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Stress distribution in a transversely isotropic solid containing 
a penny-shaped crack 

Notations 

a,J 
a,b,c,d, 

M. DAHAN (~ALAISEAU) 

AN AXiALLY syi:nmetric stress distribution inside an infinite transversely isotropic elastic solid 
containing a penny-shaped crack is treated. It is -assumed · that the load is concentrated on ·one 
internal disc lQCated at a tinite distance from the crack. ~ anal~l .solution is pTCSCnted for . the 
disl)lacement ·and stress distribUtion and for the stress intensity factors. Closed form solu­
tions are · siveil for the case of a point force as well a8 curves of numerical results~ showing the 
influence of this type of ~sotropy. 

Rozwai.ono przypadek osiowo-symetrycznego rozkladu napr~nia . WCWJUltrz nieskonczonego, 
poprzecznie izotropow,ego ciala sp~zystego zawieraMcego szcze~ koloM~. Zaloiono, 2:e ob­
ci~nie rozloione jest na powierzcbni kola znajdujatcego si~ W· skol\czoncj bd1egtoaj ·od szczeliny. 
Prz.edstawiono rozwi~e analityczne dla rozkiadu nap~ i przemieszczefl oraz dla wsp6t­
czynnik6w intensywnoSci na~nia. Rozwi4zania zamkni~ otrzYmano dla przypadku ob­
ci~a skupio~go, j~ rownieZ przedstawiono wyznaczone numerycznie wyk.resy obrazujflce 
Wplyw przyj~teiO rodzaju anizotropii. · · · · · · 

PaccMoTpCH cnyqaA ocecuMMeTpHtliioro · pacnpe~eneBWI HaiiJ)JDKCIIBJI BHYI'PH 6eaKoue'IHOro, 
DOIICpelDIO HseTpOIDIOI'O ynpyrol'O TeJI&, co.qcp>IQlBDiel'O J<pyroByJO ~. Ilpe.zuiOJIO>KCBO, 
~ H&rp)'3K& pacnpe.Q~eJDl B8 DOBepXHOC'l'H Kpyra, HBO~CI"'CJJ B J<O~ClDIOM p&CC'IOmDIJI 
OT ~eJIH. llpe.QCTaBJieHo IIIIJIJIHTINeCJ pemeime AJU1 p~eneBWI mmpJDKemd: H nepe­
Me~neHHA:, a T8191<C .IVV1 J<~~CRTOB BJITeHCBBHOCTH Blliipml<eBWI. 38Ml<IJYTWe peDICHHJI 
DOJI}"IeBLI NUl CJiyqaJI cocpe.QO'f01IeHHOi HUpY3KJ1, 1(81( TO>Ke . Dpe,QCTaBJleHial, onpe.QeneBJI&Ie 
'IHCJieBHO, ABarpllMMhl, o6pasyJOJlUIC s~e npBJIJl'l"'ro po.Qa llHR30TpoiiHB. 

elastic coefficients of' the anisotropic medium, 
constants of the material (2.6), 
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constant of the matorial (4.2), 
constants of the ·material (3.5), 
distance crack-loading, 
integrals defined in (3.19), (3.21) and (3.27) 
stress intensity factors, 
Bessel functions, 
constants of the material (4.2), 
body force, 
Hankel transform of p(r), 
constants of the material (3.5), 
constant of the material (4.2), 
cyli.odrical pOlar coordinates, 
radius of the crack, 
co~tants of the material (2.14), 
components of displacement, 
muiOHJm width of the crack. 
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stress and strain components, 
partition of the space (2.13) 
potential function of the Love type. 

1. Introduction 

THE STRESS distribution inside an infinite isotropic elastic solid containing a penny-shaped 
crack opened by pressure applied directly over its surface in a symmetric or asymmetric 
fashion was first considered by SNEDOO~[l] and, subsequently, by GREEN and ZERNA. (2] 
and CoLLil'S (3]. 

When two symmetric body forces were concentrated on two surface~ situated at the 
same finite distance from the crack, the stress intensity factor was calculated by SNEDOON 
and TWEED (4] for an isotropic material and by DA.HA.N [5] for a transversely isotropic 
one. This paper examines the behaviour of a crack embedded in an infinite medium with 
transverse isotropy and deformed by an asymmetrical loading which is concentrated on 
one disc located at a finite distance from the crack. 

l. Formulation of the problem 

We consider an infinite elastic solid containing a penny-shaped crack of radius r0 given 
by z = 0 (0 ~ r ~ r0), where (r, (), z) are cylindrical polar coordinates. The center and axis 
of the crack are respectively the origin and z-axis. We assume that the medium is charac­
terized by transverse isotropy, with respect to the z-axis. Regarding the opening of the 
crack by an axially symmetric loading concentrated at an interior disc of the infinite solid, 
located on the plane z = h (cf. Fig. I), we denote (u,, 0, Uz) the components of the displace-

FIG. 1. Diagram of the problem. 

ment field, (0',, 0'88 , O'z.:, O'n) the nonzero components of the stress tensor and 
(e,, eo8, eu, e,z) the components of the strain tensor. Then the strain-stress relations for 
the transversely isotropic solid can be defined by 

(2.1} 

e, = au O',+at 2 O'oo+at 3 O'zz, 

Eoo = a12 d,+au O'oo+a13 O'zz, 

e%% = a130',+atJO'oo+a330'zu 

E,z = a...,...,O',z, 
where a 11 , a12 , a13 , a 33 , a 44 are the five independent elastic coefficients of the medium. 
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STR1181 . DISTIUBtmON IN A TRANSVERSELY IIOnOPIC SOLID 417 

For ,axisymmetric problems,. the governing equations are completed by the following 
equilibrium equations: 

(2.2) 
oar% oau . O'n 0 ---ar + -a%." + -,- = . 

and the conditions of com .. tibility: . 

. . a 
(a11 -a12) (arr-aee)-ra,(a 12 arr+a11 aee+a13 au) = 0, 

(2.3) . 
i)2 o2 . . . lJ2ar, 

oz2 (au O'rr+at20'ee+a13au)+ or2 (a130'rr+auaBO..-+aJJO'u)-a •• orlJz = 0. 

· Using a potential function of the Love type [6, 7] for the representation of the stress and 
displacement fields such that 

a ( o2
' c a, o2

f ) 
flu = a~ c or2 + r ar +d oz2 ' 

a ( a2, 1 a, a2, ) 
a rl = or or2 + r Or +a "(}z 2 ' 

(2.4) 

. . . a", 
ur = -(1-b) (a11 -a12) lJroz , 

( 
a2, 1 a,) a2,. 

u, = a.. iJr2 + r or + (a33d -2a13a) oz2 ' 

the three equations (2.2). and (2.3) of elastostatics in the absence ofbody forces are iden­
tically satisfied. Equation (2.2)2 is ec:tuivalent to 

( o
2 

1 a )2 
. . o2 (· o2 . 1 a ) . a•, 

(2~5) lJr2 +-;·a, 9'+(a+c) az2 iJr2 + 7 ot: . f+d oz• = 0. 
. ..... . ' j . . ' . 

The constant a, b, c, d are defined by 

(2.6) 

a = a13(au -au)/(au tJ33 -a~,), 

b = [au(a13 +a •• ) -a • .zaJsl/(au a33 -a~;), 

c = (au(au -au)+au a.u]/(ait a33 -a~3), 

d = (a f. -a:2)/(a11 a33 ~a~~). 

The solution of Eq. (2.5) :has to ·satisfy the , boundary conditions as follows: lf p(r) 
is the loading on the plane z = ·h; the presence. of body ·forces implies the continuity of 
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418 M. DAHAN 

displacement'S u,, U1 and shear stress«,, and the discontinuity of normal stress u,~ ·following 
the condition 

(2.7) lim [au(r, h-e) -a.u(r, h +e)] = p(r), 
a-+0+ 

where pis an arbitrary function so defined for r ~ 0 that the Hankel transform of order 
i:ero p8 exists. 

Over the plane z = 0, the stresses and displacements are continuous in the exterior 
of the crack (r0 < r < oo); the boundary of which is stress-free, i.e. the stresses au and O',z 

take prescribed values over the surface of the crack so that 

(2.8) 
au(r, 0) = 0, 

a,(r, 0) = 0, 
0 ~ r < r 0 • 

·For the remaining boundary conditions, it is assumed that the components of stress and 
displacement vanish as. (r~ +.z2) 112-. oo. 

In order to solve Eq. (2.5), we introduce the Hankel transform of order zero, .1f'0 , 

defined by 

(~.9) 

a: 

Jt'0 [q>(r, z)] = q>8 (m, z) = J rq>(r, z)J0(~r)dr, 
0 

where lo is the Bessel function 'of zero order of the first kind. 
·: Thus the solution of Eq. (2.5) can be represented by· 

(7.10) 
00 

q>(r, z) =Jt'; 1 [ql'(m, z)j = J mq>8(~, z)J0(mr)dm, 
0 

_where q>8 is the solution of the differenti&I equation 

(2.11) 
d4 B dl H 

d-tp--(a+c)m2 ~+m"q>l{ = 0. 
dz4 dz 2 

We find for the potential function 
00 

m(r z) = J [A (m)e+'1 ''"+B (m)e+•l"'z+C (m)e-s1 "'
1 +D (m)e-•l•z]J (mr)mdm, (2.J 2) T ' . 0 l . . . . I . l . . : . l 0 . 

(r,z)eD,, I= 1,2,3, 

where A, B, c, D, defined on each !J, are amplitude funotions to be determined from 
the boundary conditions and D1 are three parts composing the whole sj>ace as follows: 

D1 = {(r,z):re!l+, h < z < +oo}, 
(2.13) !J2 = {(r; z):r e !l+, 0 < z < h}, · 

·!J3 = {r, z):r e !l+, -oo < z ·< 0}. 

The constants s1 and s2 depend O:Qiy on the coefficients defined in Eq. (2.6) and ate 
characteristics of the material. We have 

(2.14) 
,sl = [(~:~.+.c+y(a+c)2 -44) /2d]'.12

, 

s2 = '[(a+c- y'(a+c)2 -4d)/2d]'12
• 
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Sruss DISTRIBUTION IN A TRANSVERSELy mcnltOPIC SOLID 419 

3. Solution of the problem 

In order to solve the problem completely, i.e. to determine the function rp continuous 
by parts on each D1, we have to .·eatculate the twelve functions A, B, C, D,. To thls 
end we take into account the boundary conditions on the planes z = h arid z = 0 and the 
conditions at infinity. 

The displacement components .vanish at a large distance (r2 +z2
)

1
'
2 from the origin 

so that 

(3.1) 
A1 (m) = B1(m) = 0, 

C3(m) = D3(m) = 0. 

3.1. 8cMmdary ~ on tile JIIMe z = b 

The presence of body forces yields four a.Jgebraic relations connecting the amplitudes. 
Typically these are derived as follows. From the condition that u,. is continuous on z = h, 
we obtain 

00 

(3.2) J [s1 (A 2 e"'s•" -C2e -ms1")-t. s2(B2 e''15~" -D2 e-"'5211)+s1 C 1 e-"'5111 + SzD1 e-"''z"I 
0 

x m3J1 (mr)dm = 0 (a~l r), 

and since this is true for all r, the Hankel inversion theorem implies the v~ishing of the 
integrand, i.e. 

(3.3) St (Ale••·" ...-Cle-... •")+sl(B2e1111211 -Dze-"''a")+st cl e-···" + s2Dl e-••2
" = 0. 

Similarly, the continuity of u, and u, on z = hand the condition (2.7) yield 

qt (A2e••·":rc2e-"''•")+q2(B2e,...211 +D2e-••a")-qt C1 e-•·'"+q2Dt e-·~ -= 0, 

(3.4) Pt (Ale•'•" + C2e-"''•")+ P2(B2e••2"+ Dle-"''211
) -Pt C1 e-"''•" -p2D1 e-"'"11 = 0, 

StKt ( -A2e"''•" + Cle-"'''11)+s2g2( -Bze111
'

211 + Dle- 111
'

211
) -StKt Ct e-"''211 

with the notations 

(3.5) 

q1 = sf(a33 d -2a13a) -a44 , 

p1 = 1-asf, . 

g1 = c -dsf, i = 1, 2. 

From Eqs. (3.3) and (3.4), .we get 

A2(m) = e-"''111p8 (m)/[2m3ds1 (sf -si)], 

B2(m) = e-••211p8(m)/[2m3ds2 (s~ -st)], 

cl (m) = e+ 1111111p8 (m)/[2m3ds1 (sl -s~)]+ C2(m), 
(3.6) 
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420 .M. DAHAN 

J.l. Bouadary coadldoas on the plue z = 0 

· From the conditions (2.8) that au = 0 for z = 0±, 0 ~ r < r0 , while. for r ~ r0 , an 

is continuous on z = 0, it follows that an is continuous on z = 0 for all r, The argument 
for the continuity of (J,: for all r is similar to that of C1.::· We have two supplementary 
·relations for determining the amplitude functions giving 

· · st+Sz 2st · P2 
AJ(m) = A 2(m)+.-- Cz(m)+ --·- D2(m), 

St -Sz St -s2 Pt 
{3.7) 

We have to determine the functions C2 and D2 • The remaining boundar.x conditions 
on z :;: 0 are valid either for 0 ~ r < r0 or for r ~ r0 and ·necessarily give integral equa­
tions. From the continuity of the displacements IJr and U: over the surface for r ~ r0 , 

there result respectively: . . . . . ' . . . . . 

(3.8) 

CO 

J [s2Pt Cz(m)+.~tP2D2(m)]m3J0(mr)dm = 0, 
0 

00 

J [Pt C2(m)+p2D2(m)]m3J1(mr)dm = 0, 
0 

r0 ~ r < +oo, 

while the conditions (2.8) lead· respectively to 

[ [s1g1 C2 (m)+s 2 g2 D2(m)-(g1 e-•••' -g,e-•••') 2m:;~;~s~) J m•Jo(mr)dm = 0, 

CO 

(3.9) [ [p1C2(m)+p2 D2(m) 

+(p1 s,e-•••'-p2 s1e_.,,, 
2 

.~~m! ')Jm4Ji(mr)dm = 0, 0 ~ r < r0 • 
. m s1 -s2 

We have obtained two coupled pairs of dual integral equations for the remaining two 
amplitudes C2 and · D2 • 

3.3. Soludoa of the Integral equadoas. 

Equations equivalent to Eqs. (3.8) and (3.9), but expressed entirely in terms of J0 

rather than J0 and J1 ~ may be obtained as follows. First, using the relation J0 = -J., 
Eq. (3.9)z may be written as 

(3.10) . - J A(m)+ (p s e-"'"• 11 -p s e-.. ,") p (m m3J (mr)dm = 0, d CO[ . H ) J 
dr • 2 2 • 2 3 .!":id( 2 2) o 0 m fU'St -S2 

where 

(3..11) A( m) = Pt C 2(m) + Pz Dz(m), 
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STRUS DISTRIBUTION IN A TRANSVERSELY ISOTROPIC SOLID 421 

and after integration 

(3.12} 

(0 ~ r < r0), 

where C is an unknown constant to be determined later. To e~press Eq. (3.8)2 in a similar 
form, we differentiate with respect to r and make use of Bessel's differential equation for 
the zero-order function. We obtain 

00 

(3.13) J A(m)m4J0 (mr)dm = 0, r0 ~ r < + oo. 
0 

However, while Eq. (3.8)2 implies Eq. (3.13), the converse is not necessarily true. 
If the analysis is reversed, Eq. (3.13) implies 

oo C' 
(3.14) J A(m)m31 1(mr)dm =-, r0 ~ r < +oo, 

o r 

where C' is a constant of integration. Equation (3.8)2 imposes the condition C' = 0 and 
provides a means for determining C. 

The final integral equations for solution are Eqs. (3.8)1 , (3.9)1 , (3.12), and (3.13). 

The last two equations are dual integral equations of the unknown function A. If we 
introduce a supplementary function x such that 

(3.15) 

ro 

A( m) = ~3 J cos(mt) x(t)dt, 
0 

the condition (3.13) is identically verified. The condition (3.12) can be reduced to an 
Abel integral equation: 

The following solution for which is 

00 

(3.17) x(t) = ! [ C- [ (p1s2e-"'••-p2s,e-••·•) 2¥~~;~.1) cos(mt)dm J. 
Using Eq. (3.15), we get 

(3.18) 
2C . · J(m) 

A(m) = --4 sm(mr0)- 3 ( ) , 
nm m s1 +s2 

where 

ro oo 

(3.19) J(m) = J [ J (s2 p1 e-cu111 -s1p2 e-«'211)p8 (ct)cos(cxt)dcx] cos(mt)dt. ny d(s1 -s2) 
0 0 

7 Arch. Mcch. Stos. nr 3/81 
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422 .M. DAHAN 

It remains to impose the eondition (3.14) with C' = 0 for determining .. C.#. Finally we 
obtain 

(~.20) 

wllere /(m) is given by 

(3.21) 

Inserting A(m) into Eqs. (3.8)c(3.9)1 and re-arranging, we obtain two dual integral 
equations of the function C 2 : 

CO 

[ [ (s 1 -s.)p1C.(m) -s1 A (m)+ (g1 e -••·• -g2 e -•••'), 2m':.:~;~-s~)] m4 10 (mr)dm = 0 

(3.22) (0 ~ r < r 0), 

00 

J [(s1 -s2)p~ C2 (m)-s1A(m)]m3J0{mr)dm-= 0 (r0 ~ r < +oo). 
0 

. . 

We introduce a new function E such that 

(3.23) 

ro 

(sl -s2)P1 C2(m)-s1A(m) = ~3 J ·E(t)sin(mt)dt, 
·0 

with '(0) = 0. Thus the condition (3.22)2 is identically satisfied and Eq. (3.22)1 gives an 
A bel integt'@.l equation: 

, 00 

(3.24) J ~'(t)(r2 -t2
)-

112dt = - J (61( e-••·• -g2 e-... •') 2d'f.~7~B~sD mJ0 (mr)dm, 
0 0 

the solution for which can be written as 

00 

(3.25) . -1 f z:(t) = (g e-"'1'
11 ..:..g e-"''211)p8 (m)sin(mt)dm 

~ nd3f2(st -si) 1 2 • 
0 

Substituting from Eqs. (3.25) into Eqs. (3.23) and (3.20), we obtain finally 

(3.26) . 
I 

D2(m) = 3 ( 2 2) [s2 /(m)-s2J(m}-K(m)], 
m p2 s2 -s1 

where the functions I, J, ·x depend on the loading and the geometrical parameters 
loHowing the notations (3.19), (3.21) and the relation 

(3.27) I((m) = nd•l•(! 
1 
-s,) { [ j (g 1 e _.,,, -g. e _.,,.)p"( ex) sin( at )d<X] sin(mt)dt. 

0 0 
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STIU!SS otsTIUBunON . IN A TRANSVERSELY ISO'l'ROPIC SOLID 423 

· The displacement and stress· distribution .can be directly calculated from Eq. (2.4) by 
using the pOtential function ·rp defined by Eq. (2.12) on each part D, on which the ampli- · 
tude_functions are given by Eqs. (3.1), (3.6), (3.7) and (3.26). 

· 4. Calculations 

4.1. Stresses and dlsplaceiiMilts oa tbe track plane . ~ •. . ~ 

As an illustration, we calculate the displacement Uz on the plane. z = 0. Using the results 
of Sect. 3, we find this displacement on the crack for an arbitrary loading: 

00 

(4.1) u,(r,O.) = V 1 J (s2 m1 e--·• -s1m2 e-•••')p8 (m)J0(mr)dm 
2/ d (s~ -si) 0 . 

with the supplementary notations 

f = (d -ac)/y .. d, 

(4.2) q = (a 11 -a12)(1 -b)(s. +s2)/f, 

m, = fq,-(stp2qt -s2P1 q2) ydp.f(st-s2), i = 1, 2. 

The upper and lower signs correspond to the faces z = 0+ and z = 0_ of the crack, 
respectively. 

The boundary of the crack is stress-free. For the region r ~ r0 , we calculate the norma, 
stress and the shear stress. We obtain 

.(4.3) 

ro oo 

+ ~d() -sl) J [ J (gl e-•s1
• -gle-••211)p8 (m)cos(mt)mdm] (r2 -t2)- 1 ' 2dt~ 

1 2 0 0 

7* 
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4~ M.D~ 

00 

(4.3) a (r 0) = 1 J (s p e-••,., ....:s p e-••a")p8 (m)J (mr)mdm 
rz ' 2 Id( 2 2) 2 1 1 2 1 

[cont,) J S1 -s2 
0 

ro oo 

-----J [ J (s2P1 e-"'''" -stple-"'"z")p8 (m)sin(mt)mdm] nv d(sf -s~)r 0 0 

4.1. Stress lnteaslty factors 

For further discussions of interest in Fracture Mechanics, we can calculate the different 
stress intensity factors defined by the limits 

k1 = lim[2n(r -r0)]1' 2au(r, 0), 
r .... r~ 

(4.4) k2 = lim [2n(r -ro)]112a n(r, 0)' r .... r: · 
k3 = lim [2n(r-r0)]112a8z(r, 0) = 0. 

r .... rt 

From these definitions and the relations ( 4.3), we deduce 

(4.5) 

k2 = 
1 J00

(S2p1e-""''"-s1p2e-••2")[sin(mro) -cos(mro)]p8 (m)dm. 
y nr0 d(sf -sD 0 mro 

This solution makes it possible to :calculate the stress intensity factors in the case of 
two loads p and p' applied on each side of the crack at the distances h and h'. From the 
principle of superposition we have the new factors by using for each ki the expressions ( 4.5): 

kl = k.(p,h)+k.(p',h'), 

k2 = k2(p, h)-k2(p', h'). 
(4.6) 

For equal and symmetrically spaced loads, we remark that the factor k1 is double the 
value given by· Eq. ( 4.5) and the factor k2 is zero. These expressions are in good agreement 
with the results obtained in a previous paper [5]. 

When the loads are applied directly on the crack's surface, we have h = 0 and we de­
duce for the last case 

(4.7) 

00 

k 1 = .. ! 
2 J p8 (m)sin(mr0)dm, 

f nro o 
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STRESS DISTRIBUTION IN A TRANSVERSELY ISOTROPIC SOLID 425 

It is important to remark that the result depends on the loading p(r) applied on the 
crack 'only through its Hankel transformp8 (m). Thus the elastic coefficients of the material 
do not appear in the formula ( 4. 7) and therefore every result already existing for the stress 
intensity factors in an isotropic medium can be readily generalized to a transversely iso­
tropic medium when the loads are applied on the crack's surfaces. This is surely not true 
when h is different from zero. 

5. Special loading: point force 

The expressions (4.3) and (4.5) of the stresses and stress intensity factors give closed 
form results for the usual loading geometries (uniform loads over a disc, concentrated 
ring load, point force, .... ). Specially, for a foree of magnitude P acting at the point · 
(0, 0, h), we obtain the following results, utilizing p8 (m) = · P/2n: 

5.1. V erttcal displacement on tbe crack plane 

On the crack surface (0 ~ r ~ r 0): 

(5.1) Uz(r,O±) = - 2p --r- ·{-.1 - [s m (r2 +s2 h 2)- 11~-s m (r2+s2h2)- 112] 2n(s1 -s2 ) 2jJid 2 1 1 • 2 2 

q [ V r2-r2 . V 7z_,z ]} +- q (r2 +s2h2)- 1
'
2 arQtg ·. - 0

--- -g (r2 +s2h2)- 1
'
2 arctg --.--0'---nd • 1 . ,:z + s~ h 2 2 2 r2 + s~ h :z • 

In the exterior of the crack (r0 ~ r < oo): 

(5.2) uz(r, 0) = -
2 
(~ 2-) {--v'1_ [s 2q 1 (r2 +s~h2)- 1 1 2 -s1 q 2 (r2 +s~h 2)- 1 1 2] 

n s1 -s2 2 d . _ 

· s. P2q1 -s2P1 q2 . ro 
+ if( ) arcsm- [s2P1 arctg (r0 /s1 h) -s1 P2 arctg (r0 /s2 h)] 

n s1 -s2 r0 r . 

2 . . 

s1p2q1 -s2p1q2 2 ( -l)ip, [ n r~(r2 +sfh2)-sfh2 (r2 -r~) ]} 
+ - +arctg . 

2nfy' d(s1 -s2) 1 = 
1 

s,(r2+sfh2)1
'
2 2 · 2r0 s1 h(r2 +sfh2)1 1 2(r2 .-r~)1 12 

The maximum width w o£ the crack is- at r = 0 and is given by 

W = Uz(O, 0+) -Uz(O, 0_) 
(5.3) 

-Pq [ q1 r0 g2 r 0 ] = 2d( 2 2) -h- arctg -h- - -h- arctg -h- . n s1 -s2 s1 s1 s2 s2 

In order to illustrate the variation of uz+. and u,_ over the crack,-thes~ quantities have 
been calculated for various values of h. The results are plotted in Figs. 2 and 3. [In these 
figures there are curves for two anisotropic materials -:-thallium and cadmium -and 
an isotropic one having v = 0.25]. 
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FIG. 2. Crack•s opening as a function of the Joad•s distance for thallium: 
~u = 1.04 · to-• SI, au = -8.t · to-•, a13 = -1.2 · 10-9 , a33 = 3.25 · to-•, a~ = 1.38 · 10-•. 

8 I 

THALLIUM 
CADMIUM 
ISOTROPIC 

h/r0 = 2. 

0~--------------L-~----------~ 0 2. 

No~ 3_. C~k's opening for Various materials. (Cadmium: a 11 = 1.22 · to-• SI, 
au = -LIS· 10-•o, au = -8.7 · t0-10, a33 = 3.34 · to-•. a£4 = 5.01·10-9). 
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FIG. 4. Variations of the stress intensity factors k, and kz. 

5.2. Stress lnteulty factors 

(5.4) 

k1 = 2( )lf~( 2 l) [-gt(I+sfh2 /r~)- 1 +g2(.l+slh 2 /r~)- 1 ], nr0 s1 -s2 

k, = 2( )'''~( 2 ') [vds2P1 arctg (rofs. h)- y'dstplarctg (ro/s2 h) nr0 s1 -s2 
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Pt h/ro P2h/ro ] 
- 1+s~h2 /r~ + 1 +s~h2/r: · 

Putting s 1 = 1 + ie and s2 = 1- ie in the relation (5.4) and letting e approach zero, 
we get the solution for the isotropic case given by KASSIR and SIH [8). Figure 4 shows the 
variation of the factors as a function of h/r0 • 
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