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Regular reflection of a weak shock wave from an inclined plane
isothermal wall

K. PIECHOR (WARSZAWA)

THEe PROBLEM of reflection of a weak shock wave from an oblique plane wall is analysed. Only
the case of the isothermal wall is considered. The flow domain is divided into two parts: an
outer domain containing both shock waves and a boundary layer close to the wall. In order
to determine the outer flow, the Lighthill technique and the multiple scales method are combined.
The flow in the boundary layer is described by the linearized Prandtl equations. So as to de-
termine some unknown functions, the matching principle is used. As a result, the structure and
the trajectory of the reflected shock wave are obtained. The location of the trajectory of the
reflected shock wave is influenced by the boundary layer. Also a criterion of regularity of the
reflection is obtained.

W pracy analizuje si¢ odbicie slabej fali uderzeniowej od pochylej, plaskiej $cianki. Rozwaza
sie tylko przypadek $cianki izotermicznej. Obszar przeplywu podzielony jest na dwie czesci:
obszar zewnetrzny zawierajacy obie fale uderzeniowe i warstwe przyécienna. W celu wyznaczenia
przeplywu zewnetrznego, iaczy si¢ technike Lighthilla z metoda wielu skal. Przeplyw w war-
stwie przysciennej jest opisany przez zlinearyzowane rownanie Prandtla. Zasada kojarzenia
rozwigzan jest uzyta do wyznaczenia pewnych niewiadomych funkcji. W wyniku otrzymuje sie
m.in. struktur¢ i trajektori¢ fali odbitej. Na polozenie trajektorii odbitej fali uderzeniowej
ma wplyw obecnoé¢ warstwy przyéciennej. Otrzymuje sie rowniez kryterium regularnosci od-
bicia.

B pabote aranuaupyerca oTpaxkenme cnaboit ynapHo# BOJHBI 0T HAKJIOHHOMN, IIOCKOMH CTEHKH.
PaccmaTpHBaeTcA TONBKO Cydail usoTepmudeckod crenku. OGnacTh TeueHMs pasfeneHa Ha
JABe YacTH: BHeumHAs oGnacTe, cofepykaBiasa oGe ygapHble BOJHBLI;, H NMOTPAHHYHBLA CIIOH.
C wuenbio ONMpefesieHHA BHEIUHETrO TeueHMA KombGuHupyercsa Texmumka Jlafitxmmia ¢ merofom
mHorux MacirraboB. Tedenue B NOrpaHHYHOM C/I0€ OMMCAHO JIHHEAPH30BAHHBLIM YIIPABHEHHEM
Mpauarna. [pumimn cpalMBanna pellleHHit HCIONB3YETCA UIA OMPEAETEHHA HEKOTOPBIX
Heu3BeCTHBIX GyHKumil. B peaynbraTe nomyyaroTcsa, MeX<ay IPOYMM, CTPYKTYPa H TPaeKTOPHA
oTpax<eHHOH BoyHb!. Ha nonoxenne TpaeKTOpHH OTPyKEHHOMH YAapPHOH BOIHLI HMEET BIIHAHHE
NPHUCYTCTBHE NorpaHnuHoro cnod. [Tonyuaerca ToyKe KPHTEpPHIl PEryIAPHOCTH OTPAYKEHHS.

1. Introduction

INTVESTIGAT!ONS of the process of reflection of a shock wave from a solid obstacle have
been carried out for about forty years. Now the literature on the problem is quite abun-
dant and the references [1-4] represent some monographs (long lists of references are given
there). In the present paper the same problem is considered, but the fact that the shock
wave is not simply a jump discontinuity is taken into account. Hawover, we have to confine
our considerations to the case of weak shock waves. Such an assumption makes it possible
to apply the singular perturbation methods. The flow domain is divided into two parts:
an inner domain (boundary layer) and an outer domain involving both the incident and
the reflected shock waves. In order to determine the outer flow, the Lighthill technique
[5] and the multiple scales method [S] are combined. Such a method was applied in the
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previous paper by the present author [6] and it turned out to give the same results as those
obtained by the other authors. Thus we may believe that the results of the present paper
are also correct.

2. Basic assumptions

Let an oblique shock wave travel along a solid plane wall at constant velocity D*. If
we denote the angle between the shock wave and the wall by o, then the point of intersec-
tion of the shock wave and the wall moves at constant velocity — D*/sing. Thus we are able
to choose such a coordinate system that the shock wave is at rest in it, the flow becomes
stationary and the wall moves in its plane with constant velocity D*/sino. We choose the
origin 0 of the Cartesian coordinate system at the point of intersection (see Fig. 1). We

Incident shock

Fic 1.

assume that the gas is at rest unitil the shock wave arrives, and that its density and tempera-
ture is oT and 7T, respectively. Both o} and 77 are assumed to be constant. However,
in our coordinate system the gas flows with constant velocity

Dt
sing’

,

*
Uy = vy =0,

where u* is the velocity component parallel to the wall, and v* denotes the velocity com-
ponent normal to the wall. The subscript 1 refers to the flow domain denoted by / in
Fig. 1; it is the domain of the gas at rest in front of the incident shock wave.

Let af be the sound velocity in the quiescent gas. The Mach number M of the incident

shock wave is
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The small parameter ¢ is defined by

where

y is the specific heats ratio.
The dimensionless variables are defined as follows:

R *_ %
2.1) o BOE, o ] GEE
% W PTI
where u* is the coefficient of viscosity assumed to be constant, and £ is a constant defined
by
4 y-1
b=3+"%
where Pr denotes the Prandt] number.
Let u%, v}, 03, T3 denote the velocity components, the density and temperature of
the gas behind the incident shock wave, respectively. According to the Rankine-Hugoniot
relations, they are given by

— 1 2
uf = I -;;::a * v} = —ecosaD¥,
*
9;=_Ig_l‘é'r
-1
(1+.?L2._5)(|—s)
TE e - T:.

The dimensionless velocity, density and temperature are defined by the relations

_uz+uy  uj-uj
p e u(x, y),

u*

vi+od oot

vt = + o(x, y),
2 2
2.2
) «_ 0340t  oi-of
=t o(x, ),

* * % _ %
T* = TZ‘;T! + TZZ 1 T(x,y)-

The Navier-Stokes equations written in these variables take the form

1 do . ou dv 1 do . dp
(2.3) e g smua—-cosa-a}——--z—sl(l+u)asma+(l+0)—5;coso‘

+(e—-1) (% sino+ ‘;—a;coso')] = 0(¢?),



ou 1 dg  y—=l 3T+ l.‘;{[(1+u)sin’cr—(e—i)]ia“—

2.4) —-5;4‘ y F s y
+(l+v)—~coso'smcr+ L1332 fo Y (y—._—l)(i__z.)_ T
Y ox Y ox
I‘(4 ézisino+ %u i 1 d% s
+ g3 o g sin 3 Ry coso)s = 0(e?),
cose dv 1 do -1 0T 1 {_[_ . o—1] dv
{25) —m'a—x"{'—;“gy—'f" y a e p) (l+u)sma+ Sing —a—coso'
(-DT-2:00  (y—1)(e-2) aT
+(1+9 -—cos’cr+—————+ SEL ING
(9 oy dy y By

i.‘--‘?Jic:;«os«r+4a—z‘i +l 2 0(e?
T \axm O 3 gyE 00 3 gy Sy = O,

1 aT do oT dp
(2.6) W( % ax) [(l+ )(—— —-)sma+(l +v)(—-}7 —-3; coso

o—=2 T . (y—1)T-2 ag ( a=T
~sine ox + sing Pr B axz T 57 = X&)

In the above equations, the pressure is eliminated with the help of the perfect gas equation
p* = R*o*T*,

where R* is the gas constant.

3. Quter expansion

Let Q be any of the variables u, v, ¢ or T. Following [6], we look for the solutions
of Egs. (2.3)-(2.6) in the form

(3.1 Q=0(¢,n,8;¢),

‘where &, 7 and { are new independent variables related to x and y through the equations
(3.2) x =9, 1, e),

(3.3) y =¥ 1,80,

(3.4 x! =g,

where

(3.5 Xt= gx

is treated as a new independent variable (see [5]).

The functions @ and ¥ in Egs. (3.2) and (3.3), respectively, are unknown and they will
be determined according to the principles of the strained coordinate method. However,
.this method does not define them uniquely and therefore we may impose some additional
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conditions on them: first, we assume that the Jacobian of @ and ¥ in respect to any pair
of their independent variables is different from zero; second, we assume that

3.6) BE, £ G )= ——,

San’
(3.7 V(6,00 =
We assume also that all unknown functions, including @ and ¥ are analytical functions
of ¢, and therefore they can be represented in the form

(3.8) Q. 1. 8:8) = D €087, ),
n=0

(3.9 D¢, L) = 2sma v P&, 1, L),

(3.10) Ve, 8 e) = - ZM GER

From the assumptions about @ and ¥ it follows that the wall location in the (£, 1) plane is
given by the equation & = % and the flow domain consists of all points (&, 7) such that

&z
Now we assume that
(3.11) lim  Qo(£,79,0) = -
5123
§—n—fixed
(3.12) lim Q,(&,7,0)=0 (n=1,2,3,..).
e-—
é-r;—ﬁ.xed

The above conditions express mathematically our earlier physical assumption that the
gas in front of the incident shock wave is at rest. The conditions (3.11) and (3.12) are
sufficient for the time being, although they do not constitute the complete set of boundary
conditions.

Now the expansion (3.8)-(3.10) is used to obtain equations for every Q,. The procedure
is standard (see [5]; also many particulars may be found in [6]) and we will not go into
details.

It can be shown that the functions u,, v, 0o and T, satisfy the following equations:

(3.14) (a—i + ?%)(—go-i-uasin’ah (—(% - %) vocos?0 = 0,
(3.15) ( +_)( 29.?&’_‘)5_) il
o0& ’

3} d
(3.16) (E + '55) 90—?1 (T:—f = *—) (90+(?—1)T0) =0,
(3.17) (;5 )(To 00) = 0
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This is a system of linear homogeneous partial differential equations of the hyperbolic
type. We solve it, subject to the conditions (3.11), and obtain

(3.18) uo = 0o = To = go(&, {)+ho(n, £).
(3.19) vo = go(&, {)—ho(7, 0),

where g, and A, are arbitrary bounded functions such that
lim 80(5, C) = -1 s

(3.20) Boeem
(3.21) ,’1:131 ho(n, £) = 0.

A similar, but rather lengthy procedure, gives u,,v,, ¢,, T; and further approximations.
Although we are not interested in them, we have to analyse the next approximation in
order to find equations for gy, ho and @,, ¥,. It can be shown in a similar way as in [6]
(see also [5]) that the functions u;, v;, ¢, and T are bounded if and only if the following
relations hold:

02 *go dge  4cos’c dgo
+280 —5

(22) = 0t ~ Tsine 0’
0%ho dhy  4cos’c dhy

(3.23) g tAh=D) G2 = [t
and

4 3 (

SI g+
(3.24) ®,sinc—¥,coso = — — ';cos’; f[go(r,C)+I]dt,
(3.25) ®,sino+¥,coso = — fs‘ifizl 2 f ho(z, L)dr.

8cos

The relations (3.22) and (3.23) are partial differential equations from which the un-
known functions g, and A, can be found.

Until now, only the boundary conditions (3.11) and (3.12) have been used. Let-us now
assume that the incident shock wave has the classical Taylor structure. Mathematically,
it can be expressed as
(3.26) ”ET‘» 0o(£, 1, £) = thé.

This condition as well as Egs. (3.20) and (3.21), when applied to Egs. (3.18) and (3.19),
give

(3.27) go(&, 0) = thé.

It is a matter of simple calculation to check that this function satisfies Eq. (3.22); therefore
the function g, is found.

Our final group of assumptions takes the form

(3.28) Qo(£,8,0) = -

where now Q, is ug, vo or Tp.
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If Qg = uo, then the condition (3.28) means that the gas particle “sticks” fo the wall;
if Qo = v, then Eq. (3.28) says that the wall is impermeable; finally, if Q, = T,, then
Eq. (3.28) expresses two physical assumptions, namely that the wall is isothermal and the
gas is in the thermal equilibrium with the wall.

However, the solutions (3.18), (3.19) and (3.27) cannot satisfy the boundary condition
(3:28), what means that close to the wall a boundary layer exists. It is studied in the next
paragraph.

4. Boundary layer

In order to determine the inner flow, we introduce new independent variables (r, )
defined as follows:

@.1) st tB b, re——1 o T Lo,

251110' 2 "/;cos g 'V;:

Also, new flow variables are introduced:

(4.2) f=u+l, p=o+1, T=T+1
and
~ ﬁ+
4.3 D=
4.3) =

If the new unknown functions #, v, ¢ and T are expressed as series expansions of the
small parameter e, then it follows from the Navier-Stokese quations that these functions
satisfy (in the first approximation) linearized Prandtl equations of the boundary layer.

We solve these equations subject to the boundary conditions following Eq. (3.28)

i5(0,5) =0, Do(0,5) =0, To(0,5)=0
1t can be shown (see [6, 8, 9]), that

44 = Ms)f'ﬂl?f ( 2ﬂvsmo‘) :/; a,
mﬁ%=$o“”ﬁ&dftm1 ﬁﬁ

+9' (s 21“::5&5) sing ?:- dzdw,
(4.6) Bo = qa(s)+--°;—/:;l~ f q:(s—z'—ﬁ%::? %dw

; O R Wl
— =gl 7?5{ ¥ (s- wﬁs‘ina) y,;_dw,

2=,
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where @(s) is an arbitrary bounded functions (to be found) and ¢'(s) is its derivative (also
assumed to be bounded).

The unknown function ¢ is determined by means of the matching principle [5]. We
do not go into details because all of them can be found in [6].

The matching leads to the following equations:

(4.8) hgo(ssing, 0) = 1+g4(ssino)

'(s— a)

~ coso ]/ 2nfsine }/ﬁ 30 U)D Va i

_ : Ve r _(y—l a ) qs(s—a:)
(4.9) o(s) = 2+ 2g4(ssino) — e G2 v Vﬁ +sin’eo ) -—IT do
We can see that, conversely to our assumptions, both functions ¢ and ho do depend
on ]/ ¢. To avoid this contradiction we admit following Lesser and SeeBas [8], ¢ and A,
to depend on &. Thus we take as a solution of Egs. (4.8) and (4.9)

(4.10) ho(n,0) = 1+thn—2y eY(n),
(4.11) @(s) = 2[1+ths] -2}/ & Y(s),
where

I 2r y—1
coso 7f \yPr V_
In Egs. (4.10) and (4.11), terms of order of 0(g) have been neglected because they
contribute to higher order approximations of the flow parameters.
The equality (4.10) is an initial condition for Eq. (3.23); of course Eq.(4.11) defines the

function K2 Substltutmg Eq. (4.11) into Egs. (4.4)-(4.7), we obtain explicit expressions
for #y, Vo, 0o and To

(4.12) Y(n) = +sin o')f sech?(n — a)

5. Reflected shock wave

We are interested mainly in the trajectory and the structure of the reflected shock wave.
Consequently, we confine ourselves to the case of positive values of x (and {). Equation
(3.23) is the Burgers equation, and its theory is presented in [7] (for many details see [6, 8]).
The Burgers equation can be solved explicitly and in our case the solution is

2sinhn — /¢ | I(Vs)—e"I(Vy) + e oI(Vs) " oI(V3)
1) ho=14 —— — L s v, |
' ’ 2coshy — Y e [@I(Vs)+ e~I(Vy)]

where

(¢ —V)coso ] 2

(52) KV)= fY(oc)e—zy’:‘xtu)erfc[ Ttems
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I'tsina
G V=~ “2cos?a ’

I'tsino
G4 V= 2cos2o

Il

(5.5 X

f Y(a)da = = l/ I/ﬁ L _— +sin a)f sech?(n —a) ) ada.

0

From the considerations of Sect. 3 and from Eq. (5.1) it follows that

3
(56) xsino+ycoso = £—¢ 45";-%”; : 1n{1+e=~- V’s[ez"I(Vs)+!(Vz)]}

4sin®o+y -3, 1+e*

(Bd)  Fsho-Reose =~ g g "

Now we can derive the equation of the trajectory of the reflected shock wave.
Qualitatively, the reflected shock wave location is given by

n—fixed, Vs>>1, -—-V,>>1.

But then (see [6, 8]),
(5.8) ho = [1=Ve YV [1 +thln -y eX (V)]
and

xsino+ycoso = &,

Xsino —ycoso £ 45!“—211-—?— (£—n)

¥ = ﬂ 400820 n
or
: 4sin’c+y -3 B 4sin*o+y -3

(5.9) xsma—ycoso+—2-a? ~{sing = (l-i- 5oy —

From Eq. (5.8) we see, on the other hand, that the shock wave location is given by the

equation
— I'(sino
o= '/EX(’H- 2cos?a )

Using here the asymptotic expression for X(7) (see [8])

X(n) = __4__]/3“; }/— +sin or) Vn+0(n 2), n = 0,

- 4yel 'l/s::lﬂo y__l +sin o) Ve.

cos?a Y Pr

If this equality is substituted into Eq. (5.9), then the reflected shock wave trajectory results

we obtain

4sin’c+y—3 4r'y ex sino [ y—1 )
5.10 =x|1 o i
G0 ¥ x( +3 2cos?c oy cos*c 7p \y/Pr e
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The first term on the right hand side gives the trajectory of the reflected shock wave in the
case of the ideal gas, the second term is induced by the boundary layer, and it causes some
shift of the trajectory of the reflected shock wave. This result is in a good agreement with
the experiment [10].

From Egs. (5.6) and (5.7) some limitation of the theory follows. We can see that the
ratio

£
cos?o

should be actually treated as the small parameter. Thus the equality

Tt
7—6 = 0(¢g)

gives the upper limit of validity of the theory. For angles o satisfying this equality, the
reflection is no more regular.
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