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Wave propagation in a straight elastic rod subjected
to initial finite extension and twist

G. EASON (GLASGOW)

THE PROPAGATION of waves in a straight elastic rod subjected to an initial finite extension and
twist is considered. The basic equations due to Green and Laws are-assumed. It is found that
effects arising from the initial twist may be important; in particular, they give a linking between
certain of the modes. Some numerical results are presented in graphical form.

Rozwazono propagacje fal w_prostym precie sprezystym poddanym dzialaniu skoriczonych
odksztalcefi rozciagajacych i skrecajacych. Stwierdzono, ze skreceme ‘wstepne prowadzlé moze
do istotnych efektow; w szczegblnosci moze ono powodowac sprzgzenie pewnych postaci drgan.
Podstawowe réwnania problemu przyjeto w postaci zaproponowanej przez Greena i Lawsa.
W postaci graficznej przedstawiono pewne przyklady liczbowe.

PaccmoTpeHO pacnpocTpaHeHHe BOJNH B NPAMOJMHEHHOM YOPYTOM CTEDIKHE, NOMBEPIHYTOM
OeHCTBHI0O KOHEUHBLIX PACTATHBAIOIIMX M CKpyumBamommux pedopmammii. KoHcratmposaso,
YTO BCTYIHTENLHOE CKPYUHBAHHE MOYKET NIPHBECTH K CYINecTBeHHEIM 3¢dexTam; B 9aCTHOCTH
MOXKET OHO BBISHIBATH CONPSYKEHHE HEKOTOPLIX THNOB KoyeOammii. OCHOBHBIE ypaBHEHMA
npobiieMs] IpHHATEI B BHAE npemioykennoM I'purom u Jloycom. B rpadmueckom Buge mpeg-
CTaB/IeHbl HEKOTOPBIE UYHC/OBLIE IPHMEpHI.

1. Introduction

WavEe propagation in elastic rods has been studied for many years. Initially the basic
equations were derived using assumptions that were not always clearly defined. More
recently a number of approaches have been proposed which derive the basic equations
from the full three-dimensional theory of elasticity or, alternatively, make use of the
director theory. In general these two approaches result in the same basic equations. The
basic equations adopted here are based on equations derived by GREEN and Laws [1]
using the director theory and adapted by GREeN, KNoPS and LAws [2] to the case of a rod
which is given an initial finite deformation followed by a superposed small deformation.

The particular problem considered here is that of a straight elastic rod which is sub-
jected to an initial finite extension and.twist. The propagation of infinitesimal waves
in the rod is then investigated. It was shown by GREEN, KNOPs and LAws [2] that wave
propagation in a straight elastic rod subjected to a finite extension only is very similar
to wave propagation in an unstressed rod. The extensional, torsional and two flexural
modes remain mutually independent. The effect of an initial twist in addition to an exten-
sion is to cause a linking between some of the modes. The extensional and torsional modes
interact, as do the two flexural modes. Comparison is made with results obtained from
a classical theory such as that given by Love [3] and it is found that the present theory
predicts the existence of three waves not predicted by the classical theory. It appears
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likely that these new waves are high frequency effects, except when there is considerable
compression and twist. Some numerical results are presented in graphical form. Related
work on the propagation of waves in elastic rods is that due to EAson [4], COHEN and
WHITMAN [5] and ANTMAN and Lim [6].

The basic equations, in the absence of body forces, for an elastic, isothermal rod sub-
jected to an initial finite deformation followed by a superposed small deformation, as
derived by Green, KNops and LAWS [2], are summarised is Sect. 2. These equations apply
to a rod of any shape with any initial deformation. In Sect. 3 the static solution of these
equations when specialised to a straight rod subjected to finite extension and twist is
written down. The corresponding equations for the superposed small deformation are
established in Sect. 4 and the grouping of the equations into two sets is noted. The exten-
sion-twist motion is considered in detail in Sect. 5 and the main features of the five waves
that may propagate are established. A modified extension twist motion corresponding
to the classical theory is discussed in Sect. 6. In this theory two waves only may propagate.
The connection between the two theories is noted. The equations governing the flexural
motion of the rod are analysed in Sect. 7 for the completely general case. It is found that
four waves may propagate, this number remaining unchanged from the classical theory.
Finally, in Sect. 8, the flexural motion of a symmetric rod is examined. For such a rod
it is found that the equations may be factorised and the analysis is simplified.

In all cases the results obtained here reduce to those obtained by GREEN, KNOPS and
Laws [2] for the rod with finite extension only when the applied torsion is set equal to
zero. They also reduce to those given by GREEN, LAWS and NAGHDI [7] when there is no
initial finite stress.

2. The basic equations

The basic equations governing the deformation of an elastic rod that is subjected
to a large deformation followed by a small superposed deformation have been given
by Green, Knops and LAws [2]. General results were.obtained by making use of a theory
involving directors. Their results will be summarised here and the equations of motion
for an isothermal elasti¢ rod subjected to an initial finite extension and twist will then
be deduced.

A rod is defined to be a curve embedded in Euclidean 3-space at each point of which
there are two assigned directors. Three configurations of the rod are considered; the
initial configuration with the position of the curve & and directors A,, the first deformed
configuration with curve % and directors A, and the final configuration ¢ with directors a,.
The convention adopted throughout is that Greek indices take the values 1, 2 and Latin
indices the values 1, 2, 3. The equation of % is taken to be

2.1 _ R = R(H),
the equation of € is

(2.2) R = R(0),
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and the equation of c at time ¢ is given by
2.3) r=r(0,t) = R(O)+eu(d, 1),

where ¢ is a small real parameter and 6 denotes a convected coordinate. In the following
analysis powers of ¢ above the first are neglected. In addition to the directors a third
vector A; in the initial configuration, A, in the first deformed configuration and a, in the
final configuration is introduced with

(24) ~ Ay = A,(6) = dR/30, A, = As(0) = OR/30, a, = a,(0,1) = ar/ab.

It is assumed that [a,, a,, a;] > 0.
It is convenient to introduce the reciprocal base vectors A’, A, a' where

2.5) AAj=Al-A =23 = §,
and & is the Kronecker delta: In the final configuration
(2.6) a; = a,(0,1) = Ay(0)+¢by(0,1),
2.7 a' = a'(0, 1) = A'(0)—¢eb'(0, 1),
with

(2.8) b; = 0ou/db.

In Egs. (2.6) and (2.7)

2.9 b, = b, A’ = b/A,,

(2.10) b’ = bjAl.

It is convenient to introduce symmetrical quantities related to the strains in the rod
defined by

(2.11) Zu = A 'EJ, Ayj = A Ay ay=a;a;,
(2.12) AV = AP A, AT =AA, qgU=alal.
In Egs. (2.11) and (2.12)

(2.13) ay; = Ay+e(by+by),

(2.14) a’l = A4 — eA*(by! +by}).

In addition, define

(2.15) Iy = A,,—Z,_J, viy = ayy—Ay = T+ e(byy+by).
Quantities related to the curvatures in the rod are defined by

(2.16) Ky = A, 08,80, K, = A, 0A,00, = a,- 0a,/90,
(2.17) Ki = 47K, K{ = 47Ky, ) = a¥n,,
with ‘

(2.18) %y = K+ ey, ".ij = K?"‘e#;j‘



544 G. EasoN

In Eq. (2.18)
(2.19) Ay = A;0bF[00+bK;+bi°K s,
(2.20) u? = 0b} |06 +bFK —bJKE.
Also defined are
(2.21) Zy=Ky—Ky, oy ==Ky = Zy+eky.
Note that b} and b;; are related by
(2'22) b? = A“bu,.
The local equation of mass conservation is
(2.23) eVass = B(0),

where § is a function of 6 and p is the mass per unit length of c.
Following GREEN, KNoPs and LAaws [2] it is found that in the final configuration the
force components ', director force components p* and quantities a*' are given by

2.29) n' = N'+4 e(»'—b!N¥),
(2.25) P = P 4 g(& — b i P¥),
(2.26) A% = IT% 4 g(0¥ — b IT),

where majuscules such as N' refer to values in the first deformed configuration. In the
absence of assigned force and assigned director force the equations of equilibrium in the
first deformed configuration take the forms

oN'

.27 S5+ =0,
(2.28) I3 =Ir* 4 P - PrK2 = 0,
(2.29) 183 + p*3K.F — PY¥PK:3—NP = 0,
i
(2.30) % = ai+a‘(;‘1:""".
o6
In the final configuration the equations of motion are found to be
6‘v‘ - azui

(232) o'?—@?—b 2" +b II* +P*2u ! — Py,

+KH(E72 = b2 P~ K2 (€' = b, P™) = 0,
(2.33)  @PP=b,3ITF" —v® + bPN" + K, P (£%3 — b3 P*")

+UL PR — K3 (89— b, P") = 2P = 0,

where
(2.34) u= A;ui = A‘u;,
i __ a‘fal ‘i par aZb:si

The final term in Eq. (2.35) is the director inertia term,
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The Helmholtz free energy per unit mass, 4, for an isothermal elastic rod is given by
(2-36) A= A(yijs Ogis "IU: -_K—z:i):

where 91y, 0uis Aij, Ko ate defined by Egs. (2.15), (2.21), (2.12) and, (2.16) respectively.
It is found that (see GREEN, K~ops and LAws [2])

0A
I3
(2.37) N2= P = 2o,
04
B_ pr3K B —
(2.38) N —PoKE = o,
. : 0A
(2.39) (1% +[1P* — PP — PYKP = 4 ———
Ty,
0A
i
(240) i ﬁ 62;: ’

where A is evaluated in the first deformed configuration. The constitutive equations in the
final configuration are

QA1) 93BN =K, (ED —b,3P") — P = 4B arAz
824 _ 024 %A
+28 m (bpa+bap)+28 m(baﬂ"‘bﬁa)'l'zﬁ P, 0T, Aats
024
BT B(pe3 3 3 -
@4D) V=N~ KPES b P) =Pl = 2 o bag
%4 %A %4

+ﬁ 61".,331‘ (ba3+b3a)+ﬂ aI‘l ain (bjp'l' A)'I"ﬁ 62 6F3 Aai:
(243) @™ +0f*—bPIT™ — b ITPr — PPy — P uf — K, (678 — b, P™)

_KPEre—bepy = 8804y 1ap T4 (b, 1by)
14 r apss aP 33 ar:‘a a}-; A3 34
024
+4 Sr,er, “"‘*‘*bﬂ*)”ﬁ aziarw Aty
o ko 924 024
(244) E“—brP" = 2ﬁ arsaaz‘m b:ﬂ'*‘ﬁ apﬂaaz (bﬁ3+b3.ﬂ)

oA 24
A aT, 05, Cutbad B e b

where, again, A is evaluated in the first deformed configuration and

aé +b*K;+b;°K .

The general theory developed thus far is very complicated and in order to introduce
some simplification it is assumed that 4 is independent of 4;; and X; so that, from Eq.
(2.36),

(2.46) A = A(yyy, 0w)-

(2.45) Au = AJS abl

5 Arch. Mech. Stos. 4/81
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In addition it is assumed that A is invariant under the transformations
a; - +a,, a,— +a,, a;-— *ka,,
KI - :tzls XZ - ixz; Kﬁ =% :tKS’

so that, if 4 is a polynomial, it is a function of (see GREEN, KNOPS and LAwS [2])

(2.47)

Vi1s V22> V33s Yizr V33s Yiss Y12V13V23s
031, 011022, 032, 612, 012021, 031, 013, 033,
0110120130235 011021013023, 012022013023, 021022013023,
V120110125 Y12011 0215 V120120225 Y12 021022, Y12013 023,
(248)  y13011013, ¥139220135 ¥13012023, V13021 023,
¥23011 023, Y23022023, ¥23012013, Y23 021013,
¥Y12¥13011 0235 Y12¥130220235 Y12¥13 0120135 ¥12¥13 021013,
V12723011013, Y12¥230220135 Y12¥23 0120235 V12723021023,
Y13¥230110125 V13¥Y23 0110215 ¥13¥23012022, ¥13¥23031 022, ¥13¥23 013023+
Furthermore, the quantity y* in Eq. (2.35) is such that
(2.49) yl2=y =0, yl=g, y2=aq,.
This completes the summary of the basic equations. The particular problem of wave

propagation in an initially straight rod which is subjected to finite extension and twist
will now be examined.

3. The initial deformation

GREEN, Knops and Laws [2] considered the propagation of waves in a straight elastic
rod subjected to an initial finite simple extension. The basic equations for that problem
are very similar to those for a similar rod that is not subjected to finite extension since
the extensional, torsional and flexural modes remain independent of one another. The
problem to be considered here is that of a straight elastic rod subjected to small deforma-
tion superposed on finite extension and twist. In this case the basic equations differ con-
siderably from those for an undeformed rod since linking between the modes now occurs.

The problem of a straight elastic rod subjected to static finite extension and torsion
in the absence of body forces has been discussed by GREEN, KNoOPS and Laws [2]. It is
found that the initial state of the rod and the first deformed configuration are defined
by (using Egs. (2.1), (2.2), (2.4), (2.11), (2.15), (2.16), and (2.17))

(3.1) R=0A;, A,=A-A;=6,;, K;=0,
A, = 2, {A;cos(pb) +A,sin(y6)},

A, = 2, {—A, sin(wﬂ)-ﬁzzcos(guﬁ)},

(3.3) R= 2,R = 1,0A,,

(3.2)
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Ay = 'ﬁs Az, = ﬂ.%, Ass = Z%, A;;=0, i#],

A = 1/22, A2 =1/22, A®=1/22, AY=0, i#],
(3.5) r:1=41f—1, Pzz='1§“1a P33=2§—1: I'y=0, i#j,
(3.6) Kiz = —Kz1 = 4, 4,9 = K,

3.7 Kyt = —K/2%, Ki* = K[43,

(39 2= -2 =K,

(3.4)

with Kjj, K}‘ and Z;; zero otherwise. From Eq. (2.23)

(39 B=10=0k,
and Egs. (2.27)-(2.30) and Egs. (2.37)-(2.40) are satisfied by
04
3 N f— 0-
(3.10) N3*=N=2f ) Nf =0
04 04
P12 = . P2 = .
(3.11) p 0%y, A 025,
P11 = p22 _ pB3 _ 0;
12 = [1? = JTP3 = 0,
(3.12) T = P2K; 1426 ai:i ,
IT?? = P*?K}2+28 ai:i ;
22
K, (P'?—P?1) = 2ﬁ_ﬁi"i-’
11
(3.13)
K;2(P* —P'?) = 28 53:1 :
22

If A5, v and A are given, then Egs. (3.10)-(3.13) determine N3, P2, p21 [I11 ]J]22 3,
and 4,. No restriction is placed on the form of 4 in the present discussion.

The values given by Egs. (3.1)-(3.13) are now to be substituted into the equations
of Sect. 2 that determine the infinitesimal motion. The resulting equations are- discussed
in the next section.

4. The superposed small deformation

The particular equations determining the infinitesimal motion of the rod in the absence
of body forces will now be derived from the general equations of Section 2 using Egs.
(3.1)-(3.13).

Equation (2.31) results in the three equations

ot B o N 11 32“1
A . P e

(4.1)

5=
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(4.2) %H(A” Y :‘f ,
» L Ou,
“3) 20~ P4 e

where the resulf
4.4 u' = A", (i not summed)
has been used.
Equations (2.32) and (2.33), with the results of Sect. 3, give
(4'5) w”'--w-n +P12”-11_Pu#;z_KAiIEzz_KAzzgu
+KA22b5  (P'2 4+ P?Y)+ KA b} (P2 +P*) = 0,

(46) wlﬁ_vl_KAIIEZS_#'ZBPZI. +KA11b'13(P12+P31)+b'31N - 0,
(47) w23_92+KA22513_‘u13P12_KAZZb‘éE(PlZ +P21)+b;2N et 0.
From Eq. (2.35) it is found that
25 1
@9 ot = B kg po, TOC
. 22

(4.9) 0?2 = 32& +KA?2E% — Ba, a;;i >
(4.10) w!? = ag; +KAP2EY — Bo, a;::';z’

21 _ og*! _ K A11g22 975!
(4.11) P =g~ — KA~ fo, — 2,

o 0B %33

(4.12) w3 = ga - By az; i
@.13) s 5" W

ot
When Egs. (4.10) and (4.11) are substltuted into Eq. (4.5) and the relations (2.20) and
(2.22) are used, there results

2
(4.14) ( 12" 521)+P12A“ aggl — p21 422 3332 = Bo, A2 =22 o blz ﬁ Uy A Al 3;::1 .
Similarly, Eq. (4.6) and (4.7) with Egs. (4.12) and (4.13) give

o&L3 2
(4.15) g@ — AVKE?3 1 p21 433 3b;3 +A“Nb31+A“A33KP”b13 i ﬁoclA“ 4 bz-’i .

533 0by 3

+A22K§‘3—‘113—P12Asa 32b23
. a0 ’

+A22Nb32—A22A33KP21b23 = ﬁa:zA“ 3;2

(4.16)

No further restriction is placed on the Helmholtz free energy beyond that implied
by Egs. (2.46) and (2.47) so that the constitutive relations are quite general. In order
to write them down, it is convenient to write
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k1=5_§%, k2=ﬁ%, | k3=ﬁ%,
k4=4ﬁ§;%» ¥s=ﬁ§-§;’ kﬁﬁ%’

k7=2ﬁ~;fg}—u’ "":2‘951{%’ kg:zﬁTizg‘tE’
(4.17) k13=ﬁ%, ku=2ﬁ_az.$4—T'n, k;5.= ﬂ—g.%,
94 24 o4

ks =Boran,, = Parar, T Parges,

All other second derivatives of 4 vanish in the deformed configuration discussed in Sect.
3. Equation (2.41) with Egs. (2.20), (2.22), (2.45) and the results of Sect. 3 gives

(4.18)  »3 = {2kg+KA Y (kyy—k23)} byy + {2ko + KA?2(kyy —k33)} baa

5u3 abiz abz:
33
+(4k3+A- N) 69 +k22 ae +k23 aa .
By a similar process Eqgs. (2.42), (2.43) and (2.44) give rise to
(4.19) ! ="(ks— A Kky7) bys+ (ke + AN — 2k, AV K+ A A K2k 5) b3y
ob
+ (k27 -AHKkls)‘a—;Ts s
(4.20) 2 = (ks+A*?Kkyg) bys+ (ks +A22N+2A22Kk26 +A22422K2%k 6) b3,
+ (g + 422Ky ) 2222
a0
3 agu 11 12 21y __ (P21 411 3b21 3b13
(4.21) 0 — AVK(&12 — £21)— (PRLAY -2k, ) 30 —2k,g 30

_2k3 aaueél — ‘[4k1 +2A11K(k13""k19)"' KAIIAII(PIZ_ZPZI)}bII

0%by,

— {2k7+2A22K (kls—klg)— KAIIAZZPZI} bZZ = ﬁal Ail at2 ]
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4.22) 35;2 — A22K (£12 — £21) — (P12 422 +-2k ) 31?;2 2k, 33;1
&k %? — {2k; + A 422K P2+ 24" K (ko — k1) } byy
— {8y +2472K (g0 — kpy) + A2 42K (PP —2P12)} by, = P, 422 2022 bzz
(423) D (2480~ (hag + P12a10) D81 (a4 grapeny D
=2l AT AP P} by b ) oty 47 aabiz +pupan T,
(4.24) £ = 2hyubyy+ (ke + AVP2) by +kyo 3;’51 % e f_g_;a,

(425) Elz = =2k13 +A11K(k12— % k_p;)}bll -+ {2k20+A22P12

1 P ab 1, b
+A22K(k12—'—2—k14)} bzz+k=z_é‘?‘+k12_a$ +?k“ 331 ’

(426) &= {Zklg + A1 P2~ AUIK (km - % kl.;.)} by;

+{2ku—A”K(ku— -;-k“)} I aa”; it i TS 3"’“ +kys ag;* ‘
(4.27) £ = %kﬂ agé‘ +kyy al;? +(2kzs + A%2P?Y) by, +2ky5byy,
(4.28) 813 = (kyo+ A3 P'2) by3 + (kys+ A*2Kky6) bya+ K16 %’ﬂ
(4.29) £ = (k27+A33P“)b13+(kz-,—-A“Kk15)b“+kls%3’—,
where it is found that
(4.30) byy = %“-é‘- —~A4%*Ku,, by, = %’;ﬁ +AMKu, .

The equations (4.1), (4.2), (4.3), (4.14), (4.15), (4.16) and (4.18)—(4.30) form the basic
equations of the problem. These equations fall naturally into two sets of interlinked equa-
tions which may be analysed separately. The set of equations governing extensional-
torsional motion consists of Eqs. (4.3), (4.14), (4.18) and (4.21)~(4.27). The remaining
equations, namely Eqgs. (4.1), (4.2), (4.15), (4.16), (4.19), (4.20), (4.28) and (4.29) with
Eq. (4.30) describe motion in which two flexural modes are linked. When the rod is initially
unstressed or is subjected to simple extension only, then the equations governing exten-
sional, torsional and the two flexural modes are mutually independent. It is this interlink-
ing of modes that is the principal new feature in the present discussion.

A further feature of the equations obtained here is that, compared with the classical
theory such as that given in Love [3], additional equations occur in the extensional-twist
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motion. These extra equations which are Egs. (4.21), (4.22), (4.23), (4.24), (4.27) and a
combination of Eqgs. (4.25) and (4.26) give rise to the new waves which are found in the
subsequent analysis. The flexural modes obtained here are essentially the same as those
given by the classical theory. '

Some of the quantities appearing in Eqs. (4.1)-(4.30) have been introduced in a rather
abstract way. Compared with the classical theory »* represent force resultants, &13, £23
and (§'2—£2!) represent the classical bending moments and the remaining & are addi-
tional bending moments relating to bending of the cross-section. The quantities u; are the
displacement components and b;; relate to the twist of the cross-section. A comparison
of the equations obtained here and the traditional ones is not difficult.

The two sets of equations governing the two different motions will now be discussed
separately.

5. Extension-twist motion

The extension twist motion is governed by Egs. (4.3), (4.14), (4.18) and Egs. (4.21)-
(4.27). These equations may be combined and rearranged to give

a2 a2 b ob % 0%b
G4 (G‘Fef_ﬁ?' axz)“”Gz 50 T thka g +has gt = 0,
du o* 02
(5'2) '_GZ 683 (kIO 862 G4 Pl. a Az ) bll
1 d? Bb ab
( 2 kl‘? 362 Gs) b22+ (G5 GT) 12 (G5+G-;r) 21 = 0,
du 92 92
(53) —G; 333 ( kyz =55 662 Gs) b1, +(ku'a—92— - Gg—1T), ‘ét_j‘) bzs
1 b b
"r"i"(Gg G:o) 12 2 (Gs"'Gw) 21 =0,

&u b ab
(54)  (kz2—k23) 6823 +G7 —2~ aél +Gyo a;z

1 82 1
+1| k12— 5 kia 202 ~ 73 S 5=Ty) -5 633 by
sy b 3 Iy+T, s = 0L
G 13— 14 ae ( 3 4) atz 21 =

32H3 ab_”_

9b,,
36> %0

06

02 1
=(k1‘.2+ k14) 662 '__ZGI].-— 2 ( 'r:‘-) atg}b12

(5.5)  (kzatkas)

=Gy

1 g2 1 02
b0 ku"‘Tku W"ZGH_T(PB’*'F‘*)‘@:T by, =0,
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where
(5.6) By = A%,

I'y = AL, I, = A2,
5.7) 1= Poy ;= Poy

Iy = fla AV +0,4%%), Ty = pa, A" —a, 47%),
G; = 4ks+NA®3,
G, = 2kg+ A" K(kz2—k23),
G; = 2k9+A22K(k22"k23)’
G, = 4k, +4A4" K(kyg—kyo)— A" AV K(P*? — P21)+ AV AV K (ky o+ ky3—kya),
Gs = 2k, +2A4%2K(kyg— k1o)+ 241 K(kyo— ka1) + AL A22K (P12 — P21)
+A11A22K2(k12+k13_k14))
(5-8) G = 2(2kyq—kig—k1o)— AV K(ky,—ky3)+ A (P12 —P?),
G7 = 2(kig—kyi0)+ A" K(kyz + k15— ki) + A (P12 —P2),
Gg = 4k, +4A22K(kza = ku)_‘Az.zAnK(Plz ""Pn)‘*'AquzK(ku +kiz—kia),
Gy = 2(2k25—kzo—kzx)—AuK(ku—kxa)—Au(Pm—Pn):
Gio = 2(kyo—kz1)+A?*K (k12 + ki3 —kq4) + A?2(P'?2—P?),
Gy = ky— A1 A22K(P*2—P?Y),
Solutions of Egs. (5.1)-(5.5) are sought of the form
(5.9 (35 D11, b2, b12, b21) = (s, 311 > Szzs gu: 521) eﬁi{.ﬁ”:
where i, etc., & and w are constants. It is found, after some manipulations, that non-trivial
solutions exist provided that
Dll DJ.Z D13 D14 D15
DZI D22 ‘D23 D24 D25
(5.10) D3y D3y Dis3 Diy Djs| = 0.
D4y D4z Das Das Dys
Dsy Ds; Ds3 Dsq Dss
Here )
Dyy = (G1£2—B30%), Dyy = (k1o&*+Gs—17 007, .
D33 = (k11 82+ Gg—T50?), Dgy = {(kyz+kes+kis)E2+4G, — T3 02},
Dss = {(k13+k13"k14)§2'—113 wz]_’ '
_Diz = D3y = G2§, Dy3 = D3y = G3¢,
Dys = Dyy = —(kaz+kz3)&?,  Dys = Dsy = (kya—kz3)é%,

1
D;3 = D3, = ("2" kn'fz"‘Gs)s D,y = Dy, = Geé,

Dzs = Ds, = 675, Daas = D43 = Ggffs
D35 = Ds3 = G406,
Dys = Dsy = {(ky3—ky2)E2 -y 0?}.
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Equation (5.10) may be regarded as a quintic equation for w? once & is prescribed,
so that there are five values for w? for each value of £. In the classical theory of wave
propagation in rods such as that in LOVE [3] only two of these roots occur. The remaining
three roots arise due to the presence of the terms in by, , b,, and (b,,+5,,) in the basic
equations (or, alternatively, the presence of £, £22 and (£'2+£21)), It is not possible
to solve Eq. (5.10) in the completely general case but it is possible to obtain some informa-
tion concerning the roots.

When & = 0, Eq. (5.10) reduces to

—Baw? 0 0 0 0
0 (Gi—TI'iw?) Gs 0 0
(5-11) 0 Gs (Gs—TI'; 0?) 0 0 =0,
0 0 0 (4G11 -P3 6'.)2) —P‘; w2
0 0 0 —I',w? —I'yw?
so that
(5.12) w? = 0 twice,
(5.13) w? = 4I',G,, /(I3 -T13),

(5.14)  20I\ Ty = (I'y Gg+1', Gy) 4 {(I'y Gs+1I';, G4)* =4I I',(G, Gg— G)}'2 =
= I'y G+ I, G) + {(I'y Gg—1I', G,)*+4I' ', G3}'12.
In the {—w plane two of the five curves pass through the origin, from Eq. (5.12), and

there are three cut-off frequencies given by Egs. (5.13) and (5.14). The cut-off frequency
(5.13) is real provided that

(5.15) Gy >0,
that is
(5.16) AN A22K(P12—P?Y) < k.

It appears likely that, for sufficiently large values of K, G,; may become negative and the
cut-off frequency (5.13) may become purely imaginary. The second form of Eq. (5.14)
indicates that w? is always real; it is also positive if

(5.17) - G,Gs > G2.
This inequality is difficult to analyse due to the complicated nature of G4, Gs and' Gs.

However, if the undeformed rod and the applied deformation are symmetrical with respect
to the 1 and 2 directions so that

(5.18) .G, = Gg,
then Eq. (5.17) is replaced by

(5.19) G,+Gs >0,
and

(5.20) Gi=Gs > 0.
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The inequality (5.20) is satisfied provided that
(5.21) 4k, —2k, > 241 A1 K(P12—P2Y),

and it is possible for this condition to be violated for suitable values of K. Thus in the
symmetric rod it is possible to have an imaginary cut-off frequency. Presumably this is
also possible in the non-symmetric case also. '

In (5.10) write -

(5.22) o = &,

and let £ — oo so that w also becomes large. The resulting equation is
(5.23) ' .
(Gi—F58%) 0 0 — (k22 + k23) (ka2 —k,3)

0 (ko-Ti8) ok 0 0
1 : . ~0.
0 Sk Gy =T38) 0 0 G
—(kaz2+ka3) 0 0 {(kyatkystk)—158%  ((kys—kio) =14 0%
(kyz—kz3) 0 0 {(kys—ky2)—T4 8% |(kia+kiz—kig)—T583

which may be replaced by a quadratic and a cubic equation in 2. The quadratic equation
has roots

_ i 1)2
(5.24) 2N\ T1,0% =Ty kyy +17 kla)i{(r'.l kyy 1 kyo)> =4I Pz(kwkn “X kiv)}

= (I kyy +T kyo) & {(Iy kyy =Ty eyo)? + Iy Ty k37102,
so that these values of {? are real and positive provided that
(3.2%) dkiokyy > ki,

a condition that will always hold. The cubic equation is more difficult to analyse in detail.
The product of the roots of the cubic equation is given by

Gy kaa ki
T l
{526) . Al — kzz kn _2_ k14
1

kas 5 kia ki

and 4, > 0 provided that
1

(5.27) G, (km kis— s k%&) > (kyak3s+ki3k32)—kiakaokos.

For suitable negative values of N this condition may be violated and the system of equa-
tions then ceases to be fully hyperbolic.

The discussion presented here suggests that typical curves in the £ —w plane are of the
form shown in Fig. 1 when the cut-off frequencies are real and 4, > 0. It appears unlikely
that these curves intersect the &-axis. It is of interest to note that the change in character
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FiG. 1. Variation of o with &; extensional-twist motion.

of the cut-off frequencies determined by Egs. (5.16) and (5.17) is determined by the value
of the twist K and is independent of the axial load N whereas the change in the quantity
4, depends on N only and is independent of K.

6. Extension-twist motion, classical theory

The classical theory of rods such as that to be found in Love [3] gives rise to a set
of equations which is different from that derived in Sect 5. The terms in Egs. (5.1)-(5.5)
-which involve b,,, b,, and (b;,+b,,) are neglected, as are Egs. (5.2), (5.3) and (5.5).
The modified forms of Egs. (5.1) and (5.4) are

o? a2 2%b
(6.1) (61‘3‘87—33 F)“3+G1z*‘§a§—=0,

*u 0% o?
(6.2) GIZT;-F(GI:;-'EH—Z"—FS'EF)E':O,
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where
1
(6.3) b= ) (b12=b321),
(6.4) G2 = kyp—kaz, Gia = kyptkiz—ky,.
It should be noted that Egs. (5.2), (5.3) and (5.5) are not satisfied exactly unless G,, G,,
G,, Gyo and I’y are zero. In addition it is required that k,; = —k,, and k;3 = k5,

which will not normally be the case.
Substituting from Eq. (5.9) it is found that non-trivial solutions exist provided that
(G &*—p30?) G, &% _
G2 & (Gy382—1% w?) -
Equation (6.5) gives a quadratic equation for w? in terms of &2. This has solutions
(6.6) 2B3Tw2/E* = (B3Gy3+1I'3Gy) £ {(B3Gys+1s G,)*—48,T'5(G, Gy3—Gi)}?
= (ﬂa G +F3 G1)i {(ﬁa GIB_P3 G1)2+4ﬂ3-r|3 sz}”z-
The second form of Eq. (6.6) indicates that w?/£? is real. This quantity is also positive

(i.e. w/£ is real) provided that G, G;3 > Gi, from the first form of Eq. (6.6). This condition
reduces to

(6.5) 0.

(k32 —kz3)?

6.7 Qg 4 NA2 > a2 —Tas)
6D s ki +kiz—kia

and this inequality is violated for sufficiently large negative values of N. The basic equations
then cease to be hyperbolic. ;

Assuming that Eq. (6.7) is satisfied, then Eq. (6.6) givés a pair of straight lines in the
&—w plane. These both pass through the origin and correspond to the bottom two curves
in Fig. 1. This suggests that the three additional curves in Fig. 1 are probably only of
importance at high frequencies except when K is sufficiently large for one of the cut-off
frequencies to become relatively small.

7. Flexural motion

A motion which links together the two flexural modes is governed by Egs. (4.1), (4.2),
(4.15), (4.16), (4.19), (4.20), (4.28), (4.29) and (4.30). These equationg combine to give

0? 82 bij ob 0* ]
(7.1) (Hl'éa'i""'HZ“ﬁl_a"{i')ul_Ha {;:; +H, aéa +(Hs 302 _Hs)bza =0,

uy
a0

b3

72 H, 0

a2 02 g2
+(H‘:W“Ha'-ﬂ27) u2+(H9 W+H10)513+H11 =0,

du 0? i ' 02 0b,s .
(7.3) _H4'ﬁ}'+(Hg_agz_“}'ﬂlo)uz';'(klﬁw_Hl!—PS"gF)b13+H13‘é§=05

02 ou b 02 ' 02 .
(7.4) (HSW '—Hs) uy—Hy,y —693—513 —6—53- -+ (kﬁﬁf ‘Hm'-Fa"&?) b =0,
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where

(7.5) . By = pA", B, = pA*,

(7.6) ‘ I's = pa A*®, I's = fay A%,
Hy = ke+ AN —-24YKk,, + AN A1 K3k, 5,
H, = A'A1'K2H,,
Hy = (A**H; + AV H,)K,
Hy = ke— A" K(kzs+kp7)— A' A2 K?ky6,
Hs = kn—AuKkﬁ,
Hg = AVK(ks+ A2?Kkse),

i 75 H,= ks+A22N+2A22Kk26+A22A22K2k16,

Hg = A?24%2K?H,,

Hgy = kyg+A%**Kkyg,
H;o = A?*K(ks— A**Kk,,),
Hyy = ks+A??K(kyg+ka7)— A1 A%2K?ky s,
le P ks—A“A” K(PH—PH),
Hys = (kye—ka7)+A33(P'2—P?),
Hy, = ks—A*?4%3K(P'?—P?Y),

Solutions of Egs. (7.1)-(7.4) of the form

(7.8) (uy, 2, by3,b33) = (g, Uy, 513: gza)e_neeqm,
where %, , #,, 313, 323, ¢ and w are constants are now considered. Non-trivial solutions
exist provided that
Dyy Dy, Dy3 Dya|
DZI' DZZ D23 D24
D3l D32 DSS D34
D,, D4, Dy Dyy

(7.9)

(here
Dyy = (H; 8 +H,—p,0%), Dy, = (H;E%+Hg—pr0%),
Dy = (k16§ +Hyz—I'sw?), Dyy = (kys&*+H;o—Is0?),
Dlz =Dy = H3é, Dia T D31 = Hd.‘f’ Dyy = Dy = (H5§2+H5),
D5 = D;, = —(Hg‘fz"Hm), D,y = Dy = Hy ¢,
D34 = D43 = —Hy38), _ .
which may be regarded as a quartic equation for w? in terms of & As was the case with
Eq. (5.10), it is not possible in general to write down analytical solutions of Eq. (7.9)
but it is possible to obtain useful information concerning the four roots.
When & = 0, Eq. (7.9) factorises to give
(H;—py0%) He

(7.10 =
) He (Hya—T's 0?)

0,
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and
(Hg _ﬁzwz) Hio

= 0,
Hyo (Hyz—I'sw?)

(7.11)

Eq. (7.10) results in the values
(7.12) 28, Tsw* = (B1Hys+T's Hy) £ {(ByHia+ 16 Hy)*— 4B, I's(H, Hy— HE) }'2
= (B1Hyu+T's Hy) + {(B1 Hys—T's Hy)*+48, I's HZ}'?,
and (7.11) gives
(7-13) Zﬂzfs w? = (ﬁzHu +-Fs Hs)i {(ﬂthz"f'Ps Ha)z"‘q'ﬁzrs(HaHu"'Hfo)}”z
= (B:H;,+1's Hg) £ {(ﬁzHu—rs Hg)*+4p,I's H}o}'12.

All four values for w? are real; they are also positive provided that

(7.14) H,H,4 > H;,
from Eq. (7.12) and, from Eq. (7.13),
(7.15) Heles s Hlo:

The inequalities (7.14) and (7.15) depend on both N and K. It is possible that for appro-
priate values they may be violated so that the cut-off frequencies then become imaginary.

In order to examine the behaviour of the roots of Eq. (7.9) for large values of w and &,
substitute from Eq. (5.22) and let & — co. The resulting equation again factorises to
give

WH-p)  Hs
e | Hy  (as=Tetn| =
and

(HT“‘ﬁz %) H,
@17 Do Guhen| =0
so that

(7.18) 28, I's {* = (Bykys+T's Hy) £ {(B1 kas+T's Hy)* —4p, T'e(H, klg—Hg)}lfz

= (ﬁik15+PsH1)i{(ﬁ1kxs"F6 H,)?>+48, T H%}”z,
and
(7.19) 28,152 = (Brkys+1's Hy) £ {(B2 kss+1's Hy)*—4B, I's(Hy kys— H3) }'12

. (Bakrs+1's Hy) £ {(B2kys—1I's Hy)* +4B,1's H3}'2,
The expressions (7.18) and (7.19) give real values for (2. The quantity {? is also positive
provided that

(7.20) Hkis > H3,
in Eq. (7.18) and
(7.21) H,ky¢ > H3,

in Eq. (7.19). The condition (7.20) reduces to
(7.22) kis(ks+A""N)—k3; > 0,
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and Eq. (7.21) reduces to
(7.23) kig(ks+A22N)—k3¢ > 0,
so that for suitable negative values of N these conglitions may be violated. It is of interest
to note that they depend on N but not on K in contrast with Eqgs. (7.14) and (7.15).
Where w is zero Eq. (7.9) may be written in the form
‘DII DIZ DIS D14
(?24) DZ}. D22 DZS D24 _ 0,
D31 D32 D33 D34
D4l D42 D43 D-td-
here
Dll = (Hl 52+A11A11K2H7), -ID22 = (H7£2+A22A22K2H1),
Diy3 = (k16é>+Hyz), Dyy = (kis&2+H,y),
Dy, = Dy, = éK(A*2H, + AV H,), D3 = Dy, = £(J,— AVKH,),
Diy = Dyy = (Hs&?+A"KJy), D3 = D;, = —(HoE>—A?2KJ,),
Dys = Dy, = §(J; +A%*KHs), D3y = D43 = —Hy5é,

I

1] I(AﬂAZZ}‘!/Zx'..' il s

Fi1G. 2. Variation of w with &; flexure-flexure motion, general case.
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where H,, Hs, H; and H, are defined by Eq. (7.7) and
Jl = k5+A22Kk25,
Jz = ks_AllKkgj.

By carrying out operations on the rows and columns of the determinant in Eq. (7.24)
it is possible to express the equation in the form

(7.25)

H, 0 J, Hsé&
(7.26) (62— A1 422K2)? 0 H, —Hyé Jy -0
J, —Hoé (kieé>+H,yy) —H;3¢ ’
Hs¢ Jy —Hy3é (k1582 +Hyy)
so that
(?'27) £ = i(AliAZZ)l,‘ZK,
is a double root of the equation and
(7.28) £ = |(A1 422V 2K],

is always a positive root. The presence of this double root indicates that the lowest curve
in the £—w plane touches the &-axis at the point given by Eq. (7.28). It is possible, but
unlikely, that other roots could also be obtained from Eq. (7.26).

Figure 2 indicates schematically the type of curves to be expected in the §—w plane
when all cut-off frequencies are real and Eqgs. (7.22) and (7.23) are not violated. In the
flexural case the basic equations are those obtained from the classical theory and no simpli-
fication of the type encountered in the extension-twist case arises. A simplification does
occur, however, when there is symmetry and this will be discussed in the next section.

8. Flexural motion with symmetry

The discussion of flexural motion which has been presented in Sect. 7 is completely
general and assumes no symmetries other than those defined by Egs. (2.47) and (2.49).
When the undeformed rod and the initial, finite, deformations are symmetrical with respect
to the 1 and 2 directions, some simplification of the basic equations and Eq. (7.9) occurs.
It is assumed in this section that

@.1) B Ryl il e A,
(8‘2) ﬁl=ﬁ2=ﬁs PS=P6=P-
(8-3) ks = kﬁs k15 = k:s, kzs = —‘kz‘n

so that Eq. (7.9) takes the form

(8.4) il
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here
Dyy = Dy, = {H1(§2+A2K2)“ﬁ032}, D33 = Dyg = (kys&*+Hy,—Tw?),
Dy, = D,, = 24KH, £, Dy3 = D3y = Dyy = D,, = Hd-f,
Dy =Dy = D33 =Dy, = (HIO_HQEZ), D3y = Dy3 = —Hy3é.

After some manipulation it is found that this equation factorises, resulting in the pair
of equations

8.5 {H1(5—A-K)2‘—ﬁwz} {kis&?+H 36+ Hy,—T'w*} —(6— AK)*(My+ M, £)? = 0,
(8.6) {Hy(¢+AK)?>—Pw?}{kys&2—H &+ H,, —T0?}—(E+AK)* (M, — M, £)* = 0,
where
(8.7) M; = ks+AKk;s,
(8.8) M, = kys+AKk,s.
Clearly Eq. (8.6) is obtained from Eq. (8.5) by changing the sign of & so that it is not
necessary to pursue a detailed analysis of both equations.
Eq. (8.5) may be solved for w? to give
(8.9) 2Blw* = {H,I'(§—AK)*+B(kys&*+Hy3 £+ Hy,)} £ {[H, I(§ - AK)* +
+B(k1sE*+Hy3 &+ Hy,))? —4BI(6 — AK)?[(kys &2+ Hy 3§+ Hyp) Hy
- (M +M, '5)2]}”2 = {H1 I'(§—AK)*+p(kys &%+ Hy; §+H12)}
o {[H1P($—‘AK)2 —B(kys &>+ H, 3§+ Hy,)* +4B1(E — AK)* (M,
+M, E)z}m,
and from the second of these it is clear that both values of w? are real. These values are
also positive provided that
(8.10) Hy(kys&*+H3E+Hy,) > (M + M, 6)>

The inequality (8.10) may be violated for certain combinations of N and K. Solutions
of Eq. (8.6) may be obtained from Eq. (8.9) by replacing & by — &. The inequality corres-
ponding to Eq. (8.10) is found to be

(8.11) H,(kys&*—H3E+H,;) > (My—M, )%

It is possible to plot curves in the w—¢ plane by making use of Eq. (8.9) but due to
the complicated nature of the equation it is helpful to have additional information. Cut-off
frequencies occur when & = 0 and

(8.12)  2fl'w? = (A?K*H,I'+BH,,) + {(A*K*H, I'- fH,,)* + 4pTA>K>*M3 }' 12,
These cut-off frequencies are real if
(8.13) H,H,, > M3}.

When & = 0, Egs. (8.5) and (8.6) are identical so that the cut-off frequencies (8.12) also
arise from Eq. (8.6).
When o is set equal to zero in Eq. (8.5), an equation for & is obtained of the form

(8.14) (6—AK)*{H, (kys &%+ Hy36+Hy ) — (M + M, £} = 0.

6 Arch. Mech. Stos. 4/81
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The value &£ = AK s a double root of this equation and, provided that Eq. (8.10) is satisfied,
it is the only root. Similarly, provided that Eq. (8.11) is satisfied, the only root of Eq.
(8.6) when  is zero is £ = — AK. Consequently, there is always a double root of Eq.
(8.4) when w is zero and & > 0 given by

(8.15) & = |AK]|.

The curves in the £—w plane touch the &-axis at this point.
For large values of &, and with w = (&, Eq. (8.9) gives

(8.16) 2BI'C? = (I'Hy + Bkys) £ {(I'H, — Bkys)* + 4By M3 }112,
which is real; it is also positive if
(8.17) Hikys > M3.

which reduces to Eq. (7.22) or Eq. (7.23). Equation (8.6) also gives the values (8.16) for
{? so that the four curves in the £—w plane are asymptotic to two lines only.

Figure 3 gives a schematic representation of the four curves given by Eq. (8.4). The
top and bottom curves are given by Egs. (8.5) and (8.9) and the two intermediate curves

0 Tax]

—_—— .

Fi1G. 3. Variation of w with £; flexure-flexure motion, symmetric case.
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by Eq. (8.6) when K is positive. When K is negative this situation is reversed. In drawing
these curves it has been assumed that N and K are such that the frequency equation gives
real roots for w. As was the case in Sect. 7, no simplification occurs comparable with
that observed for extension-twist motion.

9, Conclusion

Solutions have been obtained for the propagation of waves in a pre-strained straight
elastic rod subjected to simple extension and twist. It is found that under these conditions
there is a linking between the extensional and torsional waves and also between the two
flexural modes. The propagation of the various waves has been investigated. It is found
that in the extension-twist case three waves not predicted by the classical theory may
propagate. No new waves exist in the flexural case. It is conjectured that in general these
new waves are of interest at high frequencies; however, for suitable combinations of initial
compression and twist they may be of importance at lower frequencies also.
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