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On a thermodynamic theory of fiber-reinforced thermoelastic
materials with thermo-kinematic constraints

T. ALTS (BERLIN)

A nNew MeTHOD for the indirect introduction of thermo-kinematic constraints into a thermo-
dynamic continuum theory of fiber-reinforced thermoelastic materials is presented. It is appliml')le
to all materials for which the symmetry class and hence the representations of the constitutive
functions are known. Detailed results are given for the unidirectionally and the bidirectionally
fiber-reinforced materials subject to the constraints of incompressibility with purely thermal
volume expansion and of inextensibility in the fiber directions with thermal expansion of the
fibres. Some applications to rubber-elasticity are reported. It is shown, in particular, that the
energy-elastic effect of rubber can be explained in quantitative agreement with experiments.

Przedstawiono metode posredniego wprowadzenia wigzdw termokinematycznych do termo-
dynamicznej teorii kontynualnej materialéw termosprezystych zbrojonych wibknami, Stosuje
sic ona do wszelkich materialéw, dla ktérych znane sq klasy symetrii, a wiec i reprezentacje
funkcji konstytutywnych. Podano wyniki szczegblowe dla materialéw zbrojonych jedno- i dwu-
kierunkowo poddanych wigzom nieéci§liwosci, przy czysto termicznych odksztalceniach objgto-
§ciowych, oraz wiezom nierozciagliwosci w kierunku zbrojenia przy termicznych wydluzeniach
widkien. Oméwiono pewne zastosowania dotyczace sprezystoSci materialéw gumopodobnych.
Pokazano w szczegblnoici, ze energosprezyste zjawiska w gumie przebiegaja w ilo$ciowej zgod-
nosci z wynikami do$wiadczesi.

IlpencraeneH MeTol KOCBEHHOrO BBEASHHA TEPMOKMHEMATHUECKHMX CBs3eii B TepMOMHHAMM-
YeCKYyI0 KOHTHHYAJLHYIO TEODHIO TEPMOYNPYTHX MATEDHAJIOB ADMHDOBAHHBIX BOJIOKHAMH.
ITpumeHAeTCA OH K BCAKHM MATEDHAJAM, JUI KOTOPBIX M3BECTHBI KIACCHI CHMMETPHH, SHAUHT
H TIpe[ICTABJICHHA onpefensmionmx Gynxiuii. [IpuBefens: AeTansHble PeSYILTAThI [JIA Ma-
TEpPHANIOB, 3PMHPOBAHHBLIX O/HO- H JBYXHANDAB/IEHHO, MONBEPIHYTLIX CBASAM HEC)KHMae-
MOCTH, NPH YHCTO TEPMHYECKHX 00BEMHLIX MehOPMALMAX, & TAIOKE CBASAM HEPACTKHMA-
€MOCTH B HANPABJICHUM APMHDOBAHMA, IIPH TEPMHUECKUX YUIMHEHHAX BOJOKOH. OGCy:KaeHs!
HEKOTOPhIE NMPHMEHEHHM:A, KacalolHecsd YNPYTroCTH pe3sHHONOXoGHBIX Marepuanos. IlowasaHo
B UYAaCTHOCTH, YTO 3HEPrOYNpYTHE ABJICHHA B De3WHE MPOHCXONAT B KONMYECTBEHHOM COB-
nNajieHAH C Pe3y/IbTATAMH SKCIICPHMEHTOB.

1. Introduction

THE DIRECT consideration of thermo-kinematic constraints in a thermodynamic continuum
theory of fiber-reinforced materials requires some modifications of the basic principles
of thermodynamics and a complicated analysis so as to arrive at detailed results; [1, 2, 3].

"In this approach a different, rather simple, method for the introduction of constraints
is presented. It is applicable to all thermoelastic materials for which the symmetry class
and hence the representations are known. It starts from the well-known thermodynamic
constitutive theory of elastic bodies and introduces the thermokinematic constraints
by a limiting process, after interchange of certain deformations with their thermodynamic
conjugate stresses. This method has two essential advantages compared to the direct one:

1. It is simple. 2. It shows explicitly the action of constraints in the thermodynamic
relations.
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Detailed results are presented for the unidirectionally and the bidirectionally fiber-
reinforced materials subject to the constraints of incompressibility with purely thermal
volume expansion and of inextensibility in the fiber directions with thermal extension of
the fibers.

Some applications to rubber-elasticity are reported.

2. Reinforced thermoelastic materials without constraints

Thermoelastic materials which are reinforced by two families of fibers are defined
by the constitutive equations
2.1) C = é(xx, T, T, x; Nz, 0&)
for the stress tensor, the internal energy, the heat flux and the entropy; where xfg:=
ax*(X, 1)
T T oxk
configuration R at temperature Tk and pressure pr, T denotes the (absolute) temperature

and T x: = BLg;_r) its gradient with respect to the configuration R, N¥ = N¥*X)(x =

denotes the deformation gradient with respect to an undistorted reference

= 1, 2) are unit tangent vectors in the two-fiber directions in the configuration R and gg
is the mass density in that configuration.()

By a thermodynamic treatment, according to MULLERS’S [4] or COLEMAN’S [5] entropy
principle, it can be shown that the stress, the internal energy and the entropy are independent
of the temperature gradient. This means that the bidirectionally reinforced thermoelastic
materials without constraints are given by the constitutive functions

ﬂ - ,?(TLIO! II:IZ!JI!JZ, ""Jﬁ; QR)!
e=&T, Io, Iy, I, Jy, 3, ..., Js, 0R),

2
S
22 #= —pg"+2r, Tl 4,

P % [Mog*' +(K,+J,K;)B" —K;(B*)"' +M,

nini

+K;n$(Bn,)"

nn;

7 +K n$(Bn,)" + K scospnitny + Kgcosg(n{*(Bn,)" +n§‘(Bn1)")]

(*) I use stationary metric coordinate systems with the coordinates X* (K = 1,2, 3) and the metric
tensor gxn(X) for the description of the reference configuration R and the coordinates x* (k = 1,2, 3)
and a different metric tensor gy.(x) for the description of the deformed configuration in some observer
frame. Both coordinate systems are fixed in an inertial frame. g** and g*™ denote the inverse metric tensors.
The summation convention is applied according to which summation over diagonally repeated indices

+M,

aTr
has to be performed. The partial derivative with respect to X* is denoted by a comma, e.g. T,x: = w;
the covVariant derivative with respect to X* is denoted by a semicolon in front of coordinate indices, an
N (X, 1)
exception is x¥g: = —xE

Round brackets enclosing tensor indices indicate symmetrization, squared brackets antisymme-
trization with respect to the enclosed indices.
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for the specific entropy 7, the specific internal energy & and the Cauchy stress t¥; cf. [3].
1. = g¥Lxky X, is the left Cauchy-Green deformation tensor and nk: = x*x NX(a =

= 1, 2) are tangent vectors in the actual fiber directions. I, I,, I; and J,;,J;, ..., Js
denote the following invariants:

I: = detB = detC = J?,
(2.3) I;: = (o, my) = (N; - CNy),

I: = (n;'m;) = (N, CNy);

Jy:=trB = trC,

Jy: = - [(trB ~rB?] = — [(trCY*~trCY,

1
2
1
Joi= (ﬂz Bn,) = (qu' C?N,),

Js: = cosqb(n, n,) = o::osqf:(N1 -CN,),

Js: = cos¢(n, - Bn,) = cos¢(N; - C*N,);
where Cgp: = guxigx;y is the right Cauchy-Green deformation tensor and cos¢: =
: = (N; - N,) defines the angle between the fiber directions in the reference configuration
R.

The stress coeficients p, ¢,, 1, Mo, M, M,, K,, K;, ..., K¢ are functions of T, o,
and the invariants (2.3) and (2.4). p denotes the pressure, 11 and ¢, are the stresses in the
ﬁber directions and the coefficients M,, M,, M, in £H obey the conditions r, =0,
mt" =0 (« = 1,2) so that the decomposition of Eq. (2.2), is unique:

Ky Jy+K; 20, 4+Ks 23 +Ky - 2o +Ks Js +Ke* 26 +3Mo+M, + M, = 0,

J3: = (m, 1)=%(N1'C2N1)»

2.4

Ky 2034+Ky (oI, —I)+Ks - 2051, +K, - "”'; +Ks - Jsl,

(2.5) +Ke* (JsIy +203J5)+ Mo I+ M, - I + M, - ; CJ;";¢ 0,
K,-2J, +x, (sl =L+ Ky c{;ﬁ; +K, 20,0, +Ks JsI,

+Kg* (Jsl+2J4Js)+ Mg I+ My - — 1 J’qb +M,- 1, =0.

Finally, the thermodynamic relations for the unconstrained b1d1rect1onally reinforced

material follow from dy = % (d’s— —2;— t"'an,), where
R

KL = JXE, XL, M

l L
- —chc-i)"-+2t, SNe M€+ (K, +J, K8 —K, O
a=1
K nL
+M, N}Nl +K3N{*(CN)? + M, N}Nz +K N§(CN,)®
1

+K5cos pNEND + K gcos p(N{(CN,)™ + N§*(CNy)")
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is the second Kirchhoff-Piola stress:

Lo a—_—
oT ~ T oT’
2.6) %_%-2_‘{—2—:(”"'?]} I_lo]
g;? _%_aaz—z—;waﬂ;-n%] (a=1,2),
36}1 ;ln_a—ig—*zé—RKJ] 4=12,..,6).

These relations imply the following integrability conditions for the entropy:

1 (oM, _ ot i
T(af "aT) _(af., 7, zr) (= 152);
oM, 4
(aJ,. 6J4 ) @=12, 550
(aM, aM2 ot, J)
T, e, o1, ta”)
¢ A ik
T (6& J) (€=1,2), (A=1,2,..,6),
@D oK, 0K
A _ ORp _ .
“E’ = 6J‘ (AIB 1,2,...,6,1‘1 #B)’
e 1 oM, L0 al)
2er 1 ‘T(.(M"‘T’aT)'T(" T3]
de oM.\ J ot
= g -T——= = 92 ’
2er 31 Ia(M Tar)”r,('“ Tor) @=1.2
ae aK‘

A4=1,2,..,6).

2er gy = Ka=T 55

The unidirectionally reinforced and the isotropic unreinforced materials are included
as special cases. The relations for the unidirectionally reinforced material are obtained
by omitting the invariants I,, J,, Js, Js and the relation (2.5); and by setting 7, = 0
M, =0, K¢ = Ks = K¢ = 0. The unreinforced isotropic material is included, if in addi-
tion the invariants 7, and J, and the relation (2.5), are omitted and the stress coefficients
t, =0, M, =0, K; = 0 are set equal to zero.

3. Introduction of thermo-kinematic constraints

Many reinforced materials, especially those with a highly deformable matrix (as rubber)
between strong fibers, are almost inextensible in the fiber directions up to moderate stresses
They are, moreover, almost incompressible up to moderate pressure. Thus they obey
approximately the constraints of incompressibility and inextensibility in the fiber directions
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at constant temperature. The thermal volume expansion and the thermal expansion in the
fiber directions, however, cannot be neglected. Thus they obey the thermo-kinematic
constraints

dem=(—‘;i =Io=fo(T), fo(Tx)=1;
(M 0) = Ny CN) = L, = fulT), fulTR) =1 (a=1,2).

These constraints can be introduced into the relations of Sect. 2, if the pressure p and the
fiber tractions 7, (x = 1, 2) are taken as independent variables instead of the volume I,
and the fiber extensions I, (x = 1, 2), respectively. Assuming that the constitutive equa-
tions p = p (T, Iy, I, J4; or) for the pressure and t, = 1, (T, Iy, I, J4; og) for the fiber
tractions of the unconstrained material are invertible with respect to I, and 1, respectively,
one has .

G.1)

=Fo(T,p, 15, 00500 (,8=1,2),
IL=F(T,p, 15,0500 (4=1,2,...,6),
and can eliminate /, and I, from Eqs. (2.6) and (2.7). With the notation
(3.3) &(T,Ios 10, J a5 00) = &(T, p, 1, J 43 08)  etc.
it thus follows after some calculation:

(3.2)

_ 2
P 1 1 1' oF 1 oF,
%=T 3T~ 0r e (o "'/F" °+;(M"+"’VF° ,.,>]
_ 2
po 1[a 1 1 oF 1 oF
%=?_—a§ 0= {(#to- pVFo)———q~2(Mﬂ+fﬂ"/Fo i ")]
o 1 léFo 1 oF
R I pl/Fo) +Z(M,s+wf-‘o) a:,>
(a= 1,2),
o 1] 1 oF,
T, T, <K“+(M° p]/F°)" S 0T,

+2 (Mp+1,V o) f 3?\ A=1,2..,6),
g=1

and the integrability conditions for the entropy transform into

(3. 5) aru i F-\-a ap at¢ . ap

VF,

1 (aﬁo _F aﬁ) 1 aﬁo oM,  oF, aMQ) V (61% oM,
p=1

_a_ﬁgaﬂ,)+j ts (ﬁaﬁo_apﬂ o) 1,2
dp ot, 2V FoFy ot, dp dp oty
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Re 1 o1

3.5) —— —
G.5) op I/j:-o 0Ja  F,

1 [9F, oM, _ 6Fo aM., OFy 0Mj
ap aJ A A pZ]‘ F ) ap aJ A

~ - 2 -~ ~ - ~
an aMg) 7] (BF, aF, 3F§ aFo)
TR 3 Py el T (4=1,2,..,6),
6J’4 6p £t 2 FoFﬂ ap 314 aJA ap
(1 OF, 1 oF,\ _ 1 (3F, dMy _oF, M,
VF, F, 0 F, ;) F,\o. o at, o,

oFy oF, oF, oF,

1 (3F, My oF; M)\ b
. ZF‘B 6t2 3t1 3!1 at; zzl/}:‘_oﬁ'ﬂ 3‘2 (3‘1 = 31‘1 a{z )’

VE, oF, _ 1 (0F, oMy _ oFo 0Mo) 2’: oFy oM,
ot, F, 00, F,\0t« 0Jy 0J, 0ty Oty oJ,

OFy 0F, oF, afo)

_ 9F, oMy
~ o, ar,) 2 2,/F—OF (a:a W, ", o,
(¢=1 2) (A=l’2:-"’6)s

oK. 0Ky _ 1 (0F, OM, _0F, oM, OF, oM,
Ay 04  Fo\0Js 0. 0. 0 Z Fo\ 035 01,
_ OFy oMy) | Z t (ap,, OF, _ dFg 0F,

04 s )" £ aVF, By \ W O .aud o5
(4,B=1,2,..,6;4 # B),

o T oF, 1 OF, T [0F, M, 0F, M,
20r —— T '/—» 2T +(Mo—PVFo)F—oTP‘—E(W aT ~ oT op
VE)l aﬁ, _ T (0F, oM,  0F, oM,
+2[(M"+" F°) ﬁ,(ap aT ~oT op
f=1
ZI/F_on dp 8T oT ap)
205 08 VF, aF =— 1 oF, T [oF, oM,
a =T 'F")”—oa—h“}‘(a_r‘, oT
- .. 2 i = i - -
_ oFy oM, . — | 3, T (0F, oM, _oF, oM,
g+ D, ey Fﬂ)ﬁ—,"a‘;:“p_,(*a?:‘—ar T )

=1

T-tg (5Fp aFo an aFo)] (@=1,2)
21/F F ot oT ot
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& [z _m0Ka 1 oF, T oF, oM,
gn?)] 291: (KA T ﬂT)+(M° Pl/Fo) 314 (ﬁ:—'ﬁ-

_ﬂ aMn) 2[(Ma+raVFo 1& : (aF, oM, _ oF, aM,)
']

aT dJ, Fo 0J 4 aJ, T  OT dJ,

T- g aF, aFo aFg aF., _
T 2V, F,\ 0 T T T 6&)] ikl

The constitutive relations (3.2) become the constraints (3.1) if F., ,F, are independent
of p, t, and J,. Hence the incompressible and in the fiber directions inextensible material
is contained in Eqgs. (3.4) and (3.5) as a special case for
(3.6) Fo=fo(T), Fa=f(T) (x=1,2).
Hence insertion into Egs. (3.4) and (3.5) yields: :

1. The stress coeﬁicien}s are independent of the pressure and the fiber tractions:
(3.7 Eym BT LiLivadaind =T8048

2. The same follows from Egs. (2.5) for the coefficients:
Mo = Mo(T,Jy,J3, .., Js; 00),
My = M(T, Jy, 15, ..., Js;00) (2 =1,2).
3. The entropy and the internal energy are additively decomposed according to
7 =0(T, p, t)+0(T, J 45 @0,
& =2T,p, t)+&(T,J ; 00,
where the pressure and the fiber tractions depending parts are given by

P 2
s V@D [ 1M 2‘«’“(7)

(3.8)

(3.9)

1= "2, L2 1(T) D)
(3.10)
29,. @ T 2T

and the constitutive parts satisfy the relations

8 L8, zeR(Mo’}:f‘-?’ng«ﬁ%)]

(3.11) % .
a7, _T[aJ,. K,.] (A4=1,2,..,6)
and
K. 0Ky .
R (4,B=1,2,...,6; 4 # B),
(3.12) - 2 a
0 _ 1 (ﬁ aK,.) [foU) Mo Zfé(T) aM,]
a2 208 LI(T) 01y = &4 fu(T) 0J4
(4=1,2,..,6).

& Arch, Mech. Stos. 4/81
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These are just the results which are obtained by a direct thermodynamic theory of fiber
reinforced thermoelastic materials subject to incompressibility and fiber inextensibility
with. thermal volume expansion and thermal fiber extensions, cf. [2, 3]. The present
derivation, however, is much simpler and has in addition the advantage of showing how
the constraints act in each thermodynamic relation. Moreover, generalizations of con-
straints of the types (3.6) can easily be considered.

4. Introduction of thermal convective deformation measures

The thermal expansions due to the constraints (3.1) cannot be suppressed by the applica-
tion of forces. Hence all constrained thermoelastic materials-react to a change of tempera-
ture with a thermal deformation that cannot be suppressed. In order to have a deformation
measure, which can be varied independently of the temperature, a new deformation mea-
sure must be introduced. This can be done by a decomposition of the deformation gradient
according to

.1 Xt = P4 FLy

into a thermal deformation F%g of the (locally) prescribed thermal expansions due to the
constraints, and a thermal convective deformation F“‘L relative to the. (local) thermal
expanded configuration of the body. I call F“L a thermal convective deformation since
the thermal expanded configuration changes with changing temperature. The decomposi-
tion (4.1) is meaningful only if it is unique. It can be made unique by the requirement
that FX, is determined only by the (locally) prescribed constraints (3.1), namely

4.2 det||CE|| = fo(T), NXCgNE=fuT) (a=1,2),
where
4.3) En.: = gunF lfo 1?1.

is the right Cauchy-Green deformation tensor of the prescribed thermal expansions.
The relation between the right and the left Cauchy-Green deformation tensors with
the thermal deformation is, according to Eq. (4.1),

4.4 (S FA;‘K&MNF]?L;. BY = ﬁ?xﬁuﬁfh
where Cg;, and BX* are defined as follows:
4.5 éx:.: = guﬁfxf?fr., Bt = gMNFfMF!.‘N'

Cxe is the thermal convective right Cauchy-Green deformation tensor and B** is the left
Cauchy-Green tensor of the (locally) prescribed thermal deformation. If one finally defines
through

4.6) L

M = 7D

unit vectors in the direction of the thermally deformed fibers, the constraints (3.1) yield
with Eqgs. (4.2) and (4.4)

@7 detl|CEll =1, AECrmt=1. (a=1,2).

FENE (=1,2)
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Hence the constrained material behaves like an incompressible and in the fiber directions
inextensible one at all temperatures if the thermal convective deformation measure is
used.

The thermal expansion of the anisotropic fiber-reinforced material with different
thermal expansions of the fiber and the matrix materials is itself anisotropic. Every spherical
piece of such a material deforms in a general ellipsoid if the temperature is changed uni-
formly and the material has free boundaries. Hence the thermal deformation under these
conditions is given by

2
48) F* = poof+ D puNEN,,.

From Eq. (4.6) it follows then that the thermally deformed fiber directions

- 1

ny = W[(}lo‘F#l)Nf'l‘#zmsﬁﬁNﬂ,
4.9) ,

=K _ NK NE

ny I/fz(T) [, cos ¢NT + (o + p2)N3]

are rotated against the fiber directions N¥, N¥ in the reference configuration R. Moreover,
the angle between the fibers is changed during the thermal deformation:

(.10) Wizt = cOSP = ";j.'j—i[(ﬂo'*'#: 12— i iz 5in%)].

To determine the coefficients uo, u, from f, f, we need the tensor Cg; of the thermal
sxpansions. Insertion of Eq. (4.8) into Eq. (4.3) yields

(4.1 Cxe = pdgxr+p o+ )Nk Ny + 1o+ p2)N2xNay +2p1 208 Ny N21).
From the constraints (4.2) we thus obtain the relations

det||CEl = p3 (13 + oy + ) + py prasin?1? = fo(T),
(4.12) NYCxuN% = (1o+ p1)?sin’p + (o + s + pz)2cos’p = f1(T),
NgExLNi' = (fo+ p2)%sin’p + (:uo + py + pz)?cos’p = f,(T)

for the determination of o(T; @), a(T, @) (« = 1,2). The solution of Egs. (4.12) is
unique; hence u,, p, can be used equivalently to describe the thermal deformation of the
constrained fiber reinforced material.

The expression (4.8) is the thermal deformation of constrained fiber-reinforced materials
with free boundaries and at uniform temperature. If, however, the temperature is non-
uniform and/or if the surface of the body is not free, the thermal deformation is different
from Eq. (4.8). This additional deformation is not known, unless a combined boundary
value problem for the fields of displacement and temperature has been solved. It seems
therefore meaningless to decompose the total deformation x*, into the parts F*g and
F¥,. However, it is always possible to split off that part of the thermal deformation, namely

= 2
F¥ = poOf + Z: #aNX Ny which, due to the constraints (4.2), cannot be suppressed

4*
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by application of forces. This part is then, in general, not the total thermal deformation
(as usually defined) but it is an important part of it. If the remaining part of this deforma-
tion is associated with F*;, the decomposition (4.1) is unique under all conditions. Hence
the decomposition

. 2
4.13) xby = PPy = Fre (o0 + ) paNENo)
a=1

defines uniquely the thermal convective deformation i’;‘,.
An important observation must be noted: In general the deformations

2
Fre and  F5, = uo(T:$) 05+ ) te(T: $)NENy,
a=l
are not gradients of displacement fields. This follows from the integrability conditions
for the total displacement

(4.14)  xtpan = F5F5y, m"‘F'u: aF5L

L a,&+2 e NENu) T 2205 2 e NENua) 600

2
‘:E:ﬁh(ﬁf bﬂﬁg,ﬂ-ffﬂ‘Lﬂﬂm*n)]4-f*L;.uCunGL-+:;§:;gJV‘N;L) 0.

a=l a=i
It follows that both deformations f‘.‘; #nd FE, are gradients of displacement fields only
if the fibers in the reference configuration R are straight and if the temperature is uniform.
This has important consequences for the application of the theory to experiments.

§. Application to isotropic incompressible materials

The introduction of the thermal convective deformation measure into the thermo-
dynamic relations for fiber reinforced materials is easily performed; however, it is very
laborious. The results are published in [3].

For the purpose of simplification and in view of application to rubberlike materials,
I shall consider in the sequel only the isotropic incompressible material. This is included
in the foregoing results as a special case which is obtained by setting £, = 0, M; =0,
fa=0, 4y =0 (e =1,2) and K; = K4 = Ks = Ks = 0 and by omitting Eqgs. (2.5),,5
and (4.12); 5:

~ - l ~ -~
M, = —'3—(K1 Ji+K,-2,),
(5.1

= —pgt+ [1'&08""'([21 +fz-fl)3u—ﬁz(nz)u]

1
Vio
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for the Cauchy-stress;
P f o(T)

= +A T’J sJ; Js
62 n 293 ]/fo(T) 7( 15923 0R)
' 10

o= L ]2["( ) (T4, T3 0n)
with

) =L(a’é'_ 1 ,;,;,ofam)

oT T\oT 2 g
(5.3) R - Or fo(T)

oqg 1 [ de 1

o, “‘f(aJ._KK“) (@=1.2
and

I

; K, oK 9% 1 [a oK T fiT) oM,

5.4 e : - ) 2 =1,2
Y @ Tw W T 7 ( *2en fu@ @, @=1P
for the specific entropy and the quciﬁc internal energy where f’, = f(,, (T,J,,J5;0r).
Equation (4.13) reduces to

(5.5 Xy = po(MFex,  uo(T) = Vfo(D),

and the relations between the left Cauchy-Green deformation tensor of the total B
and the thermal convective BY := gKLF* F!, deformation and its main invariants are

(5.6) = wMB%; J,=wl, T, =psl,,
where
(5.7) f, = trfl, fz i= —;—[(trB)z—trBz].

With these relations the Cauchy-stress (5.1) can be rewritten as follows:

(58) M= —pgHy— o [—%(ﬁ,i} +L,- 2}3)3"'+(£1+£2f1)ﬁ*’—f,2(ﬁ2)*‘],

Vio

where the abbreviations
(5.9) Ly := p3K;, L,:= uK,

have been used and the coefficients .1’_,1 i Lz of the constitutive part of t.he stress are functions
of T, .I, 5 Jz and pg. Furthermore, the constltutwe parts of the entropy 7 = (T, J 8 Jz ; OR)
and the internal energy & = &(7, J’I,Jz, or) satisfy, after transformation of Egs. (5.3)
and (5.4) to the thermal convective deformation, the simplified relations

on 1 0% an 1 ( o 1

and _
5.11) Oa 08y B3 1 (i,-TaL“) @=1,2).

al, aJ, aJ, 20w oT
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Equations (5.8), (5.10) and (5.11) are the general results for isotropic incompressible
thermoelastic materials with thermal volume expansion expressed by the thermal con-
vective deformation measure, X

In these relations the thermal convective deformation B¥ and its invariants fl and J,
can be held constant at different temperatures, hence the appearing scalar functions can
be determined from thermo-mechanical experiments. Furthermore, the specific heat capacity
¢, at constant pressure pg in the thermal convective reference configuration is measurable
as a function of temperature at one pressure:

oh __px'T d [ fi@) ], 95|

Gl G o [I/fu(T) ]+ T |5, foms’
where h = e+ p/o is the specific enthalpy.

If in addition the thermal volume expansion f3(7T) is known as a function of the tem-
perature, the set (5.10) and (5.11) can be integrated and the total entropy and the total
internal energy are given by the relations

"‘”R*f <R s i@ -1]- [;/?((2 fé(xT")]

1 fo(T)
T 2 YT
(5.13)

| f E(T J, s e+ f TRGENAPRYIA R

T
= Bk ,T',RdT'—& 7o) 1] == LD _ o py
o= & nfc( o V7o) -1l Vo O

+ g (1 r )[fL(TJl,Jz,eR)dJ,+sz(T3 J3; eals),
R

where the integration constants 7z and g are the specific total entropy and the specific
total internal energy, respectively, in the reference configuration R at temperature Ty
and pressure pg.

The results (5.13) and the expression (5.8) for the Cauchy stress contain the unknown
field p = p(x, t) for the reaction pressure. This pressure can be determined by solving
a boundary value problem. Hence the total stress, the entropy and the internal energy
are known whenever a boundary value problem has been solved.

6. Specialization to rubberlike materials

All high polymers possess in a temperature interval of about 120°C well above the
glass transition temperature T a domain of rubberlike elasticity. This domain is charac-
terized by the following experimental facts:

(i) The amorphous high polymers are isotropic highly deformable elastic materials
up to deformations of medium order of magnitude, [7]; they are almost incompressible
at constant temperature for pressures up to 100 bar, [8].
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Hence the theory for constrained thermoelastic materials is applicable,
(ii) The specific volume is a linear function of the (absolute) temperature, [9], p. 73,
[10]: v = wg[l +ao(T—TR)].
From Eq. (3.1), it follows then:
fo(T)

d
@ VI = 577 -

(iii) The specific heat capacity c, is independent of the temperature for ' > Ty > Tg,
[11], p. 175:

(6.2) ¢, = constant.

o.

(iv) From isothermal experiments in simple extension and in two-dimensional exten-
sion,AMOONEY [12] and RiviiN and SAUNDERS [13] concluded that the stress coefficienst
fq, L, are independent of the deformation invariants up to medium stretches:

6.3) Li=1(T;e0) (a=1,2).

The Mooney-approximation for isothermal simple extension is valid up to a critical stretc

A < A7), Fig. 1, [14]. '
For stretches A > A.(T), thermal reversible crystallization is observed in simple exten-

sion, which leads after unloading to a permanent deformation, and hence cannot be de-
scribed by the thermoelastic theory.

Sb Nomd)
4 -
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2 _ | superelastic theory
ot MOONEY
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0 ' L e
L 3 2¢(T) 4 A
: . 1
Fi1G. 1. Stretching force versus thermal convective stretch A = o) at constant pressure and constant
0
temperature in simple extension.
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-
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|
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Fic. 2. Stretching force versus temperature at constant thermal convective stretch.
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(v) The stretching force (in simple extension) at constant thermal convective stretch
is a homogeneous linear function of the absolute temperature, [14], [15], Fig. 2:

It is easily concluded by specialization of Eq. (5.8) to simple extension cf. [16, 17],
that the temperature dependence of the stress coefficients is as follows:

(6.4) (Ts o) = B V7o, 18 = LT -

With the experimental results (6.1)-(6.4), we thus obtain from Egs. (5.8) and (5.13) for
the stress, the entropy and the internal energy of the high polymers in the rubberlike
domain

1 T

Vi@ Tr

T o
66) 1= na+eyln—+LE ag(T—-T)——> (p—px)
R @r @r

(65 ™= —pgt+ | -5 @i doger - do -,

1 1/6 T o A B A
5 (—’f;—+—T —3°fo‘”3)[f?-(J1—3)+12°(J;—3)],
R R R
Pr Oo
(6.7 £ = 33""(0;‘"—%) (T—Tr)——T(p—pr)
Or @r
T T w a A
“ET_RTO g PR (i =3)+13 - (J2-3)].

These are the general results for high polymers in the rubberlike domain. If the thermal
volume expansion is neglected, which amounts to setting fo(T) = 1, «, = 0, the internal
energy becomes independent of the deformations. Then, in fact, the rubberlike materials
are ideal entropy elastic. But, although the thermal volume expansion is small (e, =
& 6+ 10~*K~'), the deformation dependent part of the internal energy is not negligible.
To prove this I shall discuss the simple isothermal extension of a bar in some detail.

7. The energy elastic effect of rubber in isothermal simple extension

Solution of the boundary value problem for simple isothermal extension of a bar
with free boundaries orthogonal to a uniformly distributed stress in the direction of stretch
yields for the invariants

(7.1) Jy =242, J,=214+—
and for the reaction pressure
N (. 1 1
_= P~ f=13]0 b LI -
(?'2) p P 3 TR fo {Il (A 2)+!2 (;‘ Az )]:
where pr = P is the constant pressure with which the surroundings act on the free bound-

, I . ; y -
aries, and where 1 = -ﬁﬁ is the thermal convective stretch in the direction of force
0
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(Io(T) = length of the bar in the traction-free state at temperature T, / = length under
traction at the same temperature).
The nominal tractional stress (force per unit area of the bar in the reference configura-

tion R) finally is given by the relation

1.3) o(4, T) = orf5''%(T) [(%)P el (*2_})? T]-

It follows that the supplied work W and the supplied heat Q per unit mass during isothermal
simple extension are given by

(7.4)

respectively. Insertion of Egs. (7.1) and (7.2) into Egs. (6.6) and (6.7) and integration
of Egs. (7.4) yields

(22_i+3)+£3(]'___1_)
0 1 «T ' A 19 A2
1.5 e - ;
Qw
-4 T T T T T
=y I = o
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Fic. 3. Ratio of supplied heat (Q > 0) to supplied work (W > 0) in simple isothermal extension.
—— theoretical curve calculated from (7.5) with oo = 6.36- 10-* K-*, I3/l = 0.2 and T = 294 K,
000 measurements of EiseLE and MorsiTzer [18] at T = 294 K on cured polychloropren,
AAA measurements of Dick and MULLER [19] at T = 304 K of sulphur cured natural caoutchouc.

This quotient is graphically given in Fig. 3 by the solid line. It shows a very good agreement
up to medium stretches with experiments of EISELE and MoRBITZER [18] on cured poly-
chloropren and of Dick and MULLER [19] on sulphur cured natural caoutchouc.
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For ideal entropy elasticity -i% = —1 holds. In this case the total supplied work is

converted quantitatively into heat and is set free in isothermal experiments. The elastic
energy contribution (proportional to «,) reduces this amount of heat such that below
40% elongation heat must be supplied instead of being set free. This last prediction is in
accordance with experimental observations, foo.

I conclude: the theory is completely in accord with experimental-observations up to
medium deformations. Ideal entropy elasticity does not exist in rubberlike materials.

Q

For larger deformations, however, the observed W is < —1. This means that now

besides the entropy also the internal energy at constant temperature decreases with increas-
ing stretch A. This indicates the beginning of crystallization effects. So, measurements
of work and heat in isothermal simple extension can predict a critical stretch 1.(7) by

the condition % = —1, below which the high polymers can be described by the thermo-

elastic theory and above which this is impossible due to the occurrence of thermal revers-
ible crystallization.

8. Concluding remarks

The application of the theory to fiber reinforced rubberlike materials is evidently
of great practical importance. It has not yet been completed due to the lack of experimental
results,
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