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On the dynamic spaces and on the equations of motion
of nonlinear nonholonomic mechanical systems

A. SZATKOWSKI (GDANSK)

REGULARITY of nonlinear nonholonomic mechanical systems is discussed. A lumped mechanical
system is called here the regular one, if the dynamic space of the system, i.e., the space plaited
of the solution curves, equals the whole configuration space of the system — the space defined
by the constraints imposed on accessible positions and velocities of the system, and the system
has a well defined dynamic equation. Shrinkage of the configuration space can be easily observed
among the electrical networks where one can find simple constructions of nonregular systems.
However, except the lumped mechanical systems which exhibit some kind of discontinuous
modes, the well-posed mechanical systems which are of practical interest are the regular systems.
Thus, the conditions ensuring regularity and proved here for a broad class of mechanical systems
are of special importance. It has been also shown that holonomic systems are regular, and hence,
the examples of nonregular mechanical systems are among the nonholonomic systems. Hence,
much attention has been paid to nonholonomic systems. A general procedure for finding the
space of motion and the dynamic equation of a nonregular mechanical system is proposed. The
description presented is the extension of the theory initiated in the area of electrical networks.

Dyskutowana jest regularno$é nieliniowych nieholonomicznych ukfadoéw mechanicznych. Uktad
mechaniczny (o stalych skupionych) jest okreslany jako regularny, jezeli jego przestrzen dyna-
miczna, tzn. przestrzeri wyznaczona przez wszystkie trajektorie ukladu, jest identyczna z roz-
szerzong przestrzenia konfiguracyjna ukladu, przestrzenia wyznaczona przez wiezy nalozone
na dopuszczalne polozenia i predkosci. W okresleniu regularnosci wymaga sie tez, aby uklad
mechaniczny posiadal dobrze okres$lone rownanie dynamiczne. Efekt zwegzenia przestrzeni
konfiguracyjnej jest obserwowany wérod ukladéw elektrycznych o stosunkowo prostej struktu-
rze i gladkim przebiegu trajektorii. Ukiady mechaniczne, z wyjatkiem tych, ktére wykazuja
pewnego typu nieciaglosci rozwigzan, sg ukladami regularnymi. Podane zostaly warunki za-
pewniajace regularnos¢ dla szerokiej klasy ukiadow. Wykazano, ze ukiady holonomiczne sa
zawsze regularne. Szczegélnie wiele uwagi poswiecono wiec ukiadom nieholonomicznym.
Przedstawiona zostata ogdlna metoda wyznaczania przestrzeni dynamicznej i rownania ruchu
nieregularnego ukladu mechanicznego. Podane w pracy sformulowanie stanowi rozwinigcie
analogicznych rozwigzan zainicjowanych w ramach teorii sieci elektrycznych.

O6cy ) aeTcsi peryasipHOCT HeJIHHEHHBIX HErOJIOHOMHUECKHX MEXaHHUECKHX cucTem. Mexa-
HHYEeCKasg CHCTeMa (CO COCPeZOTOYEHHLIMM IIOCTOSIHHBIMH) OIPENCIIAeTCA KaK peryJifgpHas,
€CJIK ee IMHAMHYECKOe IIPOCTPAHCTBO, T. 3H. IPOCTPAHCTBO, ONIpeaesICHHOe BCEMH TPAaeKTOPHA-
MH CHCTEMBbI, HACHTHYHOE C PaCLUMPEHHBIM KOH(HIYPALMOHHBIM IIPOCTPAHCTBOM CHCTEMBI,
MPOCTPAHCTBOM ONpeeNIeHHbIM CBSA3AMH, HAJO)KeHHbIMH Ha [OIIYCTHMbIE IOJIOMEHHA M CKO-
poctit. B onpepenennn peryisipHocTH TpeGyercst ToyKe, uToObI MEXaHHYeCKasi CHCTEMA MMesIa
XOpOIIO ONpeAeeHHoe AMHAMHUYECKoe ypaBHeHHe. DPQeKT CyKeHHs KOH(UIYPAIMOHHOrO
MPOCTPAHCTBA HaOJIOAeTCsA CPeaM 3JICKTPHUECKHMX CHCTEM CO CPaBHHTENIFHO IPOCTOH CTPYK-
TYpPOH M TJIAJKUM XOJOM TpaeKTOpHHM. MexaHuuecKne CHCTeMbI, 32 HCKIIOUEHMEM TeX, Ko-
TOopble 00JIAJAI0T HEKOTOPOTO THINA paspbIBAMH pPELIeHHH, ABJAIOTCA PEryispHbLIMH CHCTe-
mamu. Ilpusenens! yenoBusi, obecnieunBaroie pervisipHOCTh IS MFPOKOTo KJIACCA CHCTEM.
Hokasaﬂo, YTO TOJIOHOMHYECKHE CHCTEMBI BCerja peryjspHbIe. OCOGEHHO MHOI'O BHHMaHUA
TTOCBAIICHO K€ HErOJIOHOMHYECKHUM CHCTEMaM. HPCIICTBBJIGH Oﬁl].(Hﬁ METoN onpcnenem{ﬂ on-
HaMHYECKOro MPOCTPAHCTBA U YPABHEHUS [IBHIKEHHA HEpPEeryIApPHON MeXaHWJeCKOW CUCTEMBI.
IlpuBenennas B paGoTe opMyIHMPOBKA COCTABIIAET PAa3sBUTHE AHATIOTMUHBIX DAaCCY>KIOCHHM,
Hayasio KOTOPBIX MPUBENEHO B PAMKAX TEOPUHM JIEKTPHUECKHX CETEel.
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1. Introduction

IN THE PAPER lumped mechanical systems composed of a finite number of material particles
Py, P,, ..., P, and observed in a fixed inertial reference system R*x R, are considered.

The extended configuration space (the Newton state space [6]) of a mechanical system
A is a subset W, defined by the constraints in the position-velocity space R3?x R34 of
the system. In the general case, when the constraints are nonholonomic, the extended
configuration space of a mechanical system would have the structure of a fibre bundle
embedded in R3?x R [3]. The configuration space of the system A is the projection of
the extended configuration space W4 of /1 on the position space of A [cf. [1], [6]].

The dynamic space . 4 of a mechanical system /1 (the space of motion of A) is a subset
of the extended configuration space W, plaited of the solution curves of the system. The
system A is said to be regular if the dynamic space .# 4 of A equals the entire extended
configuration space of A and the system has a well-defined dynamic equation on .# .

Shrinkage of the (extended) configuration space can be easily observed among the
electrical networks where one can find simple constructions of nonregular systems (cf.
[7, 8]). However, apart from the lumped mechanical systems constructed in such a way
as to exhibit some kind of discontinuous modes [5], the well-posed mechanical systems which
are of practical interest are regular systems.

We concentrate our attention on regular systems in Sect. 4 where the conditions en-
suring regularity of a mechanical system are proposed.

Nonregular mechanical systems are discussed in Sect. 3 where a general procedure for
finding the dynamic space and the dynamic equation of a mechanical system is proposed.
And in the Appendix, a general theorem is proved, the Theorem A.4, which says that the
dynamic space of a mechanical system /1 is the set union of all invariant submanifolds
of the extended configuration space of /. An example of a nonregular mechanical system
is included in Sect. 4 of the paper.

The d’Alembert principle, in its version assuming the dual reactions algorithm [6],
serves as the basis for the considerations. The concept of the d’Alembert space, intro-
duced in Sect. 2.2, expresses in purely geometric terms the contents of the d’Alembert prin-
ciple, and it is very useful when the problem of finding the dynamic space and the dynamic
equation of a mechanical system is considered.

2. Basic definitions. The d’Alembert space of a lumped mechanical system

The set # = (2, P,, ..., P,) is given, ¢ being a natural number whose elements are
named material particles. Toeach?; € #,j =1, 2, ..., g, a positive constant m; is assigned,
called the inert mass of the particle 2;, and the quartet (x}, x7, x3, #) of variables being
the coordinates of #; in the chosen inertial reference system R®Xx R,.x], x}, x] are the
space coordinates of #; and ¢ is the time coordinate.

Setm = (m,, m,, ..., m,) for the masses vector.

Write R}? (we use the symbol A to denote the mechanical system) for Euclidean space
of points X = (X*, X2, ..., X%) = (x],x},x3, ..., x§, x2,x3) and call R3? the position
space of the mechanical system A observed in the fixed inertial reference system R* x R,.
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In () TR3? >~ R} x R*®, the position-velocity space of A (cf. [1, 6]), a subset W,
is given, which has the structure of differentiable submanifold of TR3?, and which additio-
nally has the structure of a fibre bundle W, = (W, py IWA(- ), N;) where N, is a differ-

entiable C2-submanifold of R3? and W, = ) (X, Ex) where Ex is a C'-submanifold
XGNA

of TxN 4, for each X € N,; [3]. px(-) is the projection map from TR onto R3?, and Iy, ,(*)
is the inclusion map, ly (): W,3 Y » Y e TRY.

We call the set W, defined by the constraints imposed on the space coordinates
X', X3, ..., X3 and velocity coordinates (?) ', %2, ..., 5*® of the set 2 of particles, the
extended configuration space of A. The set N, is the configuration space of the system .

A function F(*): TR3?> Y — R is also given, which defines the force acting in TR}

DEFINITION 1. A quartet A = (P, myq, Wy, Fu(°)), where (P4, my) = (P, m), is
called the lumped mechanical system observed in the fixed internal reference system R® x R,
and with perfectly smooth and scleronomic constraints. [

In the case when W, is the tangent bundle of N, (i.e., Ex = TxN,, for each X e N,;),
the constraints imposed on the space and velocity coordinates of the set 2 of particles
are the holonomic constraints.

A subsystem of the system A is defined in the following way.

DEFINITION 2. By a subsystem of a lumped mechanical system A = (P 4, mq, W, Fa(+)
we mean a quartet A' = (P4, my, Wy, F4( ) where W, is a subset of W,. [

In Definition 2 we do not demand that W; be endowed with the structure of a fibre
bundle.
2.1. Mathematical notes

Given a C!-function X(+): t = X(¢) € R3? defined on an open interval Dom(X(-)) in
R, corresponds to the function ¥( ) g DX(*):t = DX(t) € TR given by

. A d
Dom(X(:))at > DX(t) = (X(t), (IX)(O) ;

where (-j—t X) (t) € Ty, R3.
The function DX(-), or the corresponding parametrized curve in TR, is called the

lifting of X(-). The vector (dit X ) () is the velocity vector of the point X moving along

the trajectory of the system A corresponding to the function X( -), at time ¢.

(*) For M being a differentiable manifold, TM denotes the tangent bundle to M, and for each x € M,
Tx M is the tangent space to M at x (cf. [3, 4]).

(*) We write Y for a point from the space TR} >~ R¥XR*, Y = (X', ..., X%, 7", ..., %*9). In our
considerations the coordinates of a point Y € W, are defined as the coordinates of Y in the ambient space
TRY.

3 Arch. Mech. Stos. 2/90



154 A. SZATKOWSKI

The second tangent bundle of (the manifold) R}? is the tangent bundle T(TR3?) of the
bundle (the manifold) TR3? [1—3].(}) T?R}? is the trivial bundle,

T?RY =~ R¥PXRYx R¥x R,
Let Y(*) = (X, ) (1): t = TR} be a C'-function defined on an open interval in R,.
The function Y(-) corresponds to the function DY(+) given by

Dom(¥Y(-))at— DY(t) = (X(t) n(t), ( )(t) ( )(t))

[d .
where (-d? (X, n)) (1) € T .myRY?. And the C-function X(-) defined on an open interval

in R, corresponds to the function

Dom (X(-))>t » D*X(1) = (X(t) ( )(1‘) ( )(t) (dt2 )(t))

d d?
where ( 5 X, rE
corresponding parametrized curve in T?R}Y, is called the second lifting of X(-).

For Z being a point from T2R}4, the following symbols are used for the coordinates

of Z:

)(t)e T o Ra% (A;)=(5;X)(t). The function D2X(-), or the

= 1 3q 1 3g 1 3q £l 3q
(X:”'yX 2Ny M 763'":4- ;E’-“yE )-

r 2
&, ..., &% are the acceleration coordinates, and for Z(-) = D*X(-), &) = (—d )(t)

is the acceleration vector of the point X moving along the trajectory of the system A,
corresponding the function X( -), at time ¢.
As it has been assumed, the configuration space N, is an n-dimensional C2-submani-

fold of R}% Let us recall that (*) TN, = {(X, n) € R3¥x R*: there exists a C'-function
X(-): t = N, defined on an open interval in R, containing 0, such that X = X(0) and n =

= (jtx) (0)}A

The topological subspace TN, of TR3? ~ R37x R3? has the structure of 2n-dimensional
Cl-submanifold of R37x R34,
Let {(O., g.(-))}eca: A being a set of indices, O, an open subset of R3}? and
. ) a
g2(+) € C*(04, R*~™), be a family of constraints for N ;i.e., Uy = OunN, # ¢, | J U, = Ny,
acd

rank (Dgy)xeu, = 3g—n, and U, = {X € O,: g,(X) = 0}.(°) Then the equations

(*) In the paper we write T2R3? for T(TR}9).

(*) We consider the tangent bundle to the manifold in the sense of the space of tangent bundle.

(°) We use the symbol (Dg) (+) to denote the derivative of a map g(+) when the domain of g(-)
is an open subset in Euclidean space, while we use the symbol (dg) (- ) when the domain of g(+) is a general
manifold. If Dom (g(-)) = R™ and y = (xk1, ..., xk0), 1 < k; < ks < ... <k, < m, (Dyg) () denotes
the derivative of g(-) with respect to the coordinates x¥1, ..., xki.
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ga(X) = 0:
2.1) (Dga)x " =0,
where a € 4: (X, 7) € O, x R3 define the constraints for TN, in the ambient space TR,

The second tangent bundle T2N, is defined as the following subset of T?R3? =~
~ R¥¥x R¥*x R¥*x R%:

TN, = {(X, 1, £, &) e REIx R¥ x R¥ x R3: there exists a C*-function Y(-):t — TN,
defined on an open interval in R, containing 0, such that (X,n) = Y(0) and (£, &) =
d |
- (_d-t- Y)(O)] .

T2N, has the structure of 4n-dimensional (topological) submanifold of R3?x R37x
x R39x R,
Let N, be a C*-submanifold. The equations

8.(X) =0,
(2.2) (Dg)x- 1™ =0,
(Dga)x' CT = O,

(Dga)x - £T+(D%ga)x - (" x ") = 0,
where a € A: (X, 7, , £) € Oy x R¥x R* x R** define the constraints for 72N, in the
ambient space T2R3* ~ R3?x R* x R x R*, (The condition rank (Dg.)xev, = 39—n,
for each X e N, and « € 4: X € U,, ensures that Egs. (2.2) are locally linearly independent,
for each X e Ny and a € 4: X € U,).

Let us note that the coordinates of Y € TN, are defined here as the coordinates of ¥
in the ambient space TR}% and the coordinates of a point Z from T2N,, are defined as the
coordinates of Z in the ambient space T?R}% Physical (kinematical) interpretation of the
coordinates of Y€ TN, (and Z € T?N4, respectively) is the same as for the coordinates
in the ambient space TR}? (and T>R}?, respectively).

The contraction of the second tangent bundle is given by

TNy = {X,7,,,§) € T?Ny: L=}
For fixed (X, n) € TN, the projection pE(T(ZX_mNA) of T,,N4 on the space R
of points & is the affine subspace of all & in R*? satisfying
(2.3) (Dge)x - &7 = —(D?ga)x - (0" x71"),
where o« € A: X € U,. It is easy to see that p:(T%,,,N,) is the translation of the (linear)
subspace T,(TxN,) of R by the vector

249 (X, 1) = — (D)} [(Dga)x - (DgXI ™" (D?a)x " (7 x7")

from the orthogonal complement of the tangent space T,(TxN,) in the space R*? of vectors
&

Set M, = Diag(m,, m,, m,, ..., my, my, my). We shall see in the following that if
N, is the configuration space of a holonomic system A, then M, -£4(X, n) is exactly the
reaction force vector of the constraints W, = TN,, at the point (X, ) € TN,.

3=
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For a general nonholonomic system A = (24, m,, W, F4(*)), W, is a differentiable
submanifold of TN, with the additional structure of a fibre bundle above N,-Let

{(Og, hg(*)) }pen, B being a set of indices, be a family of (differentiable) constraints for
WA in Tqu.
The tangent bundle TW, is the set of points given by

TW, = {(X, 7,8, E) e REXR¥MX R x R*:  there exists a Cl-function Y(-) =
= (X, n)(*): t = W, defined on an open interval in R, containing 0, such that (X, n) = Y(0)
d
and ({, 8) = (E Y) (0)}-
For W, being a C?-submanifold, TW, has the structure of a C!-submanifold of
T2R3. The (locally linearly independent) constraints defining TW, are given by
hs(X,m) =0, peB:X,n)e0,,
(‘Dhﬁ)(xuﬂ) . (CT, ET)T = 07 (X! 1, Ea E) € O,Bx R3q X qu-
If W, =TN,, then TW, = T?N,.
The contraction TW, of TW, is given by
— A
TWA = {(X’ "],C, E) € TWA: C = n};
= A
Txx,pWa = {(C, HeTux,pWal =1}

2.2. The d’Alembert space of a lumped mechanical system

We consider a lumped mechanical system A = (2,4, m,, W,, F,(*)) observed in
a fixed inertial reference system R3 x R,, with perfectly smooth and scleronomic constraints.

DEFINITION 3. Let Y(-): (X, n)(-): t = Y (1) € W, be a function defined on an open and
maximal interval Dom(Y(-)) in R, containing 0.

The function Y(-) is the solution of the mechanical system A if it is differentiable, and

i. Y(-) = DX(-);

ii. for each t €e Dom(Y(-)), there exists a (reaction force) vector R = R(Y(t)) from
CL(T,Ex) (the orthogonal complement of the tangent space T,Ex to Ex at 7 € Ex in the
space R3 of vectors £) such that (°)

pe(DY() = Ma' (F4(Y®))+R(¥(1))). O

RemArk 1. For W, being the extended configuration space of a mechanical system
A = (P4, my, Wy, Fs(-)), we assume implicitly that: for every two points ¥’ and Y’
in W, there exists a force field F4,() in TR3? such that for some solution Y,(-) of the

system A, 2 (Pasmg, Wy, Fp (), Ys(t') = Y’ and Y,(t") = Y", for some ¢',t"
€ Dom((Y,(-)), and p;(DY (1)) = Mz!- Fq,(Y4(1), forall te [¢',¢"].

(°) Recall that M, = Diag(m,, m,, my, ..., mq, mq, mg) and pg(-) is the projection map from T2R}¢
on the space R3*? of vectors &.



ON THE DYNAMIC SPACES AND ON THE EQUATIONS OF MOTION 157

In other words, there is such a force field F, () which controls the state change of

A from Y’ to Y”, with zero reaction force along the corresponding trajectory from ¥’ to
Y. O

DEFINITION 4. The dynamic space M 4 of a mechanical system A (the space of motion
of A) is the following subset of the extended configuration space of A:

My = {Y € Wy there exists a solution Y(-) of A, such that Y = Y(0)}. O

Write £, for the set of solutions of A.

We consider the class of mechanical systems A = (24, m4, W, F4(*)) such that for
every system /A the dynamic space .# 4 of A is a differentiable submanifold of W (of TRY?),
and the motion of the system (evolution of the state in time) is the flow defined by a vector
field () on A, [4].

DEFINITION 5. Let the dynamic space M 4 of a lumped mechanical system A = (P4, my,
W,, F4(*) be a differentiable submanifold of W,, and let f(-) be a vector field on 4 4.
Assume that f(-) defines a flow o(-) on # 4.

We say that f4(*) v f(*) is the vector field generated by the system A on its dynamic
space M 4 if

UJ oY, ) =24 0O

YEv‘{A
The given vector field x(-) on a differentiable manifold M corresponds to the subset
2 =1m(x("))

in TM (the image of the map x(-)). If () is the C"-vector field on the C*-manifold M,
0 < r < k-1, then ¥ has the structure of the C"-submanifold of TM. Using this obser-
vation we obtain an equivalent version of the definition of the vector field, which is useful
in the following considerations.

DEFINITION 6. A vector field on the differentiable C*-manifold M is a subset ¥ of TM,
such that (p o I3)(), where L;(*): %3 (x, {) = (x, {) € TM, is the one-to-one map of %
onto M.

If in addition ¥ has the structure of the C’-submanifold of TM,0 < r < k—1, then ¥ is
the C"-vector field. [

(7) Let M be a differentiable C*-manifold, and let ¢ denote the vector tangent to M at some point
x € M. We recall that a vector field on the manifold M is a map x(-) of M into the tangent bundle (the
manifold) TM such that
20 = (x, 2 (x(x))),

for each x € M where Py(+) is the projection map, P(): TM 5 (x,0) = py(x,§) = { € TuM [3, 4].

If, in addition, x( ) is the C"-map, 0 < r < k—1, then (- ) is the C"-vector field.

A flow on M is, by assumption, a map o(+): U S M x R, - M, where U is an open subset containing
M % {0}, such that: o(x,0) = x, and a(x, t’'+1") = o(a(x, t'), t"") whenever both sides of the equation

are defined. It can be proved that every differentiable vector field on a differentiable manifold M defines
a flow on M.
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The vector field f;(-) generated by a mechanical system A corresponds to the subset

fi= U fa®)

YE.»”A

in TW, (in T# ). In view of Definition 6, £ is also called the vector field generated by
the system /1 on its dynamic space . 4.

REMARK 2. It follows from the definition of the solution and the definition of the vector
field generated by a lumped mechanical system /1 that

p(fa(X, ) = 7,
for each (X, n) € # 4 and
2.5) R =M, 'Pf(fA(Y))“FA(Y),

for each Y € A 4.

From Eq. (2.5) we obtain that for the system A which generates a vector field on its
dynamic space .# 4, the reaction force vector R remains unchanged, independently of the
choice of the solution ¥(-) of A passing through a given point ¥ € # 4. [

For fixed (X, n) € Wy, p,(-) is the projection map from R*? on T,Eyx (the tangent
space to the submanifold Ey of TxN, at the point 7 € Ey), and p, (-) is the projection map
from R*? on CY(T,Ex) (the orthogonal complement of T,Ex in R*?). For £ € R, p (8
and p, () are considered here as vectors in R*?.

The following definition of the d’Alembert space of a lumped mechanical system A is
of basic importance in our considerations concerning the dynamic spaces and the dynamic
equations of lumped mechanical systems.

DEFINITION 7. The d’Alembert space S, of a lumped mechanical system A = (4, m,,
W, F4(+)) is defined as the following subset of TW , (and hence, of T*R3%):

S={(X,n,0,H)eTW,: (=5 and p (M4 & =p,(Fa(X,m)}. 0O

ReMARK 3. Note that for a vector & € R*? there is a vector R € CL(T,Ey) such that
& = Mzt (F4(X, n)+R) if, and only if,

p(My- &) =p, (FA(X, ’7))
Thus the conditions i. and ii. in Definition 3 are equivalent to

(2.6) DY(t) € Sy,
for all t e Dom(Y(-)). O

REMARK 4. Let us consider the case when the dynamic space .#, of a lumped mech-
anical system A = (2, my, W, F4(-)) is a differentiable submanifold of W,, and .,
has the structure of a fibre bundle (.# 4, px o La 1(+)s Px(A 1)) Where: px(# 4) is a C2-sub-

manifold of Ny, #,= |J (X, Ey), and Ey is a C'-submanifold of TxN, with Dim
Xsp,(.dA)

Ex < Dim Ey. Then it follows from Definition 3 of the solution of a lumped mechanical
system that for each (X, n) € # 4, the available reaction force vector range remains boun-
ded to CA(T,Ey).



ON THE DYNAMIC SPACES AND ON THE EQUATIONS OF MOTION 159

From the above it follows that if A" = (2,4, m,, W4, F4(-)) is a subsystem of the
system A = (2,, my, W, F,(-)), one would take S, —the d’Alembert space of A, as
the d’Alembert space of the subsystem A’. [

3. The dynamic spaces and the equations of motion of lumped mechanical systems

In this Section we analyse the dymanic spaces and vector fields generated by lumped
mechanical systems. A general procedure for finding the space of motion and the dynamic
equation of a mechanical system is proposed.

The main conclusion, which is also valid for general dynamic systems, is the following.
The space of motion of a mechanical system /1 is the set union of all invariant submani-
folds of the extended configuration space of A. We prove this in the Appendix.

THEOREM 1. Let A = (P4, my, W,, F4(*)) be a lumped mechanical system which has
the dynamic space M 4 being a C*-submanifold of W,, and which generates a vector field
Fa(+) on A 4.

Then (%)

11 =8y
Proof. Let Y = (X,n) e #, Set Z=f,(X,n). It suffices to prove that Ze S,.
But Z = DY(¢), for some solution Y(-) of A, at some ¢ € Dom(Y (")), and DY(t) € S,,
for all ¢t € Dom(Y(-)). [
The regular systems are the most often considered class of lumped mechanical systems.

We except that aparat from the systems constructed as systems which exhibit some kind
of discontinuous modes, the well-posed mechanical systems are regular.

DEFINITION 8. A lumped mechanical system A = (P4, my, Wy, F4(+)) is said to be
regular if # , = W4 and if it generates a vector field on W . ]
Using Theorem 1, we get in conclusion the following theorem.

THEOREM 2. Let A = (P4, my, Wy, F4(+)) be a regular mechanical system.
If the d’ Alembert space S, of A is the vector field on W, (in the sense of Definition 6),

then
fA = SA' O

For nonregular lumped mechanical systems, we have the following theorem which
proposes a general procedure for finding the space of motion and the dynamic equation
of the system. We illustrate this procedure in the Example, Sect. 4 of the paper, where
a nonregular mechanical system is being analysed.

THEOREM 3. Let the projection py(S,) of the d’ Alembert space S, of a lumped mech-
anical system A = (#,,m,, W, Fs(-)) on the position-velocity space TR be a C'-sub-

(®) Let us recall that f; = Im(f,(-))  TH,.
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manifold of W4, and let S, be a C°-vector field on py(S.4):

8= 1) {rfe),

Yepy(S )
where f4(*): py(Sa)3 Y = fu(Y) € Ty(py(S,)) is @ CO-map.

If the differential equation %f— = f(Y) on py(S.,) has uniquely defined solutions, then

"”A = pY(SA)a
the system / generates a vector field f4( ) on M 4, and
f; = SA .

Proof. Note that py(S,) & W,. Since each solution Y(-) = ¥(Y,,-) of the differ-
ential equation % = f4(Y) (defined on py(S,)) satisfies the relation (2.6), for each
t € Dom(¥(.)), then each of them is a part of some solution of the system A.

It follows then that py(S,) S .

We shall now prove that .# 4 S py(S,).

Fix a point Y% € .# 4 = W,. It follows from the definition of the dynamic space of the

mechanical system /1 that there exists a solution Y(.) of A passing through Y° at ¢ = 0
and, by assumption, the function ¥(-) is differentiable. Thus we have a well-defined vector

d : -
2% &% = (E Y) (0) which is tangent to W, at the point Y°, and by the definition of the

solution of a mechanical system A, (Y°, £° &% e S,.

It follows then that Y° € py(S,) and hence #, S py(S,). O

In the Appendix we prove Theorem A.6 which is the extension of Theorem 3. It encloses
a multi-step procedure which enables to exclude these points in W, which are not in the
space of motion of the system /. Theorem 3 concerns only the case when .# 4 = py(S,)
and f:, = S

REMARK 5. Theorem 3 has the following extension which is useful in the considerations
in Sect. 4 where the example of the nonregular lumped mechanical system is analysed.
Let the projection py(S,) of the d’Alembert space S, of a lumped mechanical system

A on the position-velocity space of A have the structure of the set union | j W of
yel’

disjoint C'-submanifolds W of W,, I'— a set of indices, such that S, when restricted
to W™ is a C%vector field on W, for each y € I.

In such a case, if for each y € I" the corresponding S, differential equation on W
has uniquely defined solutions, then

M4 = py(Sa);
the system /1 generates a vector field f4(-) on .# 4, and

f.;:SA' O
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4, Regularity criteria for lumped mechanical systems

Regularity of a mechanical system is an important property of the system. Except for
the lumped mechanical systems constructed as systems which exhibit some kind of discon-
tinuous modes, the well-posed mechanical systems are regular (Definition 8). In this
chapter the conditions ensuring regularity of a lumped mechanical system are proposed.

We make the following standing assumptions for the extended configuration space
W 4 of a mechanical system /A and for the constraints defining W,,.

1. W, is a C2-submanifold of TR3%.

II. W4 has the structure of a fibre bundle W, = (W4, px © lw ,(-), N4), where N,

is an n-dimensional C*-submanifold of R3?, W, = |J (X, Ex), and for each X e N,
XeN 4

Ex is a C2-submanifold of TyN,.

From I and II it follows that Dim Ey = n—m for some number 0 < m < n, which
is constant for all X e N,.

II1. There exists a family {(O, g;( ) }sz, B being a set of indices, of C2-constraints
for W, such that for each e B and (X, n) € Oy N W, rank (D,gskx.,, = 3g—n+m.

IV. F4(-) € C\(TR3?, R39).

THEOREM 4. Assumptions 1-1V ensure that the lumped mechanical system A is regular.

Proof. At the first step, we shall prove that the equation

4.1) P (M- &) =PH(FA(X, "])) in 7TI'VA

has a unique solution with respect to £, for each (X, n) € W,, and that the solution is
a differentiable function of (X, ) € W,. And next we shall use Theorem 3 to obtain the
thesis (the system / generates a C!-vector field on 4 = W)).

From Assumption III it follows that for each point Y € W, there exists an open neigh-
bourhood Oy of Y in TR}? and a map h,(-): Oy - R?G4-m*m such that hy(.) defines
C?-constraints for W,n0,, and there is such a subsequence (F‘y, ...,I?%"‘"*"') (-) of
(hy, ..., h3=m+m)(.) that for each X° e py(Oy) hy(X°, -) defines CZ?-constraints for
Ey, in

P, ({(X,n) € Oy: X = X°}).

From the family {(Oy, #y(+))}vew, of the constraints defined above, one can extract

a countable subfamily whichﬂwe denote by {(0,, h,(-)) }yer, I — being a set of indices.
For each (X°, 7° € 0,, h,(X°, -) defines the constraints for Ex. in p,({(X,7) €0,:
X = X°)).

In what follows, the symbols O,, /,(-) and h,(-) have the meaning defined above.
The locally linearly independent constraints for the contraction TW, = {(X, 7, {, §)
€ TW,: { = n} of the tangent bundle TW, are given by

hV(X? 71) - 0;
(=1 =0,
(DqE)(x.n)' fr-f-(D,\(l;,)(x,,,,-rfr =0, yel'(X,n)e0,, X,n,(, &€ 0, % R¥x BT,
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For fixed (X, 7)€ WA,pé(T(x,n)WA) is an (n—m)-dimensional affine subspace of R3?
given by
4.2) (Dhy)x, - &7 = — (Dxhy)cx, " 1"
where y eI": (X, 7) € 0, p;(f'(x_,,)W,,) is the translation of the (linear) subspace T, Ey
of R* by (uniquely defined) vector £L(X, 7) from the orthogonal complement CH(T,Ex)
of T,Ex in R*; the vector £L(X, n) is given by the expression (°):
4.3) (X, n) = - (D,,I?,,)(Tx_,,) '[(quy)(x.r,) : (th‘y)(T-’(-v?)r1 : (‘DXE?)(XJ;) ' "TT

(rel':(X,n) e 0,,),

Equation (4.1) (in TW,) is equivalent to

4.4) PH(MA ' 5|[) = _P||(MA ' ‘51)'*'1711 (FA(X, TI));

where & is the tangent part of &, &, = p,(4), and &, is the orthogonal part of &;
&, = p, (&), and & = &L(X, n) is given by the expression (4.3).
Foreach Y = (X, n) € W, set

4.5) pa(Y) = —p, (M4 §L(Y))+p, (Fa(Y)),
and write Eq. (4.4) as
4.6) PH(MA : 5\;) = (7).

A point Z = (X, n, {, &) belongs to the d’Alembert space of the system A if, and only
if, Z € TW, and Eq. (4.6) is satisfied for &,: = p,(£).

Equation (4.6) has a unique solution at each ¥ € W, if, and only if, the d’Alembert
space S, of A is the vector field on W, (S, is then the C!-vector field generated by the
system A on its dynamic space .#, = W, — Theorem 3).

We shall prove now that there is a unique solution to Eq. (4.6), at each Y € W .

For this let us first observe that

4.7 pH(MA ) TﬂEX) = T, Ex,
for each (X, n) € W,.

In fact, suppose that Eq. (4.7) is not true for some (X°,7°) € W,. Then p,(M4- T, Ex)
is a linear subspace of T, Ex. with Dim(p (M- T, - Ex.)) < Dim(T, Ex.). There
exists then a vector & # 0in M- T, Ey.such that

(4.8) p)=0.
But §' = M- &, for some & € T, Eyo and £ # 0, and hence Eq.  4.8) implies
p(My-8) =0,

for some &€ T,,Exo and & # 0 (let us recall that & and & are considered as vectors

(°) The expressions (4.2) and (4.3) are the extension of Eqs (2.3) and (2.4) for the case when the
extended configuration space is a general fibre bundle, i.e., the constraints are nonholonomic.

Assumption III is in fact necessary for £1(X,7) to be well defined.

Let us also note that the condition (Dhy)x,, * (7", £€T)" = 0 may be written equivalently as

& Gpe("f;x. m)Wa).



F1G. 1. Geometric objects which are explored in the description of mechanical systems. Here the spaces

pe(?‘;x,q)WA), TyEx and CL(T,Ey) and the vector £L(X, 1) have been shifted to the tangent space Ty R3*
to make the illustration clear.

FIG. 2. A point ¥ = (X, n) from the extended configuration space W, belongs to the dynamic space of the

system A if there is such a vector R = R(Y)€ CL(TyEx) that Fo(Y)+R(Y) € ps(Tex, n,W4). For simplic-
ity, it has been assumed that m; = m;, = ... mg = 1.

[163]
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from R3%) which yields &+ M, - & = 0. This, however, is not possible because M, is the
strictly positively defined matrix.

From Eq. (4.7) we obtain in conclusion that Eq. (4.6) has a solution with respect to
&, ateach Ye W,.

Suppose now that Eq. (4.6) has two solutions &/, and &/, for some ¥ € W,. Then

py(Ma- (57-&))=0
and & — &, # 0 which is not possible.

Finally, then, Eq. (4.6) has a unique solution at each Y € W, and the thesis of the
theorem is proved. [

Let us now derive an explicit expression for the acceleration vector & = £(Y) of the
system /. We assume that the extended configuration space W, of A fulfils Assumptions
I-IIT and F4(-) is a C!-function on TR

For each Y = (X,n) e W, and yeI: Y € O,, (H,)x,, is defined as a (3¢—n+m)x
x 3g-dimensional matrix given by

49)  (Hy)x.,y = Diag(I(D,h)e,mll ™" - 1DRB4 ™ ol =) (D By)ex. s
the rows of (H,)x ., are versors in the subspace C1(T,Ey) of R, and rank (H,)x,, =
= 3g—n+m.

The matrix (G,), ,, is the Gram’s matrix of (H,)%,
4.10) G = (H)Gm (Hy)x. s
rank (G))x,, = 3¢—n-+m.

And next, define

& o (Gy)ur.n)] "My
(4.11) ;e
(Dq hv)(x.q)
foreach Y = (X,n)e Wyand yeI": Y € O,, and
wa(Y)
@.12) Pat)y=1| -+
0 13g—n+m

for each Y € W,,.

Equation (4.6) in TW, is equivalent to the following system of equations:
U= (G)ax.ml" Ms- & = pa(Y),

(Dnh_y)cx.n)' £=0,
with respect to £ in R*?. The assumptions ensure that the system (4.13) has a unique solu-
tion at each Y = (X, 5) € W, (see the proof of Theorem 4), and for fixed Y € W, the
solutions ¢ of the system (4.13) and &, of Eq. (4.6) are related by
§T) = §(M+E(Y),

where the orthogonal part £L(Y) of £(Y) is given by the expression (4.3).

Let us write (4.13) in a more compact form as

(4'14) (BT’)(X.YJ) : 5 = @A(Y)’ E € R3‘1’

(4.13) and
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where y e I Y = (X, ) € 0,, and observe that by the proved existence of a unique solu-
tion of Eq. (4.6), and hence by the existence of a unique solution of Eq. (4.14),

rank(B,),, = rank ([(By)(x.n) ;/"A(Y)]) = 3q

foreach Y = (X,n)e Wyandyel: Y€ O,.
We summarize the observations in the following Corollary.

COROLLARY. For a lumped mechanical system /1 satisfying the conditions specified

in Assumptions I-IV, the acceleration vector &(Y) = f4(Y),f4(-): = peo fu(+) is given
by the following explicit expression:

f;(X’ 17) = EH(X; 7])+EJ_(X’ 17):

where &, (X, #) is the vector £&4(X, %) given in the expression (4.3), and the tangent part
&,(X, m) is given by the solution of Eq. (4.14),

(4.15) (X, ) = [BGm (Bl ™ - My wa(Y).

We observe that the orthogonal part &, (Y) of f,(Y) is prescribed entirely by the con-
straints imposed on the space and velocity coordinates of the system,

ReMARK 6. Assume for a lumped mechanical system A satisfying I-IV, that
M3' - ys(Y) e T, Ex
for each ¥ = (X, n) € W,. Then the vector
E(Y) := Mz pa(Y)

is the (unique) solution of Eq. (4.14) (the expression (4.15) for the tangent part of the
acceleration vector reduces to & (Y) = Mz'- y,(Y)). O

REMARK 7. Assume for a lumped mechanical system A satisfying I-IV that
My - E4(Y) e CY(T, Ex),
for each Y € W,. Then
va(Y) = p (FA(Y)),

and
£,(Y) = Mz p (Fa(Y)).

In this case the orthogonal part of the acceleration vector does not enter the expression
for £,(¥). O

It has been assumed implicitly in the description of nonlinear lumped mechanical
systems presented in this paper that the constraints are able to create a reaction force which
has an arbitrarily large value (the only constraint for the reaction force vector is to be
situated in CL(T,Ey)). Thus, taking into account the results in Theorem 4, we obtain
in conclusion that the constraints defining the extended configuration space of a nonregular
lumped mechanical system must fail the condition in Assumption III.

In other words, the d’Alembert space S, of the system A causes shrinkage of the
extended configuration space W, to the proper subset of W, — the dynamic space .# 4
of A, in the case when the contraction operation applied to the tangent bundle TH 4
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yields
py(TW,) is the proper subset of W,,.

Let A be a lumped mechanical system such that Assumptions I, IT and IV are satisfiec
Let {(Og, 85(*)) }sep be a family of C?-constraints for W,. The equations defining th

Cl-constraints for TW,, are given by

gﬂ(Xs 77) = 0:
(4.16) {—m =0,
(D, g8)x.m° ET+ (Dxgp)x. ¢t =0,

where B e B: (X,n) € Op (X,n,(, §) € Opx R¥x R3*1 (let us note that the constrain
(4.16) are not necessarily locally linearly independent).
The system

4.17) (D,8)cx.my ET = —(Dx&)x.p" "

of 2(3q—n)+m equations does not have the solution with respect to & at the point (X, 1
eW, if

(4.18) rank[(D,2g)x, ] < rank[(D,gs)cx,n — (Dx&cx.m " 0"]-

These points (X, %) in W, where the relation (4.18) holds are not in py(TW,), and henc
they are not in the space of motion of the system 4.

For a holonomic system A, with the family {(Oy, g4(*)) }acs of C3-constraints for N,
the system (4.17) of equations reduces to

(4.19) (Dga)x - &7 = = (D’ga)x - (07 x1"),
where « € A: X € O, and 5 € Ty N,. By noting that the system (4.19) has a solution wit
respect to & at each (X, %) € W,, we obtain in conclusion that the smooth holonomi
lumped systems are necessarily the regular systems.

In the following example, a nonholonomic nonregular mechanical system is discusse«

EXAMPLE

Let us consider a system composed of two particles 2, and 2, having the inert masse
m, and m,, respectively. To simplify notations, we assume that both the motion of &
and 2, are one-dimensional.

Let the space coordinates x, and x, of 2, and 2,, respectively, and the velocity coord
nates 7j; and %, of #, and £,, respectively, be constrained by the equation

(4.20) M +n,—a)®—x;, =0.

Equation (4.20) defines the extended configuration space W, of the system A. In vie
of Eq. (4.20), W, has the structure of a fibre bundle W, = (W, px" IWA( ), N,,) whei

N, is the entire position space R} of 4, W, = | ) (X, Ey), and Ey is a one-dimension:
XeR3
affine subspace of TyR% given by

(4.21) N+n, = VX +a.

We assume that the system A is autonomous, i.e., F4(*) = 0.
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The equations defining the contraction TW, of the tangent bundle TW, are given by
(i +n2—a)*—x =0,
3:-(q+n—a)- (€ +&)—n =0,
and it is easy to see that for n, +7, = a and #n; # 0 the equation

(4.22)

3 (m +’72_¢1’)2 (€ +E) =y
does not have a solution with respect to &; +£&,.

A — . sz 15 g g
Thus W, = py(TW,) is the proper subset of W, and it is easily verified that W,
decomposes into two (disjoint) subsets W;, and W(;, where W(;, is a one-dimensional
submanifold of TR given by the constraints
xl=0’ "?1=Oa N = a,

and W(j, is a three-dimensional submanifold of TR} given by
X1 560, 7]1+772 =i/x71+a.

Both W(;,and W(;, have the structure of fibre bundles. The base space Nj, = px(W(1)

- - e A '} . ’ .
for W(,, is the x,-axis and N(1, = px(W(1,) is the complement of N(;, in R}. The fibre
Ey. above the point X’ = (0, x,) € Ny, is a zero-dimensional affine subspace of Tx.N(j,
given by
n = 0 and N, = a,

and the fibre Ey,. above the point X"’ = (x;, x;) € N(;, is a one-dimensional affine subspace
of Tx..N(y, given by Eq. (4.21).

X5 il‘ .
TX” N{”

l
z 17/7//7///%
N7

i
l 1 ny ’4 Exrf:r]7+i72=i\/)?+a

g‘} X 1

A IIIIII P4
- %
A
| Eiin=0,1,=a
?x'/—’
7

A W(T):)f;]:[?, f71=0) =0
|

i A =
F1G. 3. Geometric structure of the set W, = py(TW,); a = 0.5.



168 A. SZATKOWSKI

The d’Alembert space of the system A is given by
S.={X,n,7n,8¢€ TWA 2 p (M4 &) =0},
and it decomposes into two (disjoint) subsets S, and S :
S:i = fW(ll)
(the condition p (M- &) = 0 yields £ = 0, at each (X, 7)€ Plf(’l), which is identical to
the condition on & following from the constraint relations for TW{,,), and
Si = {X,n,n,8)e€ TW(I) imyc&—my & =0}
We then have that §, is the vector field on W(;, = py(S}) given by

4.23) Wi,5 Y = (0,x,,0,a) - [0,a.0,0]7 € Ty Wy,
-

and S/ is the vector field on W(j, = py(Sy) given by

7 my
(4.24) Wa 9Y=(x1:xza"71,772)—'['ﬂ1:"72a ——— "1,
@ 3(my+my) Y (x1)?
iy T 1y
el T € Ty W(l)'
3(my +ma) Y (x1)? ]
Using Theorem 3 (and also Remark 5), we obtain in conclusion that
My = Wiy

and S, is the vector field generated by the system A.
From Eq. (4.24), or using the expression (4.3), one has

1 | 71
EL(X,n)=3———'I---] for (X, 7m)e Wi,
63/ (o) i X7 w

and next, with the aid of Eq. (4.15) or directly from Eq. (4.24),

M1 Imz_mll
E (X, 7]) = — WY (N — ; for (X, ﬂ)EW‘; .
I 6/ (m+m2) |my—m, ie8

We note that &,(X, ) = 0, if m, = m,.

Recapitulating the considerations, we now have that the system A decomposes into
two subsystems according to py(S4) = Wi, u W(j,, and it is not a regular system because
# 4 = py(S,) is the proper subset of W,.

Let us now analyse the behavior of these trajectories of A, which start in Wy, and
tend towards W(,,. We consider the following two situations (it has been assumed that
my > m,).

Let Y° = (X°, 7°) be a point in W], such that x} > 0 and 7} < 0. Then there must
be 13 > 0, and from Eq. (4.24) one has &,(Y) < 0 and &,(Y) < 0. Thus both #,(?) and
72(t) decrease along the trajectory of A starting at Y°. The trajectory reaches W(,, in a
finite time where the value of 7, reduces immediately to zero, and #, becomes constant,
with the value equal to a.
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Also, for Y° in W/, such that x} < 0 and #? > 0, both #,(¢) and 7,(¢) increase in
time, and the corresponding trajectory of A reaches Wy, in a finite time.

In both situations one observes discontinuity in the motion of the system. The particles
starting in WY, and reaching W, behave as if they had been thrown in the direction of
the transporting band moving with a constant speed along the x,-axis in R3. [

E'TOGH H?‘;)

F1G. 4. Geometric structure of the space S, of the system A — the vector field generated by the system
A on its dynamic space .# 4 = W,,. It has been assumed that m; > m, and a = 0.5.

5. Conclusions

Regularity of nonlinear, nonholonomic mechanical systems was discussed, where the
mechanical system /1 was called a regular one if its dynamic space .# , (the space of motion
of the system) was equal to the entire state space (the extended configuration space) of
the system, and there was a well-defined dynamic equation describing the motion of A
on A 4.

This regularity definition applies fully to general dynamic systems, e.g., electrical
systems or control systems. The dynamic system 9 is said to be a regular one if the dynamic
space .# of the system equals the entire (extended) configuration space of the system,
and the system has a well-defined dynamic equation on .#.

Regularity has been found to be an important property of a mechanical system because
excluding systems which exhibit some kind of discontinuous modes, the well-posed mech-
anical systems are regular in the sense considered in the paper. The conditions ensuring
regularity of a mechanical system have been formulated in Sect. 4.

Nonregular systems have also been discussed. In Theorem 3 (Sect. 3 of the paper)
a general procedure for finding the space of motion and the dynamic equation of the

4 Arch. Mech. Stos. 2/90
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system has been proposed. The procedure has been illustrated in the Example, in Sect. 4,
where the nonregular mechanical system is being analysed.

And it was surprising for the author to find that it is not an easy task to find the example
of a nonregular mechanical system, such that no discontinuous changes in the x variable,
describing the position of the system, are observed. In this context the situation among
the electrical networks is quite different. One can find very simple constructions of nonre-
gular electrical networks [7, 8]. Such a construction is the electrical network built of two
capacitors connected in the circuit.

Several further generalizations concerning nonregular systems have been included
in the Appendix.

The d’Alembert principle was the basis for the considerations. The concept of the
d’Alembert space has been introduced and it has been found to be very useful when the
problem of finding the dynamic space (the space of motion) and the dynamic equation
of a mechanical system with both holonomic and nonholonomic constraints is considered.

Appendix

We will state several facts which are the generalizations of the results in Sect. 3 con-
cerning the spaces of motion and the dynamic equations of nonregular lumped mechanical
systems. The concept of (a locally vector-continuous) invariant submanifold is of basic
importance in the considerations.

DEFINITION A.l. For fixed Z° = (Y°,°, £°) € TW,, L., denotes a continuous vector
line in TW, passing through the point Z°. This means that:

j. if (2°, &%) = 0, then I, = (Y°, 0, 0), and

ij. if (L0, £°) # 0, then I, is a one-dimensional connected submanifold in TW . such

that: Z° €y, Iy, s py(lzo) is a one-dimensional differentiable submanifold of W,, lz,
is the graph of a continuous function lyo3 Y — (¢, &) (Y) € Tylyo, and (¢, &) (Y) # 0 for
all Y € Iy,.

(Thus Iz, is the vector line of the first kind j — the equilibrium point (Y°,0,0), or it is
the vector line of the second kind jj.). (]

In the considerations we need the following property of a subset of the tangent bundle
of a differentiable manifold.

DEFINITION A.2. We say that a subset B of TW, is locally vector-continuous if for each
point Z° in B there is a continuous vector line in TW , (the Definition A.1), which is contained
in B and passes through the point Z°. [

The projection py(B) of the subset B < TW, in Definition A.2 need not have the
structure of a differentiable submanifold of W ,.

THEOREM A.l. Let the subset B of the tangent bundle TW, of the manifold W, have
the following structure: for each point Y° € py(B) there is a differentiable submanifold S of
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W, contained in py(B), such that Y° € S and the set

Ms 2 B TsW,,

where TsW 4 . \J TyW,, is a C°-vector subbundle over S [see [3]] of the tangent bundle
YeS

TW ,, or Ms is a continuous vector field on S.
Then the subset B is locally vector-continuous.

Proof. Let Z°€ B, and let S be a differentiable submanifold of W, contained in
py(B) such that py(Z°) € S and the set Mg = BnTsW, has the structure assumed in the
text of the theorem. Then Z° € M and there is a continuous vector line in M, passing
through the point Z°. The conditions which ensure that B is locally vector-continuous are
then fulfilled. O

DEFINITION A.3. The differentiable submanifold H of the extended configuration space
W4 of a lumped mechanical system A is an invariant submanifold for the system A if

(A.1) py(S4nTH) = H.

The submanifold H < W, is the maximal invariant submanifold for A if:

1. H is an invariant submanifold for A, and

2. H is not a proper subset of the submanifold of W ,, which is invariant for A. O
We have the following theorem:

THEOREM A.2. If the dynamic space # 4 of a lumped mechanical system A is the differ-
entiable submanifold of the extended configuration space W, of A, then # 4 is an invariant
submanifold for /.

Proof. It suffices to prove that for each Y° € & ,, S, "Tyo M4 # .

Let Y(-) be a solution of the system A such that ¥(0) = Y°. Then DY(0) € S, Ty, W,
and noting that Im(Y(-)) & # 4, DY(0) € S, Tyo M 4.

Thus STy, # 4 # ¢. O

DEFINITION A.4. We say that an invariant submanifold H for the system A is locally
vector-continuous if the subset S,nTH is locally vector-continuous. [

THEOREM A.3. Let us assume for a lumped mechanical system A that every invariant
submanifold for A is locally vector-continuous.
Then H < M , for every invariant submanifold H for A.

Proof. Let H be an invariant submanifold for A and let ¥° be any point in H.
It suffices to show that there is a solution of the system /1 passing through the point Y°.

From the condition (A.1) defining the invariance of H we have that S,nTy. H # ¢.
Let (£° &°) be a vector in Ty, H such that (¥°, £°, £°) € S,nTy. H. By the local vector-
continuity of H there is a continuous vector line I, in S,nTH passing through the point
(Y°, 2% &°). For the differential equation dY/dt = f(Y), defined on the differentiable
submanifold /, = py(l,) in H and corresponding the vector line /y, there is a uniquely
defined solution ¥(-) satisfying the initial condition ¥(0) = Y°, and ¥(-) is a part of some

4%
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solution of the system A (¥( ) satisfies the conditions specified in Definition 3, except the
maximality condition on Dom(Y(-))). Hence Y° € #,. [

THEOREM A.4. Let us assume for the system A that every invariant submanifold for A
is locally vector-continuous.

Then the dynamic space # 4 of A is the set union of all invariant submanifolds of W,
for the system A.

Proof. By Theorem A.3, the set union of all invariant submanifolds for the system
A is the subset of the dynamic space of A.

Let Y° be a point in # 4. There exists a solution ¥( ) of the system A such that Y(z,) =
= Y°, for some #, € Dom(Y(‘)), and such that Im(¥( ‘) ,,) is a differentiable submanifold
of W, for some open interval At in R, containing #,. Since Im(¥(*) 4) is an invariant
submanifold for the system A, we have proved that each point Y° € .# 4 belongs to some
invariant submanifold for A. This completes the proof. [J

THEOREM A.5. Let us assume for the lumped mechanical system A, that every invariant
submanifold for the system A is locally vector-continuous, and let the dynamic space M ,
of A be a differentiable submanifold of W ,.

Then the dynamic space # 4 of A is the (unique) maximal invariant submanifold for the
system A.

Additionally, if the system A generates a vector field f4( -) on its dynamic space M 4, then

fa = SanT 4.

Proof. From Theorem A.2 it follows that the submanifold ., is an invariant
submanifold for the system /. Noting then that the assumptions of the theorem assure
that every invariant submanifold for the system A is a subset of .# ,, we obtain the first
part of the thesis.

We shall prove the second part of the thesis.

Fix a point Z° € S,nT.# 4. By the invariance of the submanifold .# , and the assumed
local vector-continuity of every invariant submanifold of W, for the system A, there
is a continuous vector line /, contained in S,N7.#, and passing through the point Z°.

For the differential equation dY/dt = f(Y), defined on the differentiable submanifold
lo = py(ly) in py(S.NT.#,) and the corresponding vector line /,, we have a uniquely
defined solution Y(-) satisfying the initial condition ¥(0) = ¥Y°, Y° = p,(Z°). Y(*) is
a part of some solution of the system A. And next, from the assumption that the system
generates a vector field on its dynamic space .#, (the vector field f;(-)), we obtain that
there is a continuous vector line 7 in j:, such that / = Im(ﬁY_( -)). Thus Z° = 15?(0) € f:t
and hence S,NT.# 4 < f;. On the other hand, from Definition 5 of the vector field gener-
ated by a lumped mechanical system /A we have that f; < S,NT.#,. Finally then,
Ja=SunTH, O

In the following Theorem A.6, being the extension of Theorem 3 of Sect. 3 of the
paper, a general multi-step reduction procedure is proposed, which enables to exclude
these points in W,, which are not in the space of motion of the system A. Let us note
that Theorem 3 concerns only the case when #, = py(S,) and f; = S,.
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We consider a lumped mechanical system 4 = (24, m,, Wy, F4(*)). Set W(o) =W,
and ?C‘(do) = SA.
THEOREM A.6. Assume that the following holds for the system A.

- A

. Wy = py(x,) is the differentiable submanifold of W 4.
Set xﬁ) = SAHTI;’V(I).

2. W 2 py(%y,) is the differentiable submanifold of W ,.

Set x5y = S,0TW .

~ A
3. For each k = 3, Wy, = py(xi_1,) is the differentiable submanifold of W 4.
Set x&) = SAﬁ TW(k).
Then, if for some k «{, is the C°-vector field on the submanifold W, and if the differential
equation dY|dt = f(,‘,(Y) corresponding to the vector field x, on W(k) has unique solutions,
then W, is the dynamic space of the system A and

far= U (Y, fw) =

YeW

is the vector field generated by the system A on its dynamic space M 4 = W y,.

Proof. Notethat Wy, S W,. Since each solution Y(*) = Y(Y°, -) of the differential
equation d¥/dt = f,(Y) (defined on W(k,) satisfies the relation (2.6) for each ¢ € Dom(Y(-)),
then each of them is a part of some solution of the system . It follows then that W, S .4 ,.

We shall now prove that ., S Wy,

Fix a point Y° € #, & W,. It follows from the definition of the dynamic space of the

mechanical system / that there exists a solution ¥(-) of A passing through Y° at t = 0
and, by assumption, the function Y(-) is differentiable. Thus we have a well-defined vector

dt
of the mechanical system, (Y°,f°) € S,.

It follows then that Y° € W,,, and hence, 4, S W,

Using the same arguments, we successively obtain that .#, < W(z), My S W(3,, :
and 4, = W(k).

Finally we then have that /#, S W(,‘, and hence 4, = W(,,,. (pbserve also that the
spaces W, and x4, ., r = 1,2, ..., are identical with the spaces W, and x{}‘), respec-
tively).

Noting that: the solutions of dY/dt = ﬁk,(Y) are defined uniquely, each solution of
dY/dt =J7(k_)(Y) is the solution of the system /1 and each solution of A satisfies the differ-
ential equation dY/dt = fy,(Y), we obtain that: the solutions of d¥/dt = fy,(Y) define
a flow on W(k) and f"A: = %, is the vector field generated by the mechanical system .1
on its dynamic space /4 = Wy, O

fo = (d Y) (0) which is tangent to W, at the point ¥° and by the definition of the solution

ey
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Observe that k = Dim W+ 1 is the maximal number of steps in the procedure descri-
bed in Theorem A.6 in the case when it is effective.

Let us also observe that for a lumped mechanical system A = (2,4, my, W, F.(°)),
the multi-step procedure described in the text of Theorem A.6 always ends at the first
step, if S, & T(py(S.,)), in every case when it is effective.
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