation (see the next result).

P roof The proof of this result is similar to the previous one. It can also
be split into five steps.
i) Computation of H°

By using (5.37), problem P®° reduces to :

NoH® —
2 ;Z{ =0 in 2 and H Ny= Lyt on If
which implies that
(5.38) NoH® =0 in

Equivalently, according to (5.37) we get:
(5.39) NoZd = BTX(EY)YNy + 2NoE* =0 in
where E* is given by:

2 ar72
i Ny + Ny %U; + (A 4 2KY

(5.40) 2E* = F® { F3 + F2F2? =

Z
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with
aul Ul  auv AU 6U0
2A = = + 0'N,
dpo  Opo  Opo 3170 dpo :
— 0 ety
(5.41) N2 4 (10°| NoNa,
dpo
000 9e0  JUo 6U°
2T = - + Co + C
apo | po | dpo O épy

Thus equation (5.39) enables us to calculate OU2/9z. Indeed we get:

oU? 1 . .
+2NG(A! + zKO)Ng] No — 2I(Al + 2K°)No.

Replacing the expression (5.42) of U%/0z in (5.40), and decomposing Al and
K into Twy & RNy, we obtain :

(5.43) E'= ———_Tr (Al + zKQ)NoNp + (Al + zKD)

with :

Ut e ! , 00
dpo  Opo  Opo Opo’

2A} = 2[H A, =
(5.44)

500 N 500  du° U0

2K9 = 211, K T, = o+ Ch 46
‘ 0 0T Bpe T Bpe | Opo " bpo

Hence the expression of H® becomes:

(5.45) W= %(ntl + 32m?)
where:
4
nf = oS THAD, +4(a),
(5.46)
o_ 48 4

mt—m Tr(K)) o + - (KO)
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ii) Characterization of U!

Using (5.37), problem P% can be reduced to :

N6
divtg(no?{5) + ONoH =
(5.47) 0z

A No=0 on TE.

0 in Q(],

Then, according to (5.45), an integration upon the thickness leads to
(5.48) diviz(n}) =0 in wp
whose solutions verify

du! dUl 8Uv au°
) Y7 8py | dpo  Opo Opo

Finally, taking into account (5.49), expression (5.45) reduces to:

(5.50) ST gz m?.

iii) Expression of H®

Now let us integrate the Eq. (5.47) of problem P® with respect to z. We get:

2
(5.51) Wt = B ) ),
Thus H® can be written as :

6 6 EYACTL 6 3(1 - 22) . 0
(5.52) H® =TIgH> + NoNoH® =TIZH” + St - Ny divgg(my).

On the other hand, according to (5.37), we have:
(5.53) H5 = ¥F 1+ BT,

Hence (5.52) can be written as :

3(1 - 2®)

(5.54) HE =1IIo%5 + o2 F2? + -

Ny diveg(m?)

e 0 o
= HOESHO + HOESNUN() + gzm? %Z + 3(1 1 = ) Ny divtg(m?),
0
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where F2 and £* have been replaced by their expressions (5.37) and (5.50).

On the other hand, multiplying (5.53) by Ny and using (5.39), we get:

301 - 22
4

Ny = dives(my)

because 3° is symmetrical.
Eventually, the expression (5.54) of H® becomes:

3 ouo°
6 _ 5 2 0
(5.55) H° =TI X°I) + 2z my _8p0
3(1 — 22 — —== :
+ ————( 2 ) (Hgdlvtg(m?)No + Ny dlvtg(m?)) v

iv) Equilibrium equations

The cancellation of the factor of €7 in the expansion of Eq.(3.5) leads to prob-
lem P7:

. 6 5 /6 . 5 ONH'
dlvtg(nor}{ + 2z CoH ) = TF(C())N()H — z div (CO)H(]H - 7
(556) s s _T in QO’

WiNozzk:gi in I‘(:]t.

By using (5.50) and (5.55), an integration upon the thickness leads to:

il
(5.57) divys ( f My B3y dz + Comy +Hgdivt3(m?)]_\7a)

-1
— Tr(Cy)dives (m?) —div(Co)m? = -5 in wp
where psz_r;f dz+gt+g .
Finally, using the following properties of the divergence divyg:
divg(m)Iy = div(m?)

and
Tr(Co)dives (mf) + div(Co)my = dives (Tr(Co)my)
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we transform the last equation into:
(5.58) dives (x + Comi + div(m{)Nog) = P in wp

which constitutes the equilibrium equation of Result 6 with:
1
(5.59) - / Mo¥5Tl, dz — Tr(Cp)m?.
=

We recall that x is a field of symmetrical tensors.
v) Boundary conditions
To conclude the proof, let us examine the boundary conditions. The clamped

condition U = 0 on I'y easily leads to :

(5.60) U°=6°=0 on ~.

The boundary conditions on 3 can be obtained from the expansion of the con-
dition Hky vy = 0. Taking into account expressions (5.50) and (5.55) of H* and
HE, we get:

zmlyy =0 on T3,

3(1 - 23)

(5.61) HOZSHOVO + 1

No dngg (m?)ug

3z 9U° 327
?3—110‘771?1/0 + —2—"'71'?,?001/0 =0 on Fg

The first equation of (5.61) directly leads to
(5.62) mdug =0 on 3.

Let us project the second equation onto Twy and the normal Ny, and integrate
the two equations obtained upon the thickness. Taking into account (5.62), we
obtain

1
(5.63) ngESHO dz vy + mlCory =0 and div(md)yy =0 on ~Z,
2

where we have used the property diviz(m{)rg = diviz(md) oy = div(m)wg.
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Finally, taking into account (5.62), the first equation of (5.63) is equivalent to:
xvo + mlCory =0 on ya

where x is given by (5.59). This concludes the proof of Result 6.

O
REMARK 1.
Let us notice that if we decompose U° on Twy ® RNy as follows:
U° =V + 4Ny,
then A? and K can be written as:
1 {ave v
A = 5 (g—;—%—a—m) —u%Cy
and 0 T A
o3 (2B e
with @0 = —g;—z — CyV°. We then recognize the classical expressions of the

linear membrane strain A? and of the linear curvature change K.
i ¢

5.3.3. The linear pure bending model. Let us define the space of linear inexten-
sional displacements :

(5.64) Vipex(wo) =3 U :wp — R? “smooth”, <) + — Ll =0 in wp
dpo  dpo

au
and U——U—Ng—O on 7&}.
Ipo

Then equations of Result 6 can be written in the following weak formulation:
RESULT 7.

For a shell non-inhibited in the nonlinear and in the linear range, subjected
to a low force level ¥ = G = ¢*, the leading term U° of the expansion of the
displacement is a solution of the linear pure bending model:

UO & Vinex (wG)y

(565) /TT 5}'{0 /ﬁdUOdfﬁO Y JUU c ‘/inex(UJO)v

wo
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where
de°  jev  Hu° duo auo
2K? = 4 + Cy+Cp—, 6°=—— Ny,
t ™ Bpo © Opo  Opo | " dpg dpo "
43 4 ;
0= "~ _Te(K))Ip+-K? and p= / d Ty s
™ =36 +2) (Kt)0+3 ¢ and p fdz +g" +g3
|

The proof of this result is similar to the one of Result 4. It is based on the
successive use of the Stokes formula. We just need the restriction U D& Vinex (wo)
to eliminate x in the weak formulation of the Result 6.

O

Thus we have justified the linear pure bending model for a non-inhibited shell
in the nonlinear and in the linear range, subjected to a low force level of e* order.
For this force level, the displacements are of the thickness order (U, = hp). This
linear pure bending model has been also justified by asymptotic expansion of the
three-dimensional equations of linear elasticity in [14][15][21]. But contrary to
these works, the linear pure bending model is deduced here from the nonlinear
three-dimensional elasticity.

5.4. Domain of validity of the linear pure bending model

It is possible to prove that for a non-inhibited shell in the nonlinear and in the
linear range, the linear pure bending model is valid for force levels lower than £?.
Indeed, for a force level F = G = €°, we would obtain the weak formulation (5.65)
without a right side whose solutions satisfy K? = 0. As U° is an inextensional
displacement in the linear range, the linear version of the rigid motion lemma
implies that U® = 0. Following the same reasoning as in the previous sections,
we find out that the reference scale of the displacement is not properly chosen.
We have to consider U, = ehg. Then, a new dimensional analysis and a new
asymptotic expansion of equations lead again to the linear pure bending model.
For the low force level considered here, the problem becomes linear with respect
to the displacement. In fact, with a recurrence on n, we can prove the following
result:

RESULT 8.

For a non-inhibited shell, in the linear and the nonlinear range, subjected
to low force levels of €"2* order, the order of magnitude of the displacement is
U, = € *hg. Moreover, the leading term U° of the expansion of the displacement
satisfies equations of the pure bending model of Result 7.
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5.5. The linear membrane model for linearly inhibited shells

We see that for a non-inhibited shell in the nonlinear range subjected to
low force levels of £* order and lower, we have to distinguish the linearly non-
inhibited from the linearly inhibited shells. In Subsecs. 5.3 and 5.4, we proved
that for a linearly non-inhibited shell, we obtain the linear pure bending model.
For a linearly inhibited shell, the following result is obtained:

REsuLT 9.

For a non-inhibited shell in the nonlinear range but inhibited in the linear
range, and subjected to low force levels F = G = €"2* the magnitude of the
displacement is U, = €™~ 2hg. Moreover, the leading term U? of the expansion of
the displacement is a solution of the following linear membrane model:

div(n) =-p; in wo, Tr(ndCy) = —pn in  wy,
o =0 on 'y&, 'n,?yg =1) on ’)/(2,,
where
48 avo  vo
0 0 0 0 0
= P Ay F Al gAl =B L BN 980
e 2+ Ag) I+ . 8p0+6p0 i

1 1
P P /ftdz ot +g;+/fndz.
-1 —1

For the proof of this result, we refer the reader to the next section where the
study is similar.

6. Inhibited shells in the nonlinear range

It must be reminded that for a shell subjected to a severe force level of €
order, the asymptotic expansion of equations leads to the nonlinear membrane
model whatever the nonlinear rigidity of the middle surface is (see Sec.4). For
a high force level of €2 order we had to distinguish the nonlinear inhibited from
the nonlinear non-inhibited shells. In the last section we have completed the
classification for non-inhibited shells, in the nonlinear range.

In this section, we will study the other branch of the classification which
corresponds to inhibited shells in the nonlinear range. In order to do this, we
resume the calculations after the nonlinear membrane model obtained at the
Result 1.
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6.1. The linear membrane model for a high force level

We consider a inhibited shell in the nonlinear range subjected to a high force
level G = F = 2. We first prove that for this force level, the order of magnitude
of the displacement is U, = hy and not Lg. Then, a new dimensional analysis
will lead to the linear membrane model.

6.1.1. New reference scale of the displacement. For a force level of % order, we
obtain the weak formulation (4.3) of the Result 2 without a right-hand side,
whose solutions are the inextensional mappings ¢° which satisfy

9¢° 99" _
dpo Opo

As the shell is assumed to be inhibited in the nonlinear range, the space of
inextensional mappings reduces to identity. Hence we have ¢° = lw, OF equiva-
lently U® = 0. The expression of N introduced in (4.1) becomes N = Ny and we
still have:

(6.2) U =UYpo) in wp.

Therefore, for this force level, we have to consider U, = hg so as U to be different
from zero. So we make a new dimensional analysis of Eq. (2.4) with U, = hg as
the new reference scale, and we still denote U = U*/hg the new dimensionless
displacement. As in Sec. 5.3, this new dimensional analysis does not modify the
dimensionless Equation (3.5) but only the components of F', E, ¥ and H, where
U must be changed into eU. The expression of the tangent mapping F that we
now have to consider is given by (5.35):

(6.1) Iy in wy.

oU oU —
2 -1
(6.3) F=clz3+e¢ Bpon +e 5 No.

A new expansion of the displacement is then equivalent to change U® into U*~!
for ¢ > 1 in the previous results. In particular (6.2) gives us

(6.4) U° = Up).

On the other hand, with this new reference scale for the displacement, we must
calculate again the first non-zero terms of the expansions of F, E, ¥ and .
According to (3.3), (3.4) and (6.3), we have F! = I and:

No+——, 2E=F?+F?
(6.5) 9 " dpo

23 = BT (B33 + 23, H'=%3
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6.1.2. Asymptotic expansion. The asymptotic expansion of the new dimension-
less equations leads to the following result:

REsuLT 10.

For a shell inhibited in the non-linear range and subjected to a high force
level G = F = £2, the leading term U° = (V°,u®) of the expansion of U = (V, u)
only depends on py and satisfies the linear membrane model :

div(n) =-p; in wy, Tr(nCo) = —pn in wy,
e =0 on ~j, nduy =0 on 3.

where the expressions of n, A?, p, and p, are those of Result 9.
t t) P

Proof. The proof is split into two steps.
i) Determination of U!

The cancellation of the factor of €? in the new expansion of the dimensionless
equilibrium Eq. (3.5) leads tothe new problem P* :

Bﬁ" Ny
0z i
[@No] =0 on I,

=0 in wyp,

which implies that H4Ny = 0 or equivalently that:
(6.6) BTY(E3)Nog +2E3Ny =0 in wp
in view of (6.5). On the other hand, we have:

— P oul  auv  auo
QB3 =F2  F2 - ___ )
E3=F? + 32N0+N032+3p0+f9po

0

Now if we decompose BL as follows:
dpo

ou° au° — 80
= e N ——
Opo dpo 0 Bpo

we get:
e P ou! (——BUI) auo

Tr(E?) = Ng—— + Tr(A? d SNy = —— il bbbl s L
(E) = No——+Tr(4{) an b=+ Ny N°+8p0U 05
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; 0 auo au° , 0
with 2A] = Hoa—po + Hoa—po. According to the Remark 1, A} corresponds to

the classical linear membrane strain.
Thus (6.6) can be written as:

—ou! U! s ouo
ﬁ (Nua— +TI(A?)) Ny + 8— + (NQ—) No+ —Ny =0
z 0z 0z dpo

and the projection of this equation onto Twy and Ny gives us:

Ut auo Ul B 0
Qa—z = _a—pONO and NOE = —mﬁ(At)

which leads to:
aut ou° B
=
9z dpo B+2

As U? depends only on pg according to (6.4), we get finally:

Tr(AY)Np.

QU
(6.7) Ul=U!'-=2 (B—pO_NO + %T}(A?)NO)

where U! only depends on py.

The expressions of E3, £3 and H* can also be calculated from (6.5). We get:

B — 1
(68) E3 = A? g m’I‘I’(A?) N()N{] and 23 = H4 = 571?
where ng = iq‘r (A?)Io 3 4Alt)_

B+2

1) Linear membrane equations
Problem P5 then reduces to:

OHON, d

divtg(HoH4) + 3z =—f in £,

___ 14
I:H‘SN()} =4g* on TL

Using (6.8), an integration upon the thickness of the above equations leads to:

(6.9) divtg(n?) =-p in wy
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+1
where p =gt +g~ + fdz. As n} is a field of endomorphims on T'wg, we can
-1
decompose easily divy3(n?) into Twy @ RNg. The last equation then becomes:

div(n?) + Tr(nCo)No = —p on wp

which leads to the two classical equations of the membrane model of Result 10:
div(nl) = —p; and Tr(nCp) = —p, in wp.

Finally, the boundary conditions on 7} and 4¢ can be obtained easily from the
expansion of the three-dimensional boundary conditions on I'§ and T'3. This
concludes the proof of Result 10.

a

6.1.3. Weak formulation. Let us define the following space of admissible dis-
placements :

V(wo) = {U : wy— R, “smooth”, U=0 on 75}
Then the linear membrane equations can be written in the following weak for-
mulation :

REsuLT 11.

The displacement U® € V (wy) satisfies:

(6.10) /Tr(n?rm?) dwo = /ﬁJU”, Vv 6U° € V(wo)
wo

wo

where p = p; + pnNo.

This weak formulation is identical to the one obtained by asymptotic ex-
pansion from the linear three-dimensional elasticity, with an intrinsic approach
[4][5][7] or with a description of the shell in local coordinates [14]. But contrary
to these other justifications, the linear membrane model is deduced here from
the nonlinear equilibrium three-dimensional equations without any assumption
on the scalings concerning the displacements.

6.2. The linear membrane model still valid for linearly inhibited shells

For moderate and lower force levels, we have now to distinguish the linearly
inhibited from the linearly non-inhibited shells. For linearly inhibited shells we
have the following result:
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REsuLT 12.

For a shell inhibited in the linear and the nonlinear range, the linear mem-
brane model is still valid for force levels of €23 order. For these force levels, the
order of magnitude of the displacement is U, = hge™ 2.

The proof can be obtained with a recurrence on n. The main step is to solve
the weak formulation (6.10) without a right side. Considering the associated
minimization problem, we obtain that U° is an inextensional displacement in
the linear range. As the shell is linearly inhibited, we have U 0 = 0. Following
the proof of Result 10, a new dimensional analysis with U, = €ho and a new
asymptotic expansion of equations lead again to the linear membrane model, with
or without a right side, according to the considered force level. This operation
can be repeated until we find U° # 0. Finally, using a recurrence on n, we find
that for force levels of €"23 order, the order of magnitude of the displacement is

U, = hoe™ 2, and the asymptotic model obtained is the linear membrane one.
O

6.3. Domain of validity of the linear membrane model

We proved in Result 10 that the linear membrane model is valid for an
inhibited shell in the non-linear range, subjected to a high force level of €2 order.
For moderate and lower force levels of €23, this model is still valid if the shell
is inhibited in the linear range as well.

We recall that in the Subsec. 5.5, we have proved that this linear membrane
model is also obtained for a non-inhibited shell in the nonlinear range but linearly
inhibited, subjected to low force levels of "% order. Thus, the linear membrane
model is valid for a linearly inhibited shell subjected to low force levels of gzt
order, whatever the nonlinear geometric rigidity is.

6.4. Two other models for linearly non-inhibited shells

We study now the last case: a shell subjected to moderate and low force
levels, linearly non-inhibited, but always inhibited in the nonlinear range. The
asymptotic expansion of the three-dimensional equilibrium Equation (3.5) leads
to calculations similar to the ones of the previous sections. Thus we only give
here the asymptotic models which are obtained.

6.4.1. Another coupling model for a moderate force level. For a moderate force
level F = G = €3, the order of magnitude of the displacement is U, = hg and
the two first terms U° and U! of the expansion of the displacement are solution
of a variational problem which couples membrane and bending effects.
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Let us recall the definition of the following admissible spaces of displacements:

V(w) = {U: wg — R?, “smooth”, U =0 on 7&},

Vinex(wp) = {UEV(wo) U +g£_0 in wp and SU No=0 on 'y[,}
Do Do

Then we have the following result :

REsuLT 13.

For a shell inhibited in the nonlinear rd,nge but linearly non-inhibited, sub-
jected to a moderate force level F = G = €3, (U%, U") € Vipex(wo) X V(wo) and
satisfies the following weak problem:

/Tr (nidA}L + mISKY) dwy = /(;‘)§U1 — Tr(Co)MU° + Ms6°)duwy

wo
A4 ((5U0,5U1) S Vinex(w(}) X V((.U(])
with:
48 dUL % auo° U
1= T Ty(AD I +4Al, 24} = :
& el (8410 + 44 6po+30+3190 Ipo
48 4 60 @ au° duo
0 _ 0 S0 0 _
= Bprg o T K= Bt om0 T O oy
"
p=g++g‘+ffdz» M=g"rg +/"‘de
-1

For the proof of this result, which is similar to the one of Result 4, we refer the

reader to Sec.5.1.
O

This coupling model is similar to the one obtained in Result 4, with different
expressions of the strain mesures K and A}. Here K} is the linear classical
variation of curvature. The coupling between U? and U! is contained in the non-
classical membrane strain A}, which is linear with respect to U! but nonlinear
with respect to U9,

The physical interpretation of this model is also similar to the one of Result 4.
The solution of this model is the displacement U + eU!, where U° is a linear
inextensional displacement which generates the curvature variation K, and eU*!
a small displacement which generates with U/ the nonlinear membrane strain A}.
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6.4.2. The linear pure bending model for low force levels. Let us consider to
finish a shell subjected to low force levels F = G, = €24, Then we have the
following result:

REsuLT 14.

For a shell inhibited in the nonlinear range but linearly non-inhibited, and
subjected to low force levels F = G = &"2% the order of magnitude of the
displacement is U, = hge™*. Moreover the leading term U° of the expansion of
the displacement is a solution of the linear pure bending model of Result 7.

For the proof of this result, we refer the reader to Sec. 5.3 where the calcu-
lations are similar.
O
Thus, according to Result 8, the linear pure bending model is valid for a linearly
non-inhibited shell subjected to low force levels of £"2* order, whatever the
non-linear geometric rigidity is. We find again the classical results obtained in
[14][21][22] from linear elasticity.

7. Conclusion

In the second part of this paper we have established a classification of asymp-
totic models for strongly curved shells. The results are different from those ob-
tained in the first part for shallow shells [10]. In particular, for the same force
level, the obtained behaviour depend on the geometric rigidity of the middle
surface of the shell, in the linear and in the nonlinear range.

As in the first part, we have studied only one combination of (F;, Fp, Gi, Gn)
for each value of 7 = Max(Fy, Fn, Gt, Gr). However, the study of the other com-
binations is not fundamental; it would lead to the same two-dimensional mod-
els with a right side slightly different. The following table resumes the so ob-
tained classification with respect to 7, where the abbreviation L.I.S.(respectively
N.L.1.5) means linearly tnhibited shell (respectively nonlinearly inhibited shell):
with:

48 46

O s " 0 4 0 190 S 11- 1
nd ﬁ+2TY(At)Ig+ Al n, ﬁH%(At) 0+ 44},

453 4 auo
0. a 210 0 o

p=/fdz+g++g_, M:fzfdz+g+—g‘.
wo wo



Table 1. Non-inhibited shells in the

nonlinear range.
T U. Shell model A%, K?
-
nonlinear membrane model
& ¢’ € Q(wo) and V 66° € V(wo) o_ 040 8¢°
€ 0 248 = - Iy
0g A0 —¢ 0 dpo Apo
Te(n3A?) duo = [ pS¢° dun
wQ “wo
nonlinear coupling model
(¢0’U1) € Qinex(wo) X V(WO) Gl @ aUl Bﬁf 6;(50
*” Bpo Opo  Opo Opo
2 L f Tr(niéA} + mdsKD) du’ = :
wp Ktn =C-0Co
e 7540 o AT
f(PéU = BB oe™4 MU i ¢° is inextensional
wg
¥ (84°,6U") € Vo, (wo) x V(wo)
nonlinear pure bending model
R S —r
5| 1o | #° € Qunexlwn) and ¥ 64° € Vg, (wo) o et i
/Tr(m?&Kf) il - /ﬁJUwao ¢ is inextensional
wo wo
linear membrane model
if L.I.S.
en2t| poen—2| U° € V(wo) and V 6U° € V(wo) A9 = ou° U
dpo  Opo
f Tr(nsAY) = f poU° dwo
wo wo
linear pure bending model d0° deo  Ju°
: 2K = — + — + —C.
if N.L.I.S. e B Dpg 0
gnzd U° € Vinex(wo) and ¥ 6U° € Vinex(wo) +C auo°
hoe™~* 0570 0 * po
f’I‘r(mtJKt)dwo = f}‘)JU dwo
wo wp Uo

is linearly inextensional

[215]



Table 2. Inhibited shells in the nonlinear range.

wo

T U- Shell model Ay, Ky
nonlinear membrane model
¢° € Q(wo) and V d¢° € V(wo) BI040
£ Lo 2A0 = Bi Q¢_ = Ty
31)0 apo
/ Te(n®8AY) duwo = f 566 dwo
wo wo
linear membrane model
2 " U° € V(wo) and V 6U° € V(wo) . Ue  au°
0 20 = — + —
apa apo
/ Tr(nfsAY) dwo = f oU° dwo
wo wo
en23 | poen—? linear membrane model
i 0 if L.L.S.
second coupling model
if N.L.I.S ne
ur du'  au° au°
0 ypl D it ol s e
(U, U") € Vinex(wo) x V(wo) 2 Ao * Ipo * dpo Opo
Tr(ni6A} + m{6KY) dwo = 900 90°  HU°
S f (ni6A} +mPK?) duwo oo 980 08" au°
g Opo  Opo  Opo
AL . 0, U°
/(56U1 _ Te(Co)M6U° + F56°) duy +Coo~
wo
U® is linearly inextensional
¥ (8U°,6U) € Vinex(wo) x V(wo)
linear pure bending model = ey
if N.L.LS. o 0B°  §e°  au°
Ky =2+ =+ 2—C
D " Opo  Opo  Fpo
en24 hoe™™* U® € Vipex(wo) and V dU° € Vinex(wo) auo
+Co
0570 e Bpo
_/Tr(mtéKt)dwO = fde dwo U® is linearly inextensional
wo

[216]
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We recall the definitions of the admissible spaces of mapping and displacements:

V(w) = {U: wo = R, “smooth”, U=0 on 7},
Q(wo) = {¢ : wo — R, “smooth”, ¢ =1y, on 75}*

U U _ U ;
Vinex(wo)—{UEV(wg), a+8_m_0 in wp and %{;NO—O on 70},

o¢° oU  oU 3¢0 :
v ( UevV e U e =0 1
mex { (WU) 6}00 ap(] o 8])0 Bpg m wo}

¢
Qmex WO {¢ € Imex(wo) aq{;Nﬂ =0 on '7'{)}
where the space of inextensional mappings Iinex(wp) is defined as follows :

d¢ 0O
Tinex (wp) {qS wy — R3, “smooth”, 3—;; 8—;:; =Ilpinwy, ¢=1t,, on 76}.

With the approach developed in this paper, the obtained asymptotic shell
models, even the linear ones, have been deduced from the nonlinear three-
dimensional elasticity. This enables us to specify their domain of validity thanks
to the dimensionless numbers naturally introduced. In particular, we proved in
this second part that the linear membrane model (respectively the pure bending
one) is valid for a linearly inhibited (respectively for a linearly non-inhibited)
shell subjected to low force levels of €24 order. We find again the classical re-
sults [14][21][22] obtained here from the nonlinear elasticity. This proves that for
sufficiently low force levels, the membrane strain becomes linear and only the
geometric rigidity in the linear range must be taken into account. However, the
link between the linear and the nonlinear inextensional displacements is still to
study.

On the other hand, in the literature only two nonlinear shell models are
obtained by asymptotic expansion of three-dimensional elasticity: the nonlinear
membrane model [13] and the pure bending one [11]. Contrary to these works, the
systematic study of all the force levels has put here in a prominent position two
other nonlinear shell models which couple the membrane and the bending effects.
These models are different from the usual models of SANDERS [23], NAGHDI [16],
ScHMIDT [1], PIETRASZKIEWICZ [18]. This constitutes the constructive character
of the approach presented.
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“Bottom crystal” and possibility of water wave attenuation

L.YU. POPOV

Department of Higher Mathematics,
Leningrad Institute of Fine Mechanics and Optics
Sablinskaya, 14, St.-Petersburg, 197101, Russia

THE INFLUENCE of periodic bottom structure (“bottom crystal”) on surface water
waves is considered. The problem reduces to a two-dimensional Helmholtz operator
with periodic potential. Zero-range potential method based on the theory of self-
adjoint extensions of symmetric operators is used. It is shown that there is a gap
in the spectrum. An application of this spectral property to the problem of wave
attenuation is discussed.

1. Introduction

THE PROBLEM of surface water waves near a coastline, in harbours and channels,
is very interesting both from the theoretical point of view and from the point
of view of applications in ocean engineering. There is a number of works con-
cerning edge waves and trapped modes (i.e. modes of oscillation which occur at
discrete frequences below a certain cut-off frequency and consist of motion which
is confined to some localized region of water near an obstacle or variable bottom
topography). The oldest example of such a mode was provided by STOKES [1]
who constructed an explicit expression for a wave travelling along a beach of
constant slope (edge wave). Ursell extended the results of Stokes to show that
there is a set of trapped modes for a beach of constant slope with the number of
possible modes increasing as the beach angle becomes small. It has been shown
that trapped modes can exist due to a submerged obstacle [2-7] or geometric
properties of the system-form of the coastline, coupling apertures, crest at the
bottom, etc. [8-13].

In the present paper we shall deal with periodic bottom structures (a periodic
system of hills or crests at the bottom). It is convenient to use the term “bottom
crystal” for such structures, because the corresponding system has properties
which are analogous to that of a two-dimensional crystal. From a mathematical
point of view the linearized problem of water waves reduces to the investigation
of the two-dimensional Helmholtz equation. Cartesian coordinates are chosen
with z, y in the undisturbed free surface and z directed vertically upwards. First
suppose that the fluid is of uniform depth A and the usual assumption of classical
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water-wave theory is made. Thus, we seek a time-harmonic velocity potential
®(z,y, 2,t) and we write

&(z,y,2,t) = R{¢(z,y) cosh (k(z + h)) exp (—iwt)}

to ensure that the velocity of the fluid normal to the bottom vanishes on z = —h.
Here, in order to satisfy the convential linearized free-surface condition on z = 0,
k is a positive root of the equation

(1.1) w? = gk tanh (kh)

and w is the radiation frequency, g is the gravitational acceleration. As a result,
we get the two-dimensional Helmholtz equation for function ¢:

(1.2) Ag(z,y) + k)2¢(.’1:,y) =0

Now, suppose that the depth is not uniform. For example, suppose there is
system of small circles s on the plane (z,y) with the centres at the nodes of a
doubly-periodic lattice on the plane. Suppose the depth to be equal to A for the
points (z,y) outside the circles and to hy,hy < h, for (z,y) € 2, for some s
(see Fig. 1).

5
O . fd o

Fic. 1. Periodic bottom structure.

N

In this situation we have the Helmholtz Equation (1.2) with periodically varying
coefficient k£ (see (1.1)). If the diameters of the circles are small, we can use
a model in which the perturbations of k% are replaced by point-like ones—the
zero-range potential approach. This method is widely used in quantum mechanics
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(14, 15], diffraction theory [16], fluid mechanics [17]. The approach is based on
the theory of self-adjoint extensions of symmetric operators. We deal with the
Laplace operator perturbed by periodic array of zero-range potentials, k? is the
spectral parameter. We analyse spectral properties of our periodic system in the
framework of the method and show that there is a gap in the spectrum for some
parameters of the “bottom crystal”. It means that some wave frequencies are
prohibited. This effect can be used for wave attenuation. Namely, for a concrete
harbour some wave frequencies are the most dangerous and powerful. Suppose
we make a “bottom crystal” in this harbour with such parameters that these
frequencies lie in the gap. Hence, these frequencies are prohibited, and we get
essential wave attenuation.

The dispersion equation for a “bottom crystal” is obtained. A “bottom crystal
waveguide” (a system in which one or several lines of nodes of the lattice are
empty) is considered. It can be used for wave concentration in some regions.
The application of the model to the description of a system of thin submerged
cylinders is discussed.

2. Spectral properties of a “bottom crystal”

Let A be the two-dimensional lattice
A= {11,10.1 + noag € Rz; (nl,nz) € ZQ},

where
1 2 :
a; = (a;,a5), j=1,2
are two linearly independent vectors in R?,

I'={niby + nobs € Rz; (ny,n9) € Z2}
is the dual lattice (a;b; = 2md 5, 4,7 =1,2), A is the Brillouin zone,
A = {s1b1 + s2by € R%; 5, € [-1/2,1/2),5 = 1,2}

To construct an operator with periodic point-like interactions we start from
the closure of the Laplace operator in Ly(R?) restricted to the set of smooth
functions which vanish at the nodes of the lattice A. It is a symmetric non-self-
adjoint operator. To switch on the point-like interaction means to construct its
self-adjoint extension. Taking into account the periiodicity condition, one obtains
a model operator —A,, more precisely, one-parameter (@) family of model op-
erators (self-adjoint extensions). It is known [14] that the spectrum of —A, is
absolutely continuous and has a band structure. The dispersion equation has the
form
gk(07 9) = q,
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where

(21)  x(0,6) = —o-(In(~ik/2) ~ Cg) + 3 FH{(k | A ])exp(—i0)
AEAAZD

« is a model parameter which is related to “the strength” of the potentials (in
our case to h — hy and diameters of the circles). The sum can be computed using
the Poisson summation formula [14]. Note that one can consider the sum using
arguments analogous to that for the three-dimensional lattice sum in [18]. As a
result, we can describe the spectrum of —Aj. Namely, if the basic cell contains
only one centre, it is the following:

(2.2) o(=A4) = gac(—A4) = [E3H(0), B3 (00)] U [ET*, o0),

where g
90 = —i(bl +bz),

1
B = min { B2(0), 716- 2 3

Here b_ is the member of the pair {b;,by} of least magnitude. Eg’A(B) is the
first root (E;’:A(B) is the second root) of the equation

(2.3) a=(Cg+mn2)/(2n)

i A .
+(2ﬂ') wlglc}o[ Z 'I—’YTB—W—Q'KIHW], 9EA,
V€D, |7 +0|<w

@ is a quasimomentum, « is a model parameter (related to the “strength” of the

potential).
The following inequalities are valid:

E*" > 0,a €R,

Eg™(60) < 0 <= o < go(0,60)-

Moreover,

| 6 1?2, a— oo,

EZ™(6o) — {
—-00, @ — —00,

0, a — 00,

BN (0) {
-0, a— —00,
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2
Ea,Aﬁ{lb—l /4, a— oo,
. 0, a— —0o0.

It means that in the generic case we have a gap in the spectrum (Eg A (6y), E?’A),
a part of which is on positive half-axis. But there exists a model parameter
a1\ € R, such that there is no gap:

0(—A4) = 0ac(~An) = [EFH(0),00), @ 2 a1 .

3. “Bottom crystal waveguide”

Consider a “bottom crystal” with one empty line of nodes. To study the
spectral properties of the system it is convenient to investigate, firstly, a periodic
chain of zero-range potentials in R2. Let A; be

Ay = {(0,na) € R%n € Z},

where ¢ > 0, A = [-7/a,m/a),T1 = {(0,27n/a) € R%n € Z}. Suppose, as
earlier, that the basic cell contains only one centre. Using the “restriction- exten-
sion” procedure described above one obtains the spectrum of the corresponding
operator —A,,. The dispersion equation has a form analogous to Eq. (2.1):

1 ] ; .
(3.1) = g(0,6) = ——(In(~ik/2)~Cp)+ Y. %Hél)(k | A ]) exp(—ifA).
" AEALAFO

Using the Poisson summation formula [14], one can compute the lattice sum.
The result is that the spectrum is absolutely continuous and has the following
structure:

(32) o(=An,)

[E*A1(0),00), a2,

[E*A1(0), E¥M (—7/a)] U [0, 00), a < ay,,
where E®A1(g) | E*M(0) = k2, is the root of the equation

(3.3) a=(Cg +In2)/(27)

a

+ (27)72 lim [ E — 27 lnw],
/ 2 _ L2

Y7 Ler hoi<w Rl b
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(3.3) 8ec A, Sk>0, Rk>0.

[cont.]

Moreover, E%M(0) < 0,0 € R, E®M(0) < E®M(—7/a) < 0 for @ < ay,,
where

ap, = (Cg+1n2)/(27) + (277)_2 wli_}ﬂt}e [ Z |_'y——a7/a_[ —2rlnw|.
YEL,|y—7/al<w

Hence, for some values of the parameter we have two bands and a gap.

To construct the model of a waveguide in a bottom crystal we deal with a
lattice of zero-range potentials with one empty line of nodes A \ A;. Following
the described procedure, one obtains the dispersion equation in the form

1 . i , :
— 5-(In(k/2) + Cr) +i/4 + ¥ ZHél)(zk | v |) exp(—i6y)
YEAYFO

i . :
— > SHP k|7 D exp(—iby) = o,
YEAL,Y#0

where Cg is the Euler constant, Cg = 0.5772.... One can see that each term of
the right-hand part has been considered earlier (3.1), (2.1), and we obtain the
following form of the dispersion equation:

A
a=(Cg +1n2)/(2n) 4+ (2m) 2 wll}rgo [ Z rﬁ — 2 lnw:I
yery+ol<w | |

a
—(27)72 lim [ E — 27 lnw].
L etttz VI THE =R

Taking into account known information about each term of the right-hand part
(see above), we come to the conclusion that, generally speaking, there are two
bands (“crystal” band and “waveguide” band), which may intersect. The position
of bands depends on the correlation between E*"1(0), E*M(—x/a), ES’A(O),
ES’A(OO), E?’A(see (2.2), (3.2)). States corresponding to the "waveguide” band
describe waves spreading along the empty line of nodes, i.e. waveguide effect.
Analogous consideration takes place in a case when there are several (for
example, three) empty lines. Evidently, in this situation we have additional
bands. The number of “waveguide bands” coincides with the number, n, of empty
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lines of centres (of course, the bands can intersect), because in this situation we
have a periodic chain with basic cell consisting of n centres.

One can consider more complicated structure — two coupled bottom crystal
waveguides. Namely, one deals with a lattice with two empty layers of nodes
and one additional empty node between them. Consider one centre Ay in R?
as a simple preliminary stage. To introduce zero-range potential means to state
a relation between coefficients of asymptotics of functions near the point Ag
[14]. Taking into account that the Green function for free two-dimensional space

%Hél)(k'r) has the following asymptotics near zero

3 1
%H[(,I)(kr) = —o=(Inr + In(=ik/2) = Cp/2) + o(r),” =0,
one obtains the following dispersion equation:

(3.4) a—Cg/2=In Sl
2

Here « is model parameter (“strength” of the potential). One can see that (3.4)

has one imaginary root k. Hence, there is one bound state k?, k% < 0.

Using the above arguments, one comes to the conclusion that there are two
“waveguide” bands for the system of coupled waveguides, because the basic cell
for 1D lattice consists of two centres. There is also an eigenvalue (bound state)
which corresponds to “coupling aperture” (empty node). Note that if there are
several (n) empty nodes (“coupling windows”) then there are, generally speaking,
n bound states.

4. Discussion

Let us discuss the problem of the choice of the model parameters. For this
purpose we consider the problem for single “cylinder” of radius a. The solution
of the corresponding two-dimensional problem of scattering of the plane wave ug
should be continuous together with its derivative on the circle r = a:

(4.1) (ut —u7) |r=a= 0,
0 a _
(42) (‘a—r‘u+ = EU ) l,—:a= 0.

The function wu satisfies the following conditions:
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Au+k*u=0, r>a,

Au+kiu=0, r<a.
We seek the solution in the form of series:
Y oo BmJm (k17) cos(me), r<a,
= { g 3 g A HV (kr) cos(myp), 7> a.
Due to the conditions on the circle one obtains the system:

2m

(43)  AnH® (ka) — B (k1) = —(r(L + Gmo)) " f 40 |ra cO8(m1)dip,
0

(44) kAnHWY (ka) — ky B J,, (k;a)

= —(m(1 4 6mo))~ 1/ —ug |r=q cos(my)dep.

Solving the system, one gets

2

(4.5) Am = (7(1 + dmo)Dpn) ! ( / g |r=a cos(m)dek, J,,, (k1a)
0
27

9
N / 0 |r=a cos(mcp)dcme(kla)),
0
(4.6) Dy = Jm (k10)kHSY (ka) — J,, (kra)ki HS (ka).

The model described above deals with the first term of the series only (m = 0).
For a — 0 integrals in (4.5) transform:

27
/uo lr=a dp = 2mup(0) + 0o(1), a—=0, up(0)=ug |r=0 -
0
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Using the Green formula, one obtains for small a

2m
d 1 17}
/EUO Ir:a dp = E / EUO Ir:a ds
0 r=a
62U0 aqu k2
//(6$2 xdyz—;/ / ugdzdy

r<a r<a

= ~E (0 + 1) [ [ dedy = ~mkua(0)a +ola).
r<a

Thus, using the asymptotics of the cylindrical functions, one gets from (4.5),
(4.6) under the condition a — 0:

ug(0)

(4.7) Ag = ((k? — k?2)a2)~! — Ina — Ink — In(—i/2) — Cg/2’

Compare the result with the corresponding result in the model. The solution of
the scattering problem in the model has the following form:

u=ug+ AOH[(,])(kr).
The solution has the following asymptotics in the neighbourhood of zero:
u=cylnr+c_ +o(r).

To construct the model one should assume a relation between the asymptotics
coefficients:
c_=acy.

Taking into account the asymptotics of the Hankel function, one finds:

. u0(0)
(4.8) = - T )

The comparison of (4.7) and (4.8) gives the following condition for choosing the
model parameter:

a = ((k2 — k%)a?)™! — Ina.
Note that k% — k? is related with the vertical size of the cylinder A — hy (1.1).
Using two parameters (k:i?,a), one can choose « in such a way that it gives us
the appropriate correlation between the model and the realistic solutions in the
fixed range of frequencies. For example, for ka = const = M:

(4.9) a=(k2a® - M?)"! _Ina.
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Taking into account the locality, one can believe that this choice of the pa-
rameters is appropriate in a more complicated problem of periodic system of
cylinders.

Numerical analysis of the dispersion equation (3.1) is made. The results is
in Fig. 2, where the dependence of the first roots of the equation of one of the
quasi-momentum components is shown (for fixed second component). There are
three curves for three fixed values of the second component on the figure for
better seeing. Marked strip in the picture does not contain roots for any values
of any components of the quasi-momentum - it is really a gap in the spectrum.
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FiG. 2. The dependence of the first roots of the equation on one of the quasi-momentum
components for fixed second component. The gap is marked.

The described effects can be applied to wave attenuation in harbours and
channels and near some submerged or semi-submerged constructions. Namely,
if dangerous frequencies for a concrete body (pier of bridge or derrick, etc.),
that coincide with characteristic resonant frequencies of the object, are in the
gap of the “bottom crystal”. Then, these frequencies are prohibited, and, conse-
quently, there will be attenuation of the surface wave. The same effect occurs
for a channel. Moreover, one can use “bottom crystal waveguide” and coupled
“bottom crystal waveguides” to concentrate waves in some regions and to crea,te
a waveguide effect in a part of the channel.

We use the periodicity condition in the model. It is an idealization. There
is no periodic structure in reality. Every structure is finite, we have only a part
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of a lattice. But calculations show that effects, analogous to those for periodic
system appear when there are not very many of centres (30-40). Hence, it seems
to be realistic to use the effect for engineering applications.

One can use the model for investigation of trapped modes for a system of thin
submerged cylinders. In this case the problem reduces to the two-dimensional
Helmholtz equation in a cross-section of the system [4, 6, 7|. It is easy to show
that single zero-range potential in a strip gives us a mode (see above the descrip-
tion of zero-range potential in a free space). It corresponds to a trapped mode
for single thin submerged cylinder [2]. Now, suppose there is a periodic chain
of thin cylinders. Hence, in the model one has the two-dimensional Helmholtz
problem in a strip with a chain of zero-range potentials. The dispersion equation
is analogous. The only difference is that we should replace the Green function

G ,Gr = i él)(k | A|), for free space by the Green function for the strip. The

corresponding model operator has a band analogous to that in previous section
(“bottom crystal waveguide”).
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Erratum

to the paper: J. Merodio and R.W. Ogden “Material instabilities in fiber-
reinforced nonlinearly elastic solids under plane deformation”
Arch. Mech., 54, 5-6, pp. 525-552, 2002

p. 532 line 2 (from bottom) written: (2.24)
correct: (2.29)

p. 533 line before Section 2.4, add: in general a unit vector.

p. 534 line 16 (from top) written: (2.29)
correct: (2.34)

p. 537 line 4 (from bottom) written: (2.39)
correct: (2.33)

p. 538 line 13 (from top) written: (2.48)3
correct: (2.46)3

pp. 539, 541 The labels in Figures 2 and 3 are misplaced.

p. 543 line 5 (from top) written: (2.45)
correct: (3.8)

p. 544 lines 18, 20 (from top) written: (3.17)
correct: (3.18)

p. 546 Eq. (3.23) line 3 (from top)

: ' 700) o)
correct: Y (a; - n)? [Fi I + 2(a; x n)2F, (I} )]

i=1

A pdf file with all corrections included is available from Professor Ogden:
rwo@maths.gla.ac.uk





