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Stress distribution in a transversely isotropic solid containing
a penny-shaped crack

M. DAHAN (PALAISEAU)

AN AXIALLY symmetric stress distribution inside an infinite transversely isotropic elastic solid
containing a penny-shaped crack is treated. It is assumed that the load is concentrated on one
internal disc lpcated at a finite distance from the crack. Ap analytical solution is presented for the
displacement and stress distribution and for the stress intensity factors. Closed form solu-
tions are given for the case of a point force as well as curves of numerical results, showing the
influence of this type of anisotropy.

Rozwaiono przypadek osiowo-symetrycznego rozkladu napre¢zenia wewngtrz meskoﬁmneso
poprzecznie izotropowego ciala sprezystego zawierajacego szczeling kolows. Zalozono, ze ob-
cigzenie rozlozone jest na powierzchni kola znajdujacego si¢ w-skoficzonej odleglosci-od szczeliny.
Przedstawiono rozwigzanie analityczne dla rozkladu naprezef i przemieszczesi oraz dla wspol-
czynnikéw intensywnosci naprezenia, Rozwumumknmotrzymmodhprzymdkuob-
cigzenia skupionego, jak réwniez przedstawiono wyznaczone numerycznie wykresy obrazujgce
wplyw przyjetego rodzaju anizotropii.

PaccMOTpeH CTydall OCECHMMETPHYHOIO PACTIpEe/icHHA HANDSKEHUA BHYTPH Ge3KoHeUHOrO,
MOTIEPEYHO M3OTPOMHONO YOPYTOro TeNa, CONCPMABINero Kpyrobyio mems. IIpeanonokeso,

MelieHHit, & TAOKe 1A Koa(hdUIMEHTOB HHTCHCABHOCTH HAIPADKEHHA . peiesns
TIONYYeHN! JTIA CIY4as COCPENOTOUCHHON HAPPYSKH, KAK TOYKE NPEACTAB/ICHBI, ONpec/IeHHbIE
YHCIIEHHO, JHArPaMMbI, 05pasylolne BIHARAC NPHHATOTO PONA AHA3OTPOMHH.

Notations
ay elastic coefficients of the anisotropic medium,
a,b,c,d, constants of the material (2.6),

A, Bg, Ci, D, ampi.itude funcﬁom.

S constant of the material (4.2),

£1.82 constants of the material (3.5),

h distance crack-loading,

I,J,K integrals defined in (3.19), (3.21) and (3.27)
ki, ka, ks stress intensity factors,

Jo, Jy Bessel functions,

my, m; constants of the material (4.2),

p(r) body force,

p(m) Hankel transform of p(r),

Pi,P2,q1,92 constants of the material (3.5),

q constant of the material (4.2),
r0,z cylindrical polar coordinates,

ro radius of the crack,

51,53 congtants of the material (2.14),
Uy, Uy components of displacement,

w maximum width of the crack,
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£14, 0y stress and strain components,

o, partition of the space (2.13)

@ potential function of the Love type.

1. Introduction

THE STRESS distribution inside an infinite isotropic elastic solid containing a penny-shaped
crack opened by pressure applied directly over its surface in a symmetric or asymmetric
fashion was first considered by SNEDDON[!] and, subsequently, by GREEN and ZERNA [2]
and CoLrixs [3].

When two symmetric body forces were concentrated on two surfaces situated at the
same finite distance from the crack, the stress intensity factor was calculated by SNEDDON
and Tweep [4] for an isotropic material and by DAHAN [5] for a transversely isotropic
one. This paper examines the behaviour of a crack embedded in an infinite medium with
transverse isotropy and deformed by an asymmetrical loading which is concentrated on
one disc located at a finite distance from the crack.

2. Formulation of the problem

We consider an infinite elastic solid containing a penny-shaped crack of radius r, given
by z = 0 (0 < r < rp), where (r, 0, z) are cylindrical polar coordinates. The center and axis
of the crack are respectively the origin and z-axis. We assume that the medium is charac-
terized by transverse isotropy, with respect to the z-axis. Regarding the opening of the
crack by an axially symmetric loading concentrated at an interior disc of the infinite solid,
located on the plane z = h (cf. Fig. 1), we denote (u,, 0, u;) the components of the displace-
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FiG. 1. Diagram of the problem.

ment field, (o,,, 04, 0., 0,;) the nonzero components of the stress tensor and
(%, €95 &2z, &2) the components of the strain tensor. Then the strain-stress relations for

the transversely isotropic solid can be defined by
Epp = allarr+a12086+alaaz:)
(2-]) Egp = alldrr+a11099+a130:z’

€z = al-!arr+a13699+a330ﬂ)

€z = Q44 0y,
where ay,, a,,, a3, as3, Gy, are the five independent elastic coefficients of the medium,
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For axisymmetric problems, the governing equations are completed by the following
equilibrium equations:
do,, 00, Op—0g
ar T oz r
do,;, 00y,
ar t oz
and the conditions of compatibility:

=0,

2.2)

+___

: - d
(@), —a;2) (Urr—“u)""'a';'(anﬂ'rr‘i‘“u Opo+8,30,) =0,

23 a2 52 da,,
3 (@130, +a12000+8,305)+ 55 pre: (8130, +0,3050+83305,) —04s ——— 3:'62

Using a potential function of the Love type [6, 7] for the representation of the stress and
displacement fields such that

2 2
_i(atp b6w+a6¢)

Oy =

z \ ar? ¥ r 0z 0z
[, % 1 dp &
““"‘E(Frz"' T 32’)’
o[ 9 c op a=¢)
“““E(“ S i =y
(2.4) .
_ 0[P 13d¢ a=¢)
""-a(aﬁ tratiam )

a2
e = =(1-b) (a1 ~a1) 5t »
g 1
Ug —a“( pr +—= afp)“‘(a:ad 20130) 7z z ’

the three equations (2.2), and (2.3) of elastostatics in the absence of body forces are iden-
tically satisfied. Equation (2.2), is equivalent to

2 14\ 82 la) 9
(2.5 (ar,+ a)“(‘”"’)a*(ar”" & +d—az4_0

The constant a, b, ¢, d are defined by

a = a,3(ay, —ay2)/(a;, 833 —als),

b = [a;3(a13+044s) —a12035]/(811 33 —033),

¢ = [a,3(a1, =812)+ a1, 044)/(a11 033 —a33),
= (ai; —a}))/(ay1a33—a}y).

The solution of Eq (2.5) has to satisfy the boundary conditions as follows: If p(r)
is the loading on the plane z =4, the presence of body forces implies the continuity of

2.6)
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displacements u,, i, and shear stress ,, and the discontinuity of normal stress o, following
the condition

@7 lim [00(rs h—&)—0,,(r, b+ &)] = p(r),

where p is an arbitrary function so defined for r > 0 that the Hankel transform of order
zero p¥ exists.

Over the plane z = 0, the stresses and displacements are continuous in the exterior
of the crack (7, < r < o0); the boundary of which is stress-free, i.e. the stresses o,. and a,,
take prescribed values over the surface of the crack so that

au(r ’ 0) =0,
qrz(r ’ 0) -~ .0,

"For the remaining boundary conditions, it is assumed that the components of stress and
displacement vanish as- (r?+22)'/2— o0,

In order to solve Eq. (2.5), we introduce the Hankel transform of order zero, 5,
defined by

2.8)

0<r<r,.

o

@9 #,lg(r,2)] = ¢*(m,2) = [ ro(r, 2Wo(mr)dr,
0

where J, is the Bessel function of zero order of the first kind.
Thus the solution of Eq. (2.5) can be represented by

(2.10) ¢(r,2) = 5" [¢(m,2)] = [ mg®(m,2)o(mr)dm,
: 0 :

where ¢ is the solution of the differential equation

.11) "’H - (a+c)m? d:"’ +mtpf = 0.

We find for the potential function
[ -]
(2.12)‘?(1',2) = ,of [Ai(m)e* "™+ B(m)e* ™ + C (m)e """ + Dy(m)e~*"*)Jo(mr)mdm,
r,2)eQ, i=1,2,3,
where A, By, Cy, D,, defined on each £2,, are amplitude functions to be determined from
the boundary conditions and £, are three parts composing the whole space as follows:
Q,={(r,2):re®,, h<z< +w},
(2.13) Q,={(r;z):;reR,, 0<z<h},
Ry = {r,2):ire®,, -0 <z<0}.
The constants s, and s, depend only on the coefficients defined in Eq. (2.6) and are
characteristics of the material. We have

=[(a+c+y/(a+o)? —4d) {2:!]”2

2.14)
(. '_) §; = [(a'l'c— l/(a +0)? _"“d)pd]l;2
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3. Solution of the problem

In order to solve the problem completely, i.c. to determine the function ¢ continuous
by parts on each 2;, we have to calculate the twelve functions 4, By, C;, D;. To this
end we take into account the boundary conditions on the planes z = h and z = 0 and the
conditions at infinity.

The displacement components vanish at a large distance (r?+2%)'/? from the origin
so that

A,(m) = By(m) =0,

3.1
( ) C;(m) = D;(m) = 0.

3.1. Boundary conditions on the plane z = h

The presence of body forces yields four algebraic relations connecting the amplitudes.
Typically these are derived as follows. From the condition that u, is continuous on z = A,
we obtain

(32} J‘ lsl (Azena,h —C;e""*')-{-s,(B;e"'!" —-D;e""’=")+sl Clc""""+ s;D;e"’""I
0

xm3J,(mr)dm =0 (allr),

and since this is true for all r, the Hankel inversion theorem implies the vanishing of the
integrand, i.e.

(3.3) s,(Aze™ P —Cre~™%)+5,(B,e™:* —D,e~™*) 5, Cie ™" 45, D e~ ™ = 0.
Similarly, the continuity of », and o,; on z = k and the condition (2.7) yield
q,(A,c""l*-'i-C,c""l")+qz(82e""='+D,e""=*) —q,Cie™*4+q,De~™ =0,
(3.4) py(Aze™*+Cye~™¥)+p,y(B,e™* + Dye ") —p, C,e~ ™" —p, D, e~"* = 0,
5181(—Ae™ " 4 Cre~™M) 4 5, 2.(—B,e™* + Dye ™% —5, g, C,e-™*

1
—5382 Dy et = b= § p#(m).

with the notations

I

qi = si(a33d—2a,30)—a44,
(3.5) pi = l—as},
g =c—dst, i=1,2.
From Egs. (3.3) and (3.4), we get
Az(m) = e="**pH(m)/[2m*ds, (s —sD)],
B;(m) = e~"*"p%(m)/[2m>ds,(s3 —s})),
Cy(m) = e*™s*p(m)/[2m>ds, (s} —s3)]+ C,(m),
D,(m) = e*™s*p"(m)/[2m>ds,(s3—s3)]+ Dy(m).

(3.6)
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3.2. Boundary conditions on the plane z = 0

From the conditions (2.8) that ¢,; = 0 for z = 0+, 0 < r < ro, While for r > ry, 0,,
is continuous on z = 0, it follows that o,, is continuous on z = 0 for all r, The argument
for the continuity of g,, for all r is similar to that of ¢,,. We have two supplementary
relations for determining the amplitude functions giving

As(m) = As(m)+ i 2 Cum+ L. 22 b (m),
S5y =5, DM
3.7
By(m) = By(m )+—z+ L Dy(m)+ 22 Ly,

We have to determine the functions C, and D,. The remaining boundary conditions
on z = 0 are valid either for 0 < r < r, or for r > ro and necessarily give integral equa-
tions. From the continuity of the displacements u, and u, over the surface for rzro,
there result respectively:

f [s:p1 C2(m)+5,p; Dy(m)m?Jo(mr)dm = 0,
0

(3.8) rosr<+om,
- 4]

[ [ Ca(m)+ p, Do (m)lms, (mrydm = 0,
0

while the conditions (2.8) lead respectively to

- p"(m)
15181 C2(m)+ 5,8, D>(m)— (g, ~™* —g,e~™4*) _“'—;] m*Jo(mr)dm =0,
,ol' [s 81C2(m)+5,8,D,(m)—(g,€ 8¢ Im3d(s? —53)

39 f[plc,(mmm,(m)
0

+(pyssem* —p,s e~k ___1';(_*31)__] m*J (mr)dm =0, 0<r<r,.
2m3y/ d (s} —s3)

We have obtained two coupled pairs of dual integral equations for the remaining two
amplitudes C, and- D,.

3.3. Solution of the integral equations

Equations equivalent to Egs. (3.8) and (3.9), but expréssed entirely in terms of J,
rather than J, and J,, may be obtained as follows. First, using the relation J, = —1J,,
Eq. (3.9); may be written as

H
(3.10) a‘!; ) [A(m)-l-(plsze—m,l_pzsle-mah) E;F:/%:)—si] m3Jo(mr)dm = 0
0 1792

where
(3.11) A(m) = p,C;(m)+p; Dy(m),
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and after integration

i SR i )
(3.12) J [A(m)+(p, sye"™" —pys e Em] m*Jo(mr)dm = C

O<sr<ry,

where C is an unknown constant to be determined later. To express Eq. (3.8), in a similar
form, we differentiate with respect to r and make use of Bessel’s differential equation for
the zero-order function. We obtain

[+ ¢]
(3.13) [ Amm*Io(mrydm =0, ro<r< +o.
0

However, while Eq. (3.8), implies Eq. (3.13), the converse is not necessarily true.
If the analysis is reversed, Eq. (3.13) implies

bt ’

(3.19) f A(m)m*J (mr)dm =—Cr—, ro<r< 40w,
0
where C’ is a constant of integration. Equation (3.8), imposes the condition C’' = 0 and
provides a means for determining C.
The final integral equations for solution are Egs. (3.8), (3.9),, (3.12), and (3.13).
The last two equations are dual integral equations of the unknown function A. If we
introduce a supplementary function y such that

1
(3.15) A(m) = }?of cos(mt) x()dt,

the condition (3.13) is identically verified. The condition (3.12) can be reduced to an
Abel integral equation:

3 2 42y-1/24; -ma, —m3k p"(m)
(3-16) '.!.x(‘)(r ~t ) !d! = C—af (PnSze *—p2$;C )m Ja(mr)dm.

The following solution for which is

H
@17 x(1) = —[ f (pys2e~™* —p,s e"'"*)—i-'?%(—(?)——— cos(mt)dm ]
Using Eq. (3.15), we get
_2C .. J(m)
(3.18) A(m) = pem Sln(mro)— r—ﬂw s
where

(3.19) J(m) = f [f(s,p,e axh —slp,e""'=")p"(¢)cos(a!)da]cos(mt)dt.

my/di (81 -2

7 Arch. Mech. Stos. or 3/81
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It remains to impose the eondition (3.14) with C’ = 0 for determming .C." Finalily. we
obtain

(3.20) A(m) = [I(m)—J(m)])/m>(s +52),
where I(m) is given by

(321)  Im)=

1 sin(mrg) P ab g y da
e ] et e @sinero 3

Inserting A(m) into Eqgs. (3.8),~(3.9),; and re-arranging, we obtain two dual integral
equations of the function C,:

f [(31 —53)p; C2(m) —s,A(m)+ (g, e ™" —Sze-"’*), Fﬂgf__’((—.?—f)—:ﬁ)] m*Jo (mr)dm = 0
0

(3:22) ' O<r<ry,

[ s =52)p1 Co(m) —s, A(m)Im*To{mr)dm = 0 (ro < r < +00).
0

We introduce a new function £ such that
£
(3.23) (51 =500, Cam) —s,A(m) = — [ E@)sin(mo)dt,
0

with £(0) = 0. Thus the condition (3.22), is identically satisfied and Eq. (3.22), gives an
Abel integral equation:

; ' 231244 = b —ms, —msy p(m™)
(3.249) !E(I)(}'z—l‘ ) R4y = —OJ' (me "-g;e h) m ml o(mr)dm,

the solution for which can be written as

(3.25) &@t) = W(:;Tg) f (g e~™** —g,e~"4")p¥ (m)sin(mt)dm.
o

Substituting from Egs. (3.25) into Egs. (3.23) and (3.20), we obtain finally

1
C;(m) = ——r— 18 I(m) —s,J(m)—K(m)],
(3.26) . m Pl(sl -52)
; 1
P = g5
where the functions I, J, K depend on the loading and the geometrical parameters
following the notations (3.19), (3.21) and the relation

[s21(m) —s,J (m) —K(m)],

(327) K(@m)= m! [! (glc‘“‘*"—g‘;e""")p”(m)sin(dt)da] sin(mt)dt.
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The displacement and stress distribution can be directly calculated from Eq. (2.4)'b_y
using the potential function ¢ defined by Eq. (2.12) on each part £, on which the ampli-
tude functions are given by Egs. (3.1), (3.6), (3.7) and (3.26).

4. Calculations
4.1. Stresses and displacemeats on the crack plane

As an illustration, we calculate the displacement u, on the plane z = 0. Using the results
of Sect. 3, we find this displacement on the crack for an arbitrary loading:

@D w0, = [ (samye=mnt s, me ey m) 3 omr)

1
AYd(s-s2)y

dm
m

o
SyP29; —S52P192 J‘ ik = N M :
+ Sapie” T —§ paeT m)sin(mr,

2f(3i —S%)(S; —Sz)l"o J ( 2P 1P2 )P ( ) ( 0)

F __ﬁnd(sgﬁ_—sg) ! [J. (gic"'""'—g;e""*)?“(m)sin(mt)dm] (12 —r?)-Y2ds,

with the supplementary notations
f = [d-a0)ly3,
(4.2) g = (a1, —a2)(1 =b)(s: +52)/f,
my = fq,—~(5:P29s =224V dpif(s, =s5),  i=1,2.

The upper and lower signs correspond to the faces z = 0, and z = O_ of the crack,
respectively. '

The boundary of the crack is stress-free. For the region r > ro, we calculate the norma,
stress and the shear stress. We obtain

43 0,0 = gz p [ (e gae ) p ) o(mrymam
1 2 H

(=)

ad(st—s3)

f (31 e —ms.h —gze -ﬁtab)pﬂ(m)sin(mo)dm
0

* D f | [ f (86" —gae~m4)p(m)cos(mt)mdm| (-2 ~12)-112d1,
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g"?z Tlts 4 flr/-g(hl f(s;p e~k —s, pe=m k) pH (m)J, (mrymdm
ro(r? —rg)~'2 i = [sm(mro} ]
myd(si—sdry f(zP ¢ S1p2e™"") e cos(mro) | p®(m)dm

“l/d(sl—srz)r f [f (524 """"*‘“51P:e“"'"')P"(m)sm(mt)mdm]

x t(r2 —t2)-12de,

4.2. Stress Intensity factors

For further discussions of interest in Fracture Mechanics, we can calculate the different
stress intensity factors defined by the limits

kl = lim [27;(" —’o)]man(", 0)’

(4.9) k, = lim+[2:fr(r—ro)]”’ar,,(r, 0),
k; = lim [2x(r—ro)]"'zo'¢,(r 0) =

From these definitions and the relations (4.3), we deduce

kl.=

7;;7—‘(5,—_5) [ @e=mt—gae-hyp*mysin(mro)m,
5 051 —S52
f (s2pe~™ " —s,p, e""I")[w;—“) cos(mr.,)] pH(m)dm.

by = —or—
l/“rod(sx _52)

This solution makes it possible to calculate the stress intensity factors in the case of
two loads p and p’ applied on each side of the crack at the distances 4 and 4’. From the
principle of superposition we have the new factors by using for each k; the expressions (4.5):

- ki = ku(p, )+ a2, ),
' ks = ka(p, ) —ka(p', ).

For equal and symmetrically spaced loads, we remark that the factor k, is double the
value given by-Eq. (4.5) and the factor k, is zero. These expressions are in good agreement
with the results obtained in a previous paper [5].

When the loads are applied directly on the crack’s surface, we have A = 0 and we de-
duce for the last case

ky =

]/m_ f p®(m)sin(mro)dm,
0

(4.7) kz = k3 = 0.
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It is important to remark that the result depends on the loading p(r) applied on the
crack ‘'only through its Hankel transform p®(m). Thus the elastic coefficients of the material
do not appear in the formula (4.7) and therefore every result already existing for the stress
intensity factors in an isotropic medium can be readily generalized to a transversely iso-
tropic medium when the loads are applied on the crack’s surfaces. This is surely not true
when A is different from zero.

5. Special loading: point force

The expressions (4.3) and (4.5) of the stresses and stress intensity factors give closed
form results for the usual loading geometries (uniform loads over a disc, concentrated
ring load, point force, ...). Specially, for a force of magnitude P acting at the point
(0,0, 4), we obtain the following results, utilizing p®(m) = P/2x:

5.1. Vertical displacement on the crack plane

On the crack surface (0 < r < rg):

G u(r,0%) = 505~y {mfd

519241 — 520192
2f(sy—$2)ro

F 4 q,(r? +s=hz)_uz aretg ]/_r%i _gz(,. +5 ;,z)_m arctg r,—rz }
nd t 12+ s2h? ’+s e

In the exterior of the crack (r, < r < o0):

[s.m,(r*+s3h?)- 1*”—slmz(r +52h%)-11%]

[s2py arctg (ro/s h) — s, p, arctg (ro/s2h)]

(52) u(r,0) = [s24,(r*+s1h?) =112 —5,q,(r* + s3h?) =117

25"‘(52 5:) =2|/d

S1P2h T8 ey rT" [s2p, arctg (ro/s, h)—s, p2 arctg (ro/s2h)]

nf(sy —s2)ro
2
e 2*(:_1)3: [ | arotg ST E ST st —rd) ]}
2af Y d(s, —s2) -~ s(r2+sth2)t2 2roSih(r? + s2h?) 2 (r2 —r2)i1

The maximum width w of the crack is at r = 0 and is given by
w = u,(0,0,)—u,(0, 0_
53) (0, 0,) —u,( )
—Pq q: ro £ ]
= = t =
22— | sh " 5h T sk T sk
In order to illustrate the variation of u,, and u,_ over the crack, these quantities have
been calculated for various values of . The results are plotted in Figs. 2 and 3. [In these
figures there are curves for two anisotropic materials — thallium and cadmium — and
an isotropic one having » = 0.25].
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A
h/g=10.
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Fic. 2. Crack’s opening as a function of the load's distance for thallium:
ag = 1.04-107*8I, a,, = —8.1- 107%,a;3 = —1.2-10"%, a53 = 3.25- 10-°, O4s = 1.38-10-%,

THALLIUM ——

CADMIUM ——
ISOTROPIC ~---

~ 2Ruyr,/Pq —

0 1 ) 2

o

FIG. 3. Crack’s opening for various materials. (Cadmium: a,;, = 1.22- 10~° SI,
ay; = -*1.15' lo-lﬁ' ayz = -8.7- 10‘“'. ay3 = 3.34" lo". Jag = 5.01- 10-’].

[426)
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12
THALLIUM —

1 CADMIUM ——

‘ ISOTROPIC -~~~

n-l

N

2(mry) "k,

FiG. 4. Variations of the stress intensity factors k, and k.

5.2, Stress intensity factors

P

= 3oy d(si —sp L& +sth?/rd)" +g,(1+s3 b [rd) "],

ky
(5.4)
P

ky = 2mre)2d(si —53) [I/ESzPa arctg (ro/s, h)—Y/ds, paarctg (ro/s;h)

__Pihirg ” Pahro ]
1+ sih?/r} 1+s3h2/r |

Putting s, = 1+ie and 5, = 1—ie in the relation (5.4) and letting ¢ approach zero,
we get the solution for the isotropic case given by Kassir and SiH [8]. Figure 4 shows the
variation of the factors as a function of &/r,.
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