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Regular reflection of a weak shock wave from an inclined plane 
isothermal wall 

K. PIECH6R (WARSZAWA) 

THE PROBLEM of reflection of a weak shock wave from an oblique plane wall is analysed. Only 
the case of the isothermal wall is considered. The flow domain is divided into two parts: an 
outer domain containing both shock waves. and a boundary layer close to the wall. In order 
to determine the outer flow, the Ligl)thill technique and the multiple scales method are combined. 
The flow in the boundary ·layer is described by the linearized Prandtl equations. So as to de­
termine some unknown functions, the matching principle is used. As a result, the structure and 
the trajectory of the reflected shock wave are obtained. The location of the trajectory of the 
reflected shock wave if. influenced by the boundary layer. Also a criterion of regularity of the 
reflection is obtained. 

W pracy analizuje si~ odbicie slabej fali uderzeniowej od pochylej, plaskiej scianki. Rozwai.a 
si~ tylko przypadek Scianki izotermicmej. Obszar przeplywu podzielony jest na dwie c*i: 
obszar zewn~trzny zawieraj(\cy obie fale uderzeniowe i warstw~ przyScienn(\. W celu wyznaczenia 
przeplywu zewn~trmego, IClCZY si~ technik~ Lighthilla z metod(\ wielu skal. Przeplyw w war­
stwie przySciennej jest opisany przez zlinearyzowane r6wnanie Prandtla. Zasada kojarzenia 
rozwi(4zan jest ui:yta do wyznaczenia pewnych niewiadomych funkcji. W wyniku otrzymuje si~ 
m.in. struktur~ i trajektori~ fali odbitej. Na poloi:enie trajektorii odbitej fali uderzeniowej 
ma wplyw · obecnosc warstwy przysciennej. Otrzymuje si~ rowniei: kryterium regularnosci od­
bicia. 

B pa6oTe aHaJIH3HpyeTC.R OTpa>KeHHe CJia6o:H: y~apHOit BOJIHbl OT H8KJIOHHOH, UJIOCKOH CTeHKH. 
PaccMaTpHB8eTC.R TOJILKO CnytlaH H30TepMHlleCKOO CTeHKH. 06JiaCTL TelleHH.R p~eneHa Ha 
~Be '18CTH: BHeiiiWI.R 06JiaCTL, CO~ep>KaBWa.R 06e y~apHbie BOJIHbl; H norp8HHliHbiH CJIOH. 
C l.{eJILIO onpe~eJieHH.R BHeWHero TelleHH.R KOM6HHHpyeTC.R TeXHHJ<a JlaiiTxruma C MeTO~OM 
MHormc MacWTa6oa. TelleHHe B norpaHHliHOM cnoe OIIHCaHo JIHHeapH30BaHHbiM ynpaBHeHHeM 

llp~TJI.R. llpHHl{lm CP811UiB8HH.R pemeHHH HCUOJib3YeTC.R ~ onpe~eJieHH.R HeKOTOpbiX 
HeH3BeCTHbiX <f>~HH. B pe3yJILT8Te UOJiyq&IOTC.R, Me~ npO'IHM, CTpYJ<TYp8 H TpaeKTOpH.R 
oTpa>KeHHo:H: BOJIHbi. Ha nonomeHHe TpaeKTOpHH OTpa>KeHHo:H: y~apHOH BOJIHbi HMeeT BJIH.RHHe 
npHCYTCTBHe norpaHHtJHOro CJIO.R. ilOJiyt-!BeTC.R TO>Ke KpHTepHH peryJI.RpHOCTH OTpa>KeHH.R. 

1. Introduction 

INTVE'STIGAT!ONS of the process of reflection of a shock wave from a solid obstacle have 
been carried out for about forty years. Now the literature on the problem is quite abun­
dant and the references [1-4] represent some monographs (long lists of references are given 
there). In the present paper the same problem is considered, but the fact that the shock 
wave is not simply a jump discontinuity is taken into account. Hawover, we have to confine 
our considerations to the case of weak shock waves. Such an assumption makes it possible 
to apply the singular perturbation methods. The flow domain is divided into two parts: 
an inner domain (boundary layer) and an outer domain involving both the incident and 
the reflected shock waves. In order to determine the outer flow, the Lighthill technique 
[5] and the multiple scales method [5] are combined. Such a method was applied in the 
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previous paper by the present author [6] and it turned out to give the same results as those 
obtained by the other authors. Thus we may believe that the results of the pr:esent paper 
are also correct. 

2. Basic assumptions 

Let an oblique shock wave travel along a so,Iid plane wall at constant velocity D*. If 
we denote the angle between the shock wave and the wall by(], then the point of intersec­
tion of the shock wave and the wall moves at constant velocity - D* /sin(]. Thus we are able 
to choose such a coordinate system that the shock wave is at rest in it, the flow becomes 
stationary and the wall moves in its plane with constant velocity D* /sin(]. We choose the 
origin 0 of the Cartesian coordinate system at the point of intersection (see Fig. 1). We 

FIG 1. 

assume that the gas is at rest unitil the shock wave arrives, and that its density and tempera­
ture is ei and T'f, respectively. Both e! and Ti are assumed to be constant. However, 
in our coordinate system the gas flows with constant velocity 

u! = sin(] 
D* vf = 0, 

where u* is the velocity component parallel to the wall, and v* denotes the velocity com­
ponent normal to the wall. The subscript I refers to the flow domain denoted by 1 in 
Fig. I ; it is the domain of the gas at rest in front of the incident shock wave. 

-Let at be the sound velocity in the quiescent gas. The Mach number M of the incident 
shock wave is 

. D* 
M= -"T· 

at 
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The small parameter e is defined by 

where 

r = _r+ I 
2 ' 

y is the specific heats ratio. 
The dimensionless variables are defined as follows: 

(2.1) * _ r e!at E 
y -2/f~y, 

where p,* is the coefficient of viscosity assumed to be constant, and Pis a constant defined 
by 

where Pr denotes the Prandtl number . 
. Let u!, v!, ei, T! denote the velocity components, the density and temperature of 

the gas behind the incident shock wave, respectively. According to the Rankine-Hugoniot 
relations, they are given by 

* · . 1 - esin2u 
u = -· . --D*, v! == - ecosuD*, 2 smu 

• et e2 = 1-E-, 

(I+ y~l •)(1-e) 
T! = --·-------- ----- Tf. 

1-er 

The dimensionless velocity, density and temperature are defined by the relations 

* • * * ._u2 +u 1 u2 -u 1 ( ) u ---
2
-+--

2
- u x,y, 

* * * * v* = 'V2 ;vt + 'V2 ;'Vt v(x' y), 

*+ * * * e* = e2 2 et + ez ;et e(x, y), 
(2.2) 

T* _ T!+Tt T!-T! T( ) - 2 +--2-- x,y. 

The Navier-Stokes equations written in these variables take the form 

(2.3) I oe . ou ov 1 [ oe . oe -.-- -smu- -cosu --- -e (1 +u)- smCT+ (1 +v)- cosu 
smu ox ox oy 2 ox ay 

+(e-1){ ~: sina+: cosa)] = O(e'), 
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ou 1 oe y -I oT 1 f . ou · 
--+ -~+--!l+-2 e\[{l+u)sm

2a-(e-I)]~ 
OX y uX Y uX uX 

{2.4) 

+ (1 +v)~ cosasina+ (y -l)T-2 ~ + {y_-1) (e -2) ~T 
oy y ox y ox 

r ( 4 0
2

U . o2
u . 1 82v )} +- ---sma+- sma+ - --cos a = O(e2) 

{3 3 ox2 oy2 3 oxoy ' 

{2.5) _ C~SO' ~ + _!_ ~ + _Y -'-
1 ~T + -

2
1 

e{- [ -(1 +u)sina+ (! . ...,..
1 l !!!.._COSO' 

SlnO' OX y oy Y uy SinO' OX 

+(l+v)~cos2a+ (y-l)T-2 :~ + (y-l)(e-2) oT 
oy y oy y oy 

F ( o2
v 4 o2

v I o2
u )} 

+ 7f ox2 cosa+ 3 oy2 cos a+ T oxoy sin a = O(e2
), 

{2.6) -.-~- ( oT - ~)- _!_e[(t +u) ( oT - ~) sina+{l +v) ( oT - !.g_) cos a 
sma ox ox 2 ox ox oy oy . 

_ e-2 oT .f. (y-l)T-2 ~ +_L_.!__(o2T + o2T)] _ O(e2) 

sin a ox sin a ox Pr {3 ox2 oy2 - . · 
In the above equations, the pressure is eliminated with the help of the perfect gas equation 

p* = R*e*T*, 

-where R* is the gas constant. 

3. Outer expansion 

Let Q be any of the variables u, v, e or T. Following [6}, we look for the solutions 
-{)f Eqs. (2.3)-(2.6) in the form 

{3.1) Q = Q(~, 1], C; e), 

-where~, 1J and Care new independent variables related to x and y through the equations 

(3.2) x = ~(E, 1), C; e), 

{3.3) y = P(~, 1J, C; e), 

'(3.4) X
1 = C, 

·where 

(3.5) X 1 =EX 

is treated as a new independent variable (see [5]). 
The functions f/J and 'l' in Eqs. (3.2) and (3.3), respectively, are unknown and they will 

be· determined according to the principles of the strained coordinate method. However, 
.this method does not define them uniquely and therefore we may impose some additional 
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conditions on them: first, we assume that the Jacobian of <P and "Pin respect to any pair 
of their independent variables is different from zero; second, we assume that 

~ 
(3.6) <P(~, ~,(;c) -= -.- , 

sma 

(3 .7) P(~ , ~ ' (;c)= 0. 

We assume also that all unknown functions, including <P and Pare analytical functions 
of c, and therefore they can be represented in the form 

00 

(3.8) Q(~, 1], C; c)= l., c"Q,.(~, 1], (), 
n=O 

00 

(3 .9) . - ~+1] ~ 11 <P(~, 1] , (,c)- -
2

-. - + /. e <P,.(~ , 1], () , 
sma .....,. 

11=1 

(3.10) 

From the assumptions about <P and tp it follows that the wall location in the (~, 1]) plane is 
given by the equation ~ = 'YJ and the flow domain consists of all points (~, 1]) such that 

~ ~ 'YJ· 

Now we assume that 

(3.11) 

(3.12) 

lim Q0 ( ~ , 1J, C) = -I , 
~-+- oo ,_._Cl() 

~-'1-fixed 

lim Q,.(~,'YJ , ()=O (n=1,2,3, ... ). 
e-.- oo 
fi-+-CIO 

~-'1-fixed 

The above conditions express mathematically our earlier physical assumption that the 
gas in front of the incident shock wave is at rest. The conditions (3.11) and (3.12) are 
sufficient for the time being, although they do not constitut~ the complete set of boundary 
conditions. 

Now the expansion (3.8)-(3.10) is used to obtain equations for every Q,.. The procedure 
is standard (see [5]; also many particulars may be found in [6]) and we will not go into 
details. 

It can be shown that the functions u0 , v 0 , eo and T0 satisfy the following equations: 

(3.14) ( 
j} j} )< . 2 ) ( j} j}) 2 0 8f + ar} -eo+uostn a+ 8f- arj v0 cos a= , 

(3.15) (_j__+ -~)(-uo+ eo+(y-1)To) = O, 
j}~ 01] I' 

(3.16) ( a a) 1(a a) - + - Vo- - --- - - (eo+(y-1)To) = 0, 
j}~ 01] I' j}~ 01] 

(3.17) {:( + :'1) (To-eo)= 0. 

2 ~rcb . Mecb. Stos. nr 3/81 
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This is a system of linear homogeneous partial differential equations of the hyperbolic 
type. We solve it, subject to the conditions (3.11), and obtain 

(3.18) Uo =eo= To= Ko(~, C)+ho(f], C). 

(3.19) Vo = Ko(~, C)-ho(f], C), 

where g 0 and h0 are arbitrary bounded functions such that 

(3~20) 

(3.21) 

lim g0(~, C)=, -I, 
~-+-00 

lim h0 (1J, C)= 0. 

A similar, but rather lengthy procedure, gives Ut, v 1 , e1 , T1 and further approximations. 
Although we are 'not interested in them, we have to analyse the next approximation in 
order to find equations for g0 , h0 and </Jt, "fJ/1 • It can be shown in a similar way as in [6) 
(see also [5]) that the functions Ut, vt, (h and T1 are bounded if and only if the followipg 
relations hold: 

(3.22) 02Ko 2 ogo 4cos 2 U ogo 
o~2 + Ko af = ·rsinu af' 

(3.23) 02h~ + 2(ho -1) oho = 4cos
2
u oho ' 

o1J 2 01J Fsinu oC 

and 

(3.24) 

" 
(3.25) n. . 1u _ 4sin

2
u+y-3 Jh ( ")d 

'V 1 Sin (1 + r 1 COS (1 = 8 COS 2 (1 o T, ~ T. 

~ 

The relations · (3.22) and (3.23) are partial differential equations from which the un­
known functions g0 and h0 can be found . 

. Until now, only the boundary conditions (3.ll) and (3.12} have been used. Let'US now 
assume that the incident shock wave has the classical Taylor structure. Mathematically, 
itcan be expressed as 

(3.26) lim Qo(~, 1J, C) = th~. 
fl-+-00 

This condition as well as Eqs. (3.20) and (3.21), when applied to Eqs. (3.18) and (3.19), 
give 

. (3.27) 

. It is a matter of simple calculation to check that this function satisfies Eq. (3.22); therefe1re 
the function g0 is found. 

Our final group of assumptions takes the form 

(3.28) 

. whe~e now Q0 is u0_, ~o- or T0 • 
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If Q0 = u0 , then the condition (3.28) means that the gas particle "sticks" to the wall; 
.tf Q0 = v0 , then Eq. (3.28) says that the wall is impermeable; finally, if Q0 = T0 , then 
Eq. (3.28) expresses two physical assumptions, namely that the wall is isothermal and the 
gas is in the thermal equilibrium with the wall. 

However, the solutions (3.18), (3.19) and (3.27) cannot satisfy the boundary condition 
(3:28), what means that close to the wall a boundary layer exists. It is studied in the next 
paragraph. 

4. Boundary layer 

In order to determine the inner flow, we introduce hew independent variables (r, s) 
defined as follows: 

(4. I) 
~+n 

s = -
2
-.- = x+O(e), 
sma 

r = C - fJ - y + 0( ... ) 
.. ! - .. r:; ., . 

2 re cos a .., ., 

Also, new flow variables are introduced: 

(4.2) 

and 

(4.3) " v+I 
f)= y£ . 

If the new unknown functions u ,'V, e and Tare expressed as series expansions of the 
small parameter e, . then it follows from the Navier-Stokese quations that these fun~tions 
satisfy (in the first approximation) linearized Prandtl equations of the boundary layer. 

We solve these equations subject to the boundary conditions following Eq. (3.28) 

u0 (0, s) = 0, v0(0, s) = 0, T0(0, s) = 0. 

It can be shown (see [6, 8, 91), that 

(4.4) 

(4.5) " cosa '() _ I frfoo[y-1 '( {3Prz
2

) 

Vo = sin a - cp s r+ __ -l l n cos a 
0 0 

s.ina cp s- sin a 

+q/ s- _ _ z_. - - sina .. 1- dzdw, ( 
p 2 ) ] e-w 

2Fwsma J' w 

00 

(4.6) ... . . y - 1 J ( , f3 Pr r2 
) e- w 

!?o = q;(s)+ -
1
_ q; s-

2
r . .. 1- dw, 

l n 
0 

wsma J' w 

(4.7) " 1 Joo ( {3Prr 2 
) _C_ T0 -= q;(s)- --==-- q; s- ----;-- ,- dw, · y n 

0 
2Fwsma y w 

2*. 
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where tp(s) is an arbitrary bounded functions (to be found) and tp'(s) is its derivative (also 
assumed to be bounded). 

The unknown function 9' is determined by means of the matching principle [5]. We 
do not go into details because all of them can be found in [6]. 

The matching leads to the following equations: 

(4.8) h0 (ssinu, 0) = I+ g0 (ssinu) 

y-; V r ( y-1 . 2 )foo tp'(s-a) d - -- ---- --+Sin 0' IX 
cosu 2n{Jsina yPr 

0 
y ex ' 

00 

(4.9) () - 2 2 ( . ) y; v---r-( y-1 . z )J tp'(s-ex) d 9' s - + go SStnO' --- ·-2 -{3-.- w!- +stn (1 I rt.. 
cosa n sma f Pr 

0 
l rt. 

We can see that, conversely to our assumptions, both functions 9' and h0 do depend 
on yi. To avoid this contradiction we admit following LESSER and SEEBAS [8], 9' and h0 

to depend on e. Thus we take as a solution ofEqs. (4.8) and (4.9) 

(4.10) 

(4.11) 

where 

(4.12) 

ho('YJ, 0) = I +th 17-2 y;Y(rJ), 

tp(s) = 2(I+ths]-2y;Y(s), 

, ( ) I V 2F ( y -I . 2 ) foo 2 ( dex Y 'YJ = - - - ---=- +sin a sech 'YJ -ex)---=-. 
cos u n{J y Pr 

0 
y ex 

In Eqs. (4,10) and (4.11), terms of order of O(e) have been neglected because they 
contribute to higher order approximations of the flow parameters. 

The equality (4.10) is an initial condition for Eq. (3.23); of course Eq.(4.11) defines the 
function 9'· Substituting Eq. (4.11) into Eqs. (4.4)-(4.7), we obtain explicit expressions 
for uo, vo, eo and To. 

S. Reflected shock wave 

We are interested mainly in the trajectory and the structure of the reflected shock wave. 
Consequently; we confine ourselves to the case of positive values of x (and C). Equation 
(3.23) is the Burgers equation, and its theory is presented in [7] (for many details see [6, 8]). 
The Burgers equation can be solved explicitly and in our case the solution is 

(5.1) 

where 

foo ,- { (rt.-V) cos 0' ] (5.2) /(V)= Y(cx)e- 2Y£X(«>erfc . . · drt., 
-oo . y rcsmu . 
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(5.3) 

(5.4) 

'1/ - 00 

(5.5) X(rJ) = J Y(rx)drx = -- 2
- w / 

2
r{J ( 1' -I + sin'u) J sech2 (>j-a) jle(da. 

- oo cos <T Jl n V Pr o 

From the considerations of Sect. 3 and from Eq. (5.1) it follows that 

4sin
2 

<T+y -3 { . ; - l (5.6) xsina+ycosa=~-E 
8 2 In 1+e2"-re[e2"/(V5 )+l(V2 )], 

cos 0' 

(5.7) 
. 4sin 2a+y-3 1+eu 

xstna-ycos<T = rJ-E - --- ------ ln - --. 
8cos2 <T 1 + e2

" 

Now we can derive the equation of the trajectory of the reflected shock wave. 
Qualitatively, the reflected shock wave location is given by 

17 -fixed, V5 > > 1, - Y2 > > 1. 

But then (see [6, 8]), 

(5.8) 

and 

xsina+ ycos<T = ~, 

. 4sin2<T+y-3 
xsm<T -ycos<T = 11- e 4cos 20' (~ -rJ) 

or 

(5.9) . 4sin2<T+y-3 . ( 4sin2<T+y-3) 
X Sin 0'-y COS 0' + 

2 2 C Sin 0' = } + E 
2 2 1] • 

COOO' COSO' 

From Eq. (5.8) we see, on the other hand, that the shock wave location is given by the 
equation 

• 1- ( FCsin<T) 
11 = r eX rJ+ 2 2 • cos 0' 

Using here the asymptotic expression for X(rJ) (see [8]) 

4 V 2F ( I' -I ) - . -~ 
X(rJ) = - - -{J .;- +sin2 <T V 17 +O(rJ 2), 

cos<T n r Pr 

we obtain 

4yeF vsin<T ( y-1 . 2 ) . FF 'fJ =--- -- ~+sm <T ..,~,. 
cos2 <T n{J V Pr 

If this equality is substituted into Eq. (5.9), then the reflected sh9ek wave trajectory results 

(5.10) (1 4sin 2<T+y-3) 4Fy"EX v -sin<T ( , ·-1 . 2 ) 
y = x +e ---- - tg<T- -- ~+sm <T . 

2cos2 <T cos3 <T n{J JIPr 

http://rcin.org.pl



346 K. PIECH6R 
---- - --- - ----------::--- ·- - - ·- - ----

The first term on the right hand side gives the trajectory ,of the refleCted shock wave in the 
case of the ideal gas, the second term is induced by the boundary layer, and it causes some 
shift of the trajectory of the reflected shock wave. This result is in a good agreement with 
the experiment [10]. 

· From Eqs. (5.6) and (5.7) some limitation of the theory follows. We can see that the 

ratio 

should be actually treated as tlie small parameter. Thus the equality 

n 
- -(J = O(e) 
2 

gives the upper limit of validity of the theory. For angles (J satisfying this equality, the 
reflection is no more regular. 
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