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On the dynamic spaces and on the equations of motion 
of nonlinear nonholonomic mechanical systems 

A. SZATKOWSKI (GDANSK) 

REGULARITY of nonlinear nonholonomic mechanical systems is discussed. A lumped mechanicaf 
system is called here the regular one, if the dynamic space of the system, i.e., the space plaited 
of the solution curves, equals the whole configuration space of the system - the space defined 
by the constraints imposed on accessible positions and velocities of the system, and the system 
has a well defined dynamic equation. Shrinkage of the configuration space can be easily observed 
among the electrical networks where one can find simple constructions of nonregular systems. 
However, except the lumped mechanical systems which exhibit some kind of discontinuous 
modes, the well-posed mechanical systems which are of practical interest are the regular systems. 
Thus, the conditions ensuring regularity and proved here for a broad class of mechanical systems. 
are of special importance. It has been also shown that holonomic systems are regular, and hence, 
the examples of nonregular mechanical systems are among the nonholonomic systems. Hence, 
much attention has been paid to nonholonomic systems. A general procedure for finding the 
space of motion and the dynamic equation of a nonregular mechanical system is proposed. The 
description presented is the extension of the theory initiated in the area of electrical networks. 

Dyskutowana jest regularnosc nieliniowych nieholonomicznych uklad6w mechanicznych. Uklad 
mechaniczny (o stalych skupionych) jest okreslany jako regularny, jei:eli jego przestrzen dyna­
miczna, tzn. przestrzen wyznaczona przez wszystkie trajektorie ukladu, jest identyczna z roz-· 
szerzon(l przestrzeni(l konfiguracyjn(l ukladu, przestrzeni(l wyznaczon(l przez wi~zy naloi:one 
na dopuszczalne poloi:enia i pr~dkosci. W okresleniu regularnosci wymaga si~ tei:, aby uklad 
mechaniczny posiadal dobrze okreslone r6wnanie dynamiczne. Efekt zw~i:enia przestrzeni 
konfiguracyjnej jest obserwowany wsr6d uklad6w elektrycznych o stosunkowo prostej struktu­
rze i gladkim przebiegu trajektorii. Uklady mechaniczne, z wyj(ltkiem tych, kt6re wykazuj<4 
pewnego typu nieci<4glosci rozwi<4zan, S(l ukladami regularnymi. Podane zostaly warunki za­
pewniaj(lce regularnosc dla szerokiej klasy uklad6w. Wykazano, i:e uklady holonomiczne S<\ 
zawsze regularne. Szczeg6lnie wiele uwagi poswi~cono wi~ ukladom nieholonomicznym. 
Przedstawiona zostala og6lna metoda wyznaczania przestrzeni dynamicznej i r6wnania ruchu 
nieregularnego ukladu mechanicznego. Podane w pracy sformulowanie stanowi rozwini~cie 
analogicznych rozwi(lzan zainicjowanych w ramach teorii sieci elektrycznych. 

06cy)l{)];aeTC.fl perymipHOCTb HCJlHHCHHbiX HCrOJIOHOMWICCKRX MCXaHRl:ICCKHX CHCTCM. Mexa­
HHl:ICCKa.fl CRCTCMa (CO COCpC~OTOl:ICHHbiMJ{ fiOCTOHHHbiMI!) onpe~CJIHCTC.fl KaK peryJIHpHaH, 
CCJIR ee ~HaMHl:ICCKOC npOCTpaHCTBO, T. 3H. npocTpaHCTBO, onpe~CJICHHOC BCCMH TpaCKTOpRH­
MI! CHCTCMbi, H~CHTRl:IHOC C pacml!pCHHbiM KOHqmrypaUl{OHHbiM npOCTpaHCTBOM CI!CTCMbl, 
npOCTpaHCTBOM onpe~CJICHHbiM CB.fi3HMH, HaJIO)I{CHHbiMI! Ha ~onyCTRMbiC fiOJIO)I{CHHH H CKO­
pOCTR. B onpe~eneHHH peryJIHpHoCTI! Tpe6yeTcH Tome, ~To6bi MexaHI!l:lecKaH cl!cTeMa I!Mena 
XOpOillO onpe~CJICHHOC ~aMRl:ICCKOC ypaBHCHHC. 3<iJcPCKT CY>KCHH.fl KOH<iJHrypal{HOHHOrO 
npocTpaHCTBa Ha6mo~aeTC.fl Cpe~H 3JlCKTpWICCKHX CI!CTCM CO cpaBHHTCJlbHO npOCTOH CTp)'K­
TypOH R rna~RM XO~OM TpaeKTOpHH. Mexalrnl:ICCKHC CHCTCMbl, 3a HCKJIIOl:ICHHCM TCX, KO­
TOpbiC o6na~alOT HCKOTOporo THna pa3pb1BaMH pemeHHH, HBJIIDOTC.fl peryJIHpHbiMH CRCTC­
MaMH. llpHBC~CHbl yCJIOBHH, o6ecneqHBaJOII.{I!e peryJIHpHOCTb ~Jl.fl illlfpOKOrO KJiacca CHCTCM. 
TioKasaHo, l:!To ronoHoMHl:leCKHe cl!cTeMbi acer~a perynHpHbie. Oco6emm MHoro BHI!MaHHH 
fiOCB.flll{CHO >KC HCrOJIOHOMHl:ICCKRM CHCTCMaM. llpe~CTaBJICH 061l{HH MCTO~ onpe~eJICHRH ~R­
HaMRl:ICCKOrO npocTpaHCTBa R ypaBHCHH.fl ~BR>KCHH.fl HeperymipHOH MCXaHWICCKOH CHCTCMbi. 
TipHaen;eHHaH B pa6oTe ¢opMynlfpoBKa cocrasnHeT pa3BRTRe aHanorHl:IHhiX paccy~eHH:H, 
Haqano KOTOpbiX npRBC~CHO B paMKax TCOpHR 3JlCKTpRl:ICCKHX CCTCH. 
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152 A. SZATKOWSKI 

1. Introduction 

IN THE PAPER lumped mechanical systems composed of a finite number of material particles 
fJ' 1 , fJ' 2 , ••• , 9 q and observed in a fixed inertial reference system R 3 x Rt are considered. 

The extended configuration space (the Newton state space [6]) of a mechanical system 
A is a subset WA defined by the constraints in the position-velocity space R3 q x R3q of 
the system. In the general case, when the constraints are nonholonomic, the extended 
configuration space of a mechanical system would have the structure of a fibre bundle 
embedded in R3q x R3q [3]. The configuration space of the system A is the projection of 
the extended configuration space WA of A on the position space of A [cf. [1], [6]]. 

The dynamic space .A A of a mechanical system A (the space of motion of A) is a subset 
of the extended configuration space WA plaited of the solution curves of the system. The 
system A is said to be regular if the dynamic space Jt A of A equals the entire extended 
configuration space of A and the system has a well-defined dynamic equation on .A A· 

Shrinkage of the (extended) configuration space can be easily observed among the 
electrical networks where one can find simple constructions of nonregular systems (cf. 
[7, 8]). However, apart from the lumped mechanical systems constructed in such a way 
as to exhibit some kind of discontinuous modes [5], the well-posed mechanical systems which 
are of practical interest are regular systems. 

We concentrate our attention on regular systems in Sect. 4 where the conditions en­
suring regularity of a mechanical system are proposed. 

Nonregular mechanical systems are discussed in Sect. 3 where a general procedure for 
finding the dynamic space and the dynamic equation of a mechanical system is proposed. 
And in the Appendix, a general theorem is proved, the Theorem A.4, which says that the 
dynamic space of a mechanical system A is the set union of all invariant submanifolds 
of the extended configuration space of A. An example of a nonregular mechanical system 
is included in Sect. 4 of the paper. 

The d' Alembert principle, in its version assuming the dual reactions algorithm [6], 
serves as the basis for the considerations. The concept of the d' Alembert space, intro­
duced in Sect. 2.2, expresses in purely geometric terms the contents of the d' Alembert prin­
ciple, and it is very useful when the problem of finding the dynamic space and the dynamic 
equation of a mechanical system is considered. 

2. Basic definitions. The d' Alembert space of a lumped mechanical system 

The set fJ' = (fJ' 1 , fJ' 2 , ••• , 9 q) is given, q being a natural number whose elements are 
named material particles. To each 9 i E fJ', j = 1, 2, ... , q, a positive constant mi is assigned, 
called the inert mass of the particle fJ'1 , and the quartet (xJ, xJ, xJ, t) of variables being 
the coordinates of 9i in the chosen inertial reference system R 3 x Rt. xJ, xJ, xJ are the 
space coordinates of fJ'i and tis the time coordinate. 

Set m = (m 1 , m2 , ••• , mq) for the masses vector. 
Write R~q (we use the symbol A to denote the mechanical system) for Euclidean space 

of points X = {X1
, X 2

, ••• , X 3q) = (x~, xi, xi, ... , x~, x:, xJ) and call R~q the position 
space of the mechanical system A observed in the fixed inertial reference system R 3 x Rr. 
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ON THE DYNAMIC SPACES AND ON THE EQUATIONS OF MOTION 153 

In (1) TR~q ~ R~q x R 3q, the position-velocity space of A (cf. [1, 6]), a subset WA 

is given, which has the structure of differentiable submanifold of TR~q' and which additio­
nally has the structure of a fibre bundle W A = (WA, Px o lw ( · ), NA) where NA is a differ­

A 

entiable C2-submanifold of R~q and WA = U (X, Ex) where Ex is a C1-submanifold 
X eNA 

of TxNA, for each X E NA [3]. Px( ·)is the projection map from TR~q onto R~q' and lw A ( ·) 

is the inclusion map, lw A(·): WA 3 Y-+ Y E TR~q. 

We call the set WA, defined by the constraints imposed on the space coordinates 
X1

' X 3
' ... ' X 3

q and velocity coordinates (2) 'YJ
1

' 'Yj 2 ' ••• ' 'Yj
3

q of the set f!jJ of particles, the 
extended configuration space of A. The set NA is the configuration space of the system A. 

A function FA(·): TR~q 3 Y-+ R 3q is also given, which defines the force acting in TR~q. 

DEFINITION 1. A quartet A = (&'A' mA, W A' FA(·)), where (&'A, mA) = (f!JJ, m), is 
called the lumped mechanical system observed in the fixed internal reference system R 3 x Rt 
and with perfectly smooth and sc/eronomic constraints. 0 

In the case when WA is the tangent bundle of NA (i.e., Ex = TxN,~h for each X E NA), 
the constraints imposed on the space and velocity coordinates of the set f!}J of particles 
are the holonomic constraints. 

A subsystem of the system A is defined in the following way. 

DEFINITION 2. By a subsystem of a lumped mechanical system A = (&' A• mA, W A' FA(·)) 
we mean a quartet A' = (&'A' mA, W~, FA(·)) where W~ is a subset of WA. 0 

In Definition 2 we do not demand that W ~ be endowed with the structure of a fibre 
bundle. 

2.1. Mathematical notes 

Given a C1-function X(·): t-+ X(t) E R~q defined on an open interval Dom(X( ·)) in 
.:1 - ... 

Rt corresponds to the function Y( ·) = DX( ·): t-+ DX(t) E TR~q given by 

Dom(X( · )) 3 t-+ .6X(t) ~ ( X(t), (:, x}(t)), 
where (:, x) (t) E T]((t)R~·. 

The function DX( ·), or the corresponding parametrized curve in TR~q' is called the 

lifting of X(·). The vector ( ~~ X} (t) is the velocity vector of the point X moving along 

the trajectory of the system A corresponding to the function X(·), at timet. 

(
1

) For M being a differentiable manifold, TM denotes the tangent bundle to M, and for each x e M, 
Tx M is the tangent space to M at x (cf. [3, 4]). 

(2) We write Y for a point from the space TR~ ~ R~11 x R34
, Y = (X1

, ••• , X 311
, 1J1

, ••• , 1]34
). In our 

considerations the coordinates of a point Y e W A are defined as the coordinates of Y in the ambient space 
TR;.•. 

3 Arch. Mech. Stos. 2/90 
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154 A. SZATKOWSKI 

The second tangent bundle of (the manifold) R~q is the tangent bundle T(TR~q) of the 
bundle (the manifold) TR~q [1- 3].(3) T 2 R~q is the trivial bundle, 

T 2 R~q ~ R~q X R3q X R 3q X R3q. 

Let Y( ·) = (X, 'YJ) ( ·): t-+ TR~q be a C 1-function defined on an open interval in Rr. 

The function Y( ·) corresponds to the function D Y( ·) given by 

Dom(Y{-})3 1-+ iiY(I) ~ (x(l), 1J(1), {~ x)(t), ( ~ +t)). 
where'(~ (X, 1J)) (I) E Tfx."""R~'. And the C2-function X(·) defined on an open interval 

in Rr corresponds to the function 

Dom(X( · ))3 1-+ D 2X(1) ~ (x(l), { ~ x)(t), (~x) (t), { ~: x) (I)), 
where ( :

1 
X, ~: X) ( 1) E T,i, x,,,R~', (i) ~ ( ~ X) (I). The function 1>2 X(.), or the 

corresponding parametrized curve in T 2 R~q' is called the second lifting of X( · ). 

For Z being a point from T 2 R~q' the following symbols are used for the coordinates 
of Z: 

Z _ (X1 x3q 1 3q n r3q tl t3q) - , ... , ,'YJ, ... ,'YJ ,~,, ... ,~, ,<;;, ... ,S" • 

e, ... , ~" are the acceleration coordinates, and for Z( ·) ~ iJ2 X(-), ~(I) ~ ( ~: X) ( t) 

is the acceleration vector of the point X moving along the trajectory of the system A, 
corresponding the function X(·), at time t. 

As it has been assumed, the configuration space NA is an n-dimensional C2-submani-

fold of R~'. Let us recall that (') TN A ~ {(X, '1) E R~' x R": there exists a C 1-function 

X(·): t -+ N11 defined on an open interval in Rr containing 0, such that X = X(O) and 'YJ = 

= ( ~1 x) (o)}. 
The topological subspace TN11 of TR~q ~ R~q x R 3q has the structure of 2n-dimensional 

C 1-submanifold of R~q x R 3q. 
Let { ( Oa., ga.( · )) }a.eA: A being a set of indices, Oa. an open subset of R~q and 

~ 

ga.(-) E C2 (0a., R 3q-n), be a family of constraints for N11 ; i.e., Ua. = Oa.nN11 # ¢, U Ua. = NA, 
a.eA 

rank (Dga.)xeua. = 3q-n, and Ua. = {X E Oa.: ga.(X) = 0}.(5
) Then the equations 

(3) In the paper we write T 2 RJt4 for T(TR~4). 

(
4

) We consider the tangent bundle to the manifold in the sense of the space of tangent bundle. 
(

5
) We use the symbol (Dg) ( ·) to denote the derivative of a map g( ·) when the domain of g( ·) 

is an open subset in Euclidean space, while we use the symbol (dg) (·)when the domain of g( · )is a general 
manifold. If Doin (g( · )) ~ Rm and y = (xk1, ... , xkt), 1 ~ k 1 < k 2 < ... < k 1 ~ m, (D,g) ( ·) denotes 

the derivative of g( · ) with respect to the coordinates x k 1 , .•. , xk1. 
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(2.1) 

gcx(X) = 0, 

(Dga)x · 'YJT = 0, 

155 

where ~ E A: (X, 'YJ) E Oa x R 3q define the constraints for TNA in the ambient space TR~q. 
The second tangent bundle T 2NA is defined as the following subset of T2R~q ~ 

~ R~q X R 3q X R 3q X R 3q: 

T 2 NA = {(X, rJ, C, ~) E R~• x R'" x R'• x R'•: there exists a C 1:function Y( ·): I -+ TN.r 

defined on an open interval in Rt containing 0, such that (X, 'YJ) = Y(O) and (~, ~) = 

= ( ~ Y)(o)J. 
T 2NA has the structure of 4n-dimensional (topological) submanifold of R~q x R 3q x 

X R 3 q X R 3q. 

Let NA be a C 3-submanifold. The equations 

(2.2) 

ga(X) = 0, 

(Dga.)x · 'YJT = 0, 

(Dga.)x. CT = 0 , 

(Dga.)x. ~T + (D2ga.)x. ('YJT X 'YJT) = 0, 

where ~ E A: (X, 'YJ, C, ~) E Oa. x R 3q x R 3q x R 3
q define the constraints for T 2NA in the 

ambient space T 2 R~q ~ R~q x R 3q x R 3q x R 3q. (The condition rank (Dga.)xeua. = 3q- n, 
for each X E NA and~ E A: X E Ua., ensures that Eqs. (2.2) are locally linearly independent, 
for each X E NA and ~ E A : X E Ua.). 

Let us note that the coordinates of Y E TNA are defined here as the coordinates of Y 
in the ambient space TR~q, and the coordinates of a point Z from T 2NA are defined as the 
coordinates of Z in the ambient space T2 R~q. Physical (kinematical) interpretation of the 
coordinates of Y E TNA (and Z E T 2NA, respectively) is the same as for the coordinates 
in the ambient space TR~q (and T 2 R~q' respectively). 

The contraction of the second tangent bundle is given by 

T 2NA = {X, 'YJ, c, ~) E T 2NA: c = 'YJ}. 

For fixed (X, 'YJ) E TNA, the projection P;(i'lx,ri)NA) of T/x,TJ>NA on the space R 3
q 

of points ~ is the affine subspace of all ~ in R 3
q satisfying 

(2.3) (Dgrx)x. ~T = _ (D2ga.)x. ('YJT X 'YJT), 

where ~ E A: X E Ua.. It is easy to see that p;(fc.~. 17>NA) is the translation of the (linear) 
subspace TTJ(TxNA) of R 3q by the vector 

(2.4) ~l.(X, 'YJ) = - (Dga.)k. [(Dga.)x. (Dga.)I]-1 . (D2ga)x. ('YJT x 'fJT) 

from the orthogonal complement of the tangent space TTJ(TxNA) in the space R 3
q of vectors 

~. 

Set MA = Diag(m1 , m1 , m 1 , ... , mq, mq, m,). We shall see in the following that if 
NA is the configuration space of a holonomic system A, then MA ·~l.(X, 'YJ) is exactly the 
reaction force vector of the constraints WA = TNA, at the point (X, 'YJ) E TNA. 

3* 
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156 A. SZATKOWSKI 

For a general nonholonomic system A = (&i'A, mA, WA, FA(·)), WA is a differentiable 
submanifold of TNA, with the additional structure of a fibre bundle above NA ·Let 
{(011, h11( ·)) }peB, B being a set of indices, be a family of (differentiable) constraints for 
WAin TR~q. 

The tangent bundle TWA is the set of points given by 

TWA = {(X, rJ, ~, ~) E R~• x R39 x R39 x R'•: there exists a C1:fimction Y( ·) = 

= (X, 'YJ)( ·): t -+- WA defined on an open interval in Rt containing 0, such that (X, 'YJ) = Y(O) 

and (C, ~) = ( ~ Y) (0)}. 

For WA being a C2-submanifold, TWA has the structure of a C1-submanifold of 
T 2 R~q. The (locally linearly independent) constraints defining TWA are given by 

hp(X, 'YJ) = 0, {3 E B:(X, 'YJ) E Op, 

(Dhp)(X,rl)' (CT, ~T)T = 0, (X, 'YJ, C, ~) E Op X R 3q X R 3q. 

If WA = TNA, then TWA = T 2NA. 

The contraction TWA of TWA is given by 
- A 
TWA= {(X, 'YJ,C, ~) E TWA: c = 1}}; 

- A 
T(X,1J) WA = {(C, ~) E T(X,1J) WA:C = 7]}. 

2.2. The d'Aiembert space of a lumped mechanical system 

We consider a lumped mechanical system A= (&i'A, mA, WA, FA(·)) observed in 
a fixed inertial reference system R3 x Rh with perfectly smooth and scleronomic constraints. 

DEFINITION 3. Let Y(·): (X, 1J)(·): t-+- Y(t) E WA be a/unction defined on an open and 
maximal interval Dom(Y( · )) in R, containing 0. 

The function Y( ·) is the solution of the mechanical system A if it is differentiable, and 
i. Y(.) = DX(.); 
ii. for each t e Dom(Y( · )), there exists a (reaction force) vector R = R(Y(t)) from 

C~(T11Ex) (the orthogonal complement of the tangent space T11Ex to Ex at 1J E Ex in the 
space R 31l of vectors ~) such that (6 ) 

p~(DY(t)) = M;:t 1
• (FA(Y(t))+R(Y(t))). 0 

REMARK 1. For WA being the extended configuration space of a mechanical system 
A = (.9' A, mA, W A, FA ( · )), we assume implicitly that: for every two points Y' and Y" 
in W...t there exists a force field FA,/·) in TR~q such that for some solution Y-1( ·)of the 

A 
system ALl = (9A, mA, WA, FAi · )), Y-1(t') = Y' and Y.it") = Y", for some t', t" 

e Dom((YLI( ·)),and p~(DY-1(t)) = M;:t 1 
• FA/Y.~t(t)), for all t e [t', t"]. 

( 6 ) Recall that MA = Diag(m1 , m., m., ... , m11 , m11 ,m11) and p~( ·)is the projection map from T2R~• 
on the spa~ R34 of vectors ; . 
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In other words, there is such a force field FAi ·) which controls the state change of 

A from Y' to Y", with zero reaction force along the corresponding trajectory from Y' to 
Y". D 

DEFINITION 4. The dynamic space vH A of a mechanical system A (the space of motion 
of A) is the following subset of the extended configuration space of A: 

vitA = {Y E WA: there exists a solution Y( ·}of A, such that Y = Y(O)}. D 

Write alA for the set of solutions of A. 
We consider the class of mechanical systems A = (&' .th mA, W .-b FA(·)) such that for 

every system A the dynamic space vH A of A is a differentiable submanifold of WA (of TR~4}, 

and the motion of the system (evolution of the state in time) is the flow defined by a vector 
field C) on .A A [4]. 

DEFINITION 5. Let the dynamic space Jt A of a lumped mechanical system A = (&'A, mA, 
WA, FA(·)) be a differentiable submanifo/d of WA, and let f( ·}be a vector field on JIA. 
Assume that f( ·) defines a flow a( ·) on Jt A. 

A 
We say that fA ( ·) = f( ·) is the vector field generated by the system A on its dynamic 

space Jt11 if 

U a(Y, ·) = fHA . 0 
Ye..l( A 

The given vector field x( ·) on a differentiable manifold M corresponds to the subset 

i = Im(x(. )) 

in TM (the image of the map X(·)). If x( ·) is the C'-vector field on the ct-manifold M, 
0 ~ r ~ k-l, then i has the structure of the C'-submanifold of TM. Using this obser­
vation we obtain an equivalent version of the definition of the vector field, which is useful 
in the following considerations. 

DEFINITION 6. A vector field on the differentiable Ck-manifold M is a subset x of TM, 
such that (Px o /i)( ·}, where I;(·): x 3 (x, C) --. (x, C) E TM, is the one-to-one map of X 
onto M. 

If in addition i has the structure of the C' -submanifold of TM, 0 ~ r ~ k -l, then i is 
the C'-vector field. D 

C) Let M be a differentiable C"-manifold, and let C denote the vector tangent to M at some point 
x EM. We recall that a vector field on the manifold M is a map x( ·)of Minto the tangent bundle (the 
manifold) TM such that 

x(x) = (x,p,(x(x))), 

for each x EM where Pc( ·)is the projection map, Pc( · ): TM 3 (x, C)-+ Pc(x, C) = C E TxM [3, 4]. 

If, in addition, X(·) is the C-map, 0 ~ r ~ k-1, then x( ·)is the cr-vector field. 
A flow on M is, by assumption, a map u( · ): U ~ M x Rr-+ M, where U is an open subset containing 

M x {0}, such that: u(x, 0) = x, and u(x, t' +t") = u(u(x, t'), t'') whenever both sides of the equation 
are defined. It can be proved that every differentiable vector field on a differentiable manifold M defines 
a flow on M. 
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158 A. SZATKOWSKI 

The vector field fA ( ·) generated by a mechanical system A corresponds to the subset 

i. = U fA(Y) 
Ye..KA 

in TWA (in T Jl A). In view of Definition 6, f~ is also called the vector field generated by 
the system A on its dynamic space Jl A. 

REMARK 2. It follows from the definition of the solution and the definition of the vector 
field generated by a lumped mechanical system A that 

for each (X, 'YJ) E Jl A and 

(2.5) 

for each Y E Jl A· 

Pc(fA(X, 'YJ)) = 'YJ, 

From Eq. (2.5) we obtain that for the system A which generates a vector field on its 
dynamic space .A A' the reaction force vector R remains unchanged, independently of the 
choice of the solution Y( ·)of A passing through a given pointY E .A A· 0 

For fixed (X, 'YJ) E WA, p 11 ( ·) is the projection map from R3
q on T

11
Ex (the tangent 

space to the submanifold Ex of TxN, at the point 1J E Ex), and pl. ( ·) is the projection map 
from R3'~ on Cl.(T'IEx) (the orthogonal complement of T'IEx in R3'l). For e E R39, p 11 (e) 
and pl. (e) are considered here as vectors in R3'l. 

The following definition of the d' Alembert space of a lumped mechanical system A is 
of basic importance in our considerations concerning the dynamic spaces and the dynamic 
equations of lumped mechanical systems. 

DEFINITION 7. The d'Aiembert spaces ... of a lumped mechanical system A = (f?A, rnA, 
W A, FA(·)) is defined as the following subset of TWA (and hence, of T 2 R~q): 

s ... = {(X, 1], c, e) E TWA: c = 'Y} and Pii (MA. e)= Pii (FA(X, 'YJ))}. 0 

REMARK 3. Note that for a vector e E R3 'l there is a vector R E Cl.(T'IEx) such that 
e = MA. 1 

• (FA(X, 'Y})+R) if, and only if, 

P1 1(MA . e)= P1 1 (FA(X, 'YJ)) . 

Thus the conditions i. and ii. in Definition 3 are equivalent to 

(2.6) 

for all t E Dom(Y( · )). 0 

REMARK 4. Let us consider the case when the dynamic space Jl A of a lumped mech­
anical system A = {9 A, rnA, W A, FA(·)) is a differentiable submanifold of WA, and Jl A 
has the structure of a fibre bundle {.A A' Px o I..K A(·), Px(.A A)) where: Px(vH A) is a C2-sub-

manifold of NA, .A A= U (X, E~), and E~ is a C 1-submanifold of TxNA with Dim 
Xepx(..K A) 

Ei < Dim Ex. Then it follows from Definition 3 of the solution of a lumped mechanical 
system that for each (X, 'Y}) E .A A' the available reaction force vector range remains boun­
ded to Cl.(T'IEx). 
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From the above it follows that if A'= (&'A, mA, W~, FA(·)) is a subsystem of the 
system A = (&'A, mA, WA, FA ( · )), one would take SA -the d' Alembert space of A, as 
the d' Alembert space of the subsystem A'. D 

3. The dynamic spaces and the equations of motion of lumped mechanical systems 

In this Section we analyse the dymanic spaces and vector fields generated by lumped 
mechanical systems. A general procedure for finding the space of motion and the dynamic 
equation of a mechanical system is proposed. 

The main conclusion, which is also valid for general dynamic systems, is the following. 
The space of motion of a mechanical system A is the set union of all invariant submani­
folds of the extended configuration space of A. We prove this in the Appendix. 

THEOREM 1. Let A= (&'A, mA, WA, FA(·)) be a lumped mechanical system which has 
the dynamic space .A A being a C 1-submanifold of WA, and which generates a vector field 

/.1( ·) on .A A. 

Then (8
) 

jA ~SA. 

Proof. Let Y = (X, 'YJ) E .A A. Set Z = fA(X, 'YJ). It suffices to prove that Z E SA.. 

But Z = DY(t), for some solution Y( ·) of A, at some t E Dom(Y( ·)), and DY(t) E SA., 

for all t E Dom(Y( ·)). D 
The regular systems are the most often considered class of lumped mechanical systems. 

We except that aparat from the systems constructed as systems which exhibit some kind 
of discontinuous modes, the well-posed mechanical systems are regular. 

DEFINITION 8. A lumped mechanical system A = (9 A, mA, W A, FA(·)) is said to be 
regular if .A A = WA and if it generates a vector field on WA. D 

Using Theorem 1, we get in conclusion the following theorem. 

THEOREM 2. Let A = (&'A' mA, W A, FA ( · )) be a regular mechanical system. 
If the d'Aiembert space SA of A is the vector field on WA (in the sense of Definition 6), 

then 

jA =SA. D 

For nonregular lumped mechanical systems, we have the following theorem which 
proposes a general procedure for finding the space of motion and the dynamic equation 
of the system. We illustrate this procedure in the Example, Sect. 4 of the paper, where 
a nonregular mechanical system is being analysed. 

THEOREM 3. Let the projection py(SA) of the d'Aiembert space SA of a lumped mech­
anical system A = (9 A, mA, W A, FA( · )) on the position-velocity space TR~q be a C1-sub-

(
8

) Let us recall that L_ = Im(f.A( · )) ~ TWA. 
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manifold of WA, and lets ... be a C0-vector field onpy(S ... ): 

where!:..<·): py(S ... ) 3 y-+ J ... (Y) E Ty(py{S ... )) is a C0 -map. 

dY -
If the differential equation dt = J ... (Y) on Pr(S ... ) has uniquely defined solutions, then 

JIA = Pr(S ... ), 

the system A generates a vector field fA(·) on Jt A, and 

L = s .... 

P r o o f. Note that Pr(S A) ~ WA. Since each solution Y( ·) = Y(Y0 , ·) of the differ­

ential equation ~~ = .f.t(Y) (defined on Pr(S ... )) satisfies the relation (2.6), for each 

t E Dom(Y( · )), then each of them is a part of some solution of the system A. 
It follows then that py(S ... ) ~ .A A. 
We shall now prove that .A A ~ py(S ... ). 
Fix a point Y0 E .A A £ WA. It follows from the definition of the dynamic space of the 

mechanical system A that there exists a solution Y( ·) of A passing through yo at t = 0 
and, by assumption, the function Y( ·) is differentiable. Thus we have a well-defined vector 

(C0
, ~0).! (! Y) (0) which is tangent to W,. at the point Y0

, and by the definition of the 

solution of a mechanical system A, (Y0, C0 , ~0) E s .... 
It follows then that Y 0 E py{S ... ) and hence Jt A ~ Pr(S ... ). D 
In the Appendix we prove Theorem A.6 which is the extension of Theorem 3. It encloses 

a multi-step procedure which enables to exclude these points in W11 which are not in the 
space of motion of the system A. Theorem 3 concerns only the case when .;//A = Pr(SA) 
and/~= s .... 

REMARK 5. Theorem 3 has the following extension which is useful in the considerations 
in Sect. 4 where the example of the nonregular lumped mechanical system is analysed. 

Let the projection Pr(S ... ) of the d'Alembert spaces ... of a lumped mechanical system 
A on the position-velocity space of A have the structure of the set union U w<Y> of 

yer 

disjoint C 1-submanifolds w<Y) of WA, r- a set of indices, such that SA when restricted 
to W<Y> is a C0-vector field on W<Y>, for each y E r. 

In such a case, if for each y E r the corresponding SA differential equation on wo·> 
has uniquely defined solutions, then 

the system A generates a vector field fA ( ·) on .A A' and 

L = s.... o 
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4. Regularity criteria for lumped mechanical systems 

Regularity of a mechanical system is an important property of the system. Except for 
the lumped mechanical systems constructed as systems which exhibit some kind of discon­
tinuous modes, the well-posed mechanical systems are regular (Definition 8). In this 
chapter the conditions ensuring regularity of a lumped mechanical system are proposed. 

We make the following standing assumptions for the extended configuration space 
WA of a mechanical system A and for the constraints defining WA. 

I. WA is a C2 -submanifold of TR~q. 
II. WA has the structure of a fibre bundle WA = (WA,Px o lwA(· ), NA), where NA 

is an n-dimensional C 3-submanifold of R~q' WA = U (X, Ex), and for each X E NA, 
XeNA 

Ex is a C2 -submanifold of TxNA. 
From I and II it follows that Dim Ex = n- m for some number 0 ~ m ~ n, which 

is constant for all X E NA. 
III. There exists a family {(011 , gp( ·))}peB, B being a set of indices, of C2-constraints 

for WA, such that for each fJ E B and (X, r;) E 0 11 n WA, rank (DTJgp)cx,fJ> = 3q-n+m. 
IV. FA(.) E C 1(TR}q, R 3q). 

THEOREM 4. Assumptions I-IV ensure that the lumped mechanical system A is regular. 

P r o o f. At the first step, we shall prove that the equation 

(4.1) 

has a unique solution with respect to ~' for each (X, tJ) E W.~h and that the solution is 
a differentiable function of (X, r;) E WA. And next we shall use Theorem 3 to obtain the 
thesis (the system A generates a C1-vector field on Jt A = WA). 

From Assumption III it follows that for each point Y E WA there exists an open neigh­
bourhood Or of Y in TR~q and a map hr(.): Or -. R 2 <3q-,.>+m such that hr( ·) defines 

C2-constraints for WAnOy, and there is such a subsequence (h}, ... , h~q-ll+m) ( ·) of 

(h~, ... , h~<Jq-n>+m)( · ), that for each X 0 E Px( Or) hy(X0 , ·) defines C2-constraints for 
Exo in 

P'~({(X, r;) E Or: X= X 0
}). 

From the family {(Oy, hy( ·))}rewA of the constraints defined above, one can extract 

a countable subfamily which we denote by {(0,, h,(. )) },er, r- being a set of indices. 
For each (X0

, tJ0) E 0,, h,(X0
, ·) defines the constraints for Exo in p'~( {(X, t]) E Oy: 

X= XO}). 

In what follows, the symbols o,, h,(.) and h,(.) have the meaning defined above. 
The locally linearly independent constraints for the contraction TWA = {(X, fJ, C, ~) 

E TWA: C = r;} of the tangent bundle TWA are given by 

h,(X, r;) = 0, 

C-r; = o, 
(D,/i,)<x. 17> • ~T + (Dxh,)cx,fJ>" r;T = 0, y E F:(X, tJ) E 0,, (X, r;, C, ~) E 0, x R3

q x R3
q. 
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For fixed (X, 'YJ) E W.~hP;(T<x. 11>WA) is an (n-m)-dimensional affine subspace of R 3q 

given by 

(4.2) 

where y E r: (X, 'Y}) Eo,. p~(Tcx ,1)) WA) is the translation of the (linear) subspace Tr]Ex 
of R 3

q by (uniquely defined) vector ~l.(X, 'Y}) from the orthogonal complement CL(TrtEx) 
of TTJEx in R 3q; the vector ~l.(X, 'Y}) is given by the expression (9): 

(4.3) ~l.(X, 'Y}) = - (Drth,)[x.m · [(DTJh,)<x .TJ> · (DTJh,)[x,TJ>]- 1 
· (Dxh,)cx ·TJ> · 'Y}T 

(y E F:(x, 'YJ) E a,). 
Equation (4.1) (in TWA) is equivalent to 

(4.4) P11(MA. ~I I) = -pii(MA' ~1.)+P1 1 (FA(X, 'YJ)), 

where ~11 is the tangent part of~' ~11 = p11 (~), and ~1. is the orthogonal part of ~; 
~1. =pl.(~), and ~.L = ~l.(X, 'Y}) is given by the expression (4.3). 

For each Y = (X, 'YJ) E WA set 

(4.5) 1J'A(Y) = -p11 (MA · ~~(Y))+pll (FA(Y)), 

and write Eq. (4.4) as 

(4.6) 

A point Z = (X, 'YJ, C, ~) belongs to the d' Alembert space of the system A if, and only 
if, Z E TWA and Eq. (4.6) is satisfied for ~1 1 : = p 1 1 (~). 

Equation (4.6) has a unique solution at each Y E WA if, and only if, the d'Alembert 
space SA of A is the vector field on WA (SA is then the C 1-vector field generated by the 
system A on its dynamic space .A A = WA -Theorem 3). 

We shall prove now that there is a unique solution to Eq. (4.6), at each Y E WA. 

For this let us first observe that 

(4.7) 

for each (X, 'YJ) E WA. 
In fact, suppose that Eq. (4.7) is not true for some (X0, 'Y}0) E WA. Thenp 11 (MA • TrtoExo) 

is a linear subspace of TTJ
0
Exo with Dim(p11 (MA · Trto · Exo)) < Dim(TrtoExo). There 

exists then a vector ~' =I 0 in M A • TTJo Exo such that 

(4.8) 

But~' = MA ·~,for some~ E TrtoExo and~ =I 0, and hence Eq. : 4.8) implies 

P11(MA. ~) = 0, 

for some ~ E TrtoExo and ~ =I 0 (let us recall that f and ~ are considered as vectors 

(
9

) The expressions (4.2) and (4.3) are the extension of Eqs (2.3) and (2.4) for the case when the 
extended configuration space is a general fibre bundle, i.e., the constraints are nonholonomic. 

Assumption III is in fact necessary for ~l.(X, TJ) to be well defined. 
Let US also note that the condition (Dhy)(X,'f1) • (TJT, e)T = 0 may be written equivalently as 

¢ Ep~(T<x.m)W,..i). 
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FIG. 1. Geometric objects which are explored in the description of mechanical systems. Here the spaces 
Pe(T<z· 11>WA), T11Ez and Cl.(T11Ex) and the vector ~l.(X, 1]) have been shifted to the tangent space TxR~' 

to make the illustration clear. 

FIG. 2. A point Y = (X, 1]) from the extended configuration space W A belongs to the dynamic space of the 
system A if there is such a vector R = R(Y)e Cl.(TTJEx) that FA(Y) + R(Y)Epe(T<x·TJ>WA). For simplic­

ity, it has been assumed that m1 = mz = . . . m11 = 1. 

[163] 
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from R3ll} which yields ~ · MA · ~ = 0. This, however, is not possible because MA is the 
strictly positively defined matrix. 

From Eq. (4.7) we obtain in conclusion that Eq. (4.6) has a solution with respect to 
~11 , at each Y E WA. 

Suppose now that Eq. (4.6) has two solutions~~~ and~~(, for some Y E WA. Then 

P11 (MA · (~j(- ~f,)) = 0 

and ~~~- ~~~ -::/= 0 which is not possible. 
Finally, then, Eq. (4.6) has a unique solution at each Y E WA, and the thesis of the 

theorem is proved. 0 
Let us now derive an explicit expression for the acceleration vector ~ = ~( Y) of the 

system A. We assume that the extended configuration space WA of A fulfils Assumptions 
1-111 and FA(·) is a C1-function on TR~t. 

For each Y = (X, r;) E WA andy E F: YEO,, (H,)<x,rJ> is defined as a (3q-n+m) x 
x 3q-dimensional matrix given by 

(4.9) (H,)<X,rJ> = Diag(II(DrJh~)cx,rJ)II-1, ... , II(DrJh;q-n+m)cx,rJ>II- 1 
)· (DrJh,)<x. 11>; 

the rows of (H,)cx ,fl> are versors in the subspace CJ.(T17Ex) of R 3
q, and rank (H,)cx,rJ> = 

= 3q-n+m. 
The matrix (G,)<x. 17> is the Gram's matrix of (H,)rx.rJ>' 

(4.10) (G,)<x.rJ> = (H,){x, 17> • (H,)cx.rJ>; 

rank (G,)cx.rJ> = 3q-n+m. 
And next, define 

for each Y E WA. 

Equation (4.6) in TWA is equivalent to the following system of equations: 

(4.13) and 
[/- (G,)<x~>l · MA · ~ = 1f'A(Y),l 

(D'Ih,)<x. 17> · ~ = 0, 

with respect to ~in R3ll. The assumptions ensure that the system (4.13) has a unique solu­
tion at each Y = (X, r;) E WA (see the proof of Theorem 4), and for fixed Y E WA , the 
solutions~ of the system (4.13) and ~1 1 of Eq. (4.6) are related by 

~(Y) = ~11 (Y)+~J.(Y), 

where the orthogonal part ~J.(Y) of ~(Y) is given by the expression (4.3). 
Let us write (4.13) in a more compact form as 

(4.14) 
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where y E F: Y = (X, TJ) E 0,, and observe that by the proved existence of a unique solu­
tion of Eq. (4.6), and hence by the existence of a unique solution of Eq. (4.14), 

rank(B,)<x. 11> = rank([(B,)<x. 71> ~A(Y)]) = 3q 

for each Y = (X, 'Yj) E WA andy E F: Y E 0,. 
We summarize the observations in the following Corollary. 

CoROLLARY. For a lumped mechanical system A satisfying the conditions specified 

in Assumptions I-IV, the acceleration vector ~(Y) =fA(Y),h(·): =p; ofA(·) is given 
by the following explicit expression: 

/~(X, TJ) = ~11 (X, 'YJ)+~.L(X, rJ), 

where ~.L(X, rJ) is the vector ~.L(X, 'YJ) given in the expression (4.3), and the tangent part 
~11 (X, TJ) is given by the solution of Eq. (4.14), 

(4.15) 

We observe that the orthogonal part ~ .L (Y) of f..t(Y) is prescribed entirely by the con­
straints imposed on the space and velocity coordinates of the system. 

REMARK 6. Assume for a lumped mechanical system A satisfying I-IV, that 

M;. 1 
• 1f'..t(Y) E T11 Ex 

for each T = (X, 'YJ) E WA. Then the vector 

~(Y) : = MA. 1 
• 1J'A(Y) 

is the (unique) solution of Eq. (4.14) (the expression (4.15) for the tangent part of the 
acceleration vector reduces to ~11 (Y) = MA, 1 '1J'A(Y)). 0 

REMARK 7. Assume for a lumped mechanical system A satisfying I-IV that 

MA · ~.L(Y) E C.L(T11 Ex), 

for each Y E WA. Then 

and 

~~~(Y) = MA, 1
• p 11 (FA(Y)). 

In this case the orthogonal part of the acceleration vector does not enter the expression 
for ~11 (Y). 0 

It has been assumed implicitly in the description of nonlinear lumped mechanical 
systems presented in this paper that the constraints are able to create a reaction force which 
has an arbitrarily large value (the only constraint for the reaction force vector is to be 
situated in CL(T11 Ex)). Thus, taking into account the results in Theorem 4, we obtain 
in conclusion that the constraints defining the extended configuration space of a nonregular 
lumped mechanical system must fail the condition in Assumption III. 

In other words, the d'Aiembert space SA of the system A causes shrinkage of the 
extended configuration space WA to the proper subset of WA -the dynamic space Jf A 

of A, in the case when the contraction operation applied to the tangent bundle TWA 
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yields 

Pr(TW11) is the proper subset of W11 • 

Let A be a lumped mechanical system such that Assumptions I, II and IV are satisfie< 

Let {(Op, gp( ·)) }peB be a family of C2-constraints for WA. The equations defining th 

C1-constraints for TWA are given by 

gp(X, 'YJ) = 0, 

(4.16) c-'Yj = o, 
(DFJgp)<x.'1> · ~T +(Dxgp)<x.'1> · CT = 0, 

where f3 E B: (X, 'YJ) E 0 11 , (X, 'YJ, C, ~) E Op x R 3
q x R 3

q (let us note that the constrain1 
(4.16) are not necessarily locally linearly independent). 

The system 

(4.17) 

of 2(3q-n)+m equations does not have the solution with respect to ~ at the point (X, 1 

EWA if 

(4.18) rank[(D'7gP)<x.FJ>l < rank[(D'7gp)<x.'7> j - (Dxgp)<x.'1> · 'YJT]. 

These points (X, 'YJ) in W11 where the relation (4.18) holds are not in Pr(TW11), and hem 
they are not in the space of motion of the system A. 

For a holonomic system A, with the family {(Ocx, Kcx( ·)) }cxeA of C3-constraints for N~ 
the system ( 4.17) of equations reduces to 

(4.19) 

where ex. E A: XE Oa. and 'YJ E TxN11 • By noting that the system (4.19) has a solution wit 
respect to ~ at each (X, 'YJ) E W~h we obtain in conclusion that the smooth holonomi 

lumped systems are necessarily the regular systems. 
In the fol~owing example, a nonholonomic nonregular mechanical system is discusse< 

EXAMPLE 

Let us consider a system composed of two particles ~ 1 and ~ 2 having the inert masst 
m1 and m2 , respectively. To simplify notations, we assume that both the motion of & 

and ~ 2 are one-dimensional. 
Let the space coordinates x1 and x 2 of ~1 and ~2, respectively, and the velocity coord 

nates rh and 'Y/2 of ~1 and ~2 , respectively, be constrained by the equation 

(4.20) 

Equation (4.20) defines the extended configuration space WA of the system A. In vie' 

of Eq. (4.20), WA has the structure of a fibre bundle W A = (WA, Px · lw ( ·), NA) whe1 
A 

N11 is the entire position spaceR~ of A, WA = U (X, Ex), and Ex is a one-dimension; 
XeR~ 

affine subspace of TxR~ given by 

(4.21) 

We assume that the system A is autonomous, i.e., FA(·) = 0. 
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The equations defining the contraction TWA of the tangent bundle TWA are given by 

(1J1+1J2-a) 3-x1 = 0, 

3 · C'YJ1 +1J2-a)2 · (;1 +;2)-1]1 = 0, 
(4.22) 

and it is easy to see that for 1]1 +1]2 = a and 1]1 =I= 0 the equation 

3 · C'YJ1 +1J2-a)2 · (;1 +;2) = 'YJ1 

does not have a solution with respect to ; 1 + ; 2 • 

A -
Thus W0 > = py(TWA) is the proper subset of WA and it is easily verified that W<l) 

decomposes into two (disjoint) subsets w;l) and w:~) where w;1) is a one-dimensional 
submanifold of TR~ given by the constraints 

x1 = 0, 'YJ1 = 0, 1]2 = a, 

and w:~> is a three-dimensional submanifold of TR~ given by 
J1-

'YJ1 +1J2 = Jl x1 +a. 

Both w;1> and w;~> have the structure of fibre bundles. The base space N/1> ! Px(W;1>) 
A 

for w;1> is the x2-axis and N:;> = Px(w;;>) is the complement of N;1> in Rj. The fibre 
Ex, above the point X' = (0, x2) E N;1> is a zero-dimensional affine subspace of Tx,N;l) 
given by 

'YJ1 = 0 and 1)2 = a, 

and the fibre Ex, above the point X" = (x1 , x2 ) EN;;, is a one-dimensional affine subspace 
of Tx,N:;> given by Eq. (4.21). 

W(~/X1=0, r;1=0, r;2 =a 
-------

.A -
FIG. 3. Geometric structure of the set W< 1> = Pr(TWA); a= 0.5. 
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The d' Alembert space of the system A is given by 

SA = {(X, 'Y), 'Y), ~) E TWA : p ,, (MA. ~) = 0}, 

and it decomposes into two (disjoint) subsets s~ and s:.;: 

s~ = rw;l> 

A. SZATKOWSKI 

(the condition p
11
(MA · ~) = 0 yields ~ = 0, at each (X, 'Y)) E W/1>, which is identical to 

the condition on ~following from the constraint relations for TW(1>), and 

S'; = {(X, 'YJ, 'YJ, ~) E fWu>: m1 · ~~ -m2 · ~2 = 0}. 

We then have that S~ is the vector field on w;n = py(S~) given by 

(4.23) W;1> 3 Y = (0, x 2 , 0, a)~ (0, a. 0, OY E Ty W(l>' 
-r-r 

and S'.; is the vector field on w;~> = Pr(S'l.) given bv 

(4.24) . 'YJl' 

____ m_1--;;-:::= =- · 'YJ1]T E TrW(~>l· 
3(m1 + m2 ) y (x1)

2 

Using Theorem 3 (and also Remark 5), we obtain in conclusion that 

JIA = Wu> 

and SA. is the vector field generated by the system A. 
From Eq. (4.24), or using the expression (4.3), one has 

~J.(X, 1}) = 3 I • [ .:~.] for (X, 1}) E W[;>, 
6 jl(x1)2 'YJt 

and next, with the aid of Eq. (4.15) or directly from Eq. (4.24), 

1J lm2-ml] ~~~(X, 1J) = 3 2 . 1 • • •••••• ' 

6 y(xt) (m1 +m2) m1 -m2 
for (X, 1]) E w;~>. 

We note that ~11 (X, 'YJ) = 0, if m1 = m2 • 

Recapitulating the considerations, we now have that the system A decomposes into 
two subsystems according to Pr(SA) = W/1) u W/{>, and it is not a regular system because 
J1 A = Pr(SA) is the proper subset of WA. 

Let us now analyse the behavior of these trajectories of A, which start in W/{> and 
tend towards W/1)· We consider the following two situations (it has been assumed that 
m2 > m1). 

Let Y0 = (X0, 1J0) be a point in w;;> such that x~ > 0 and 'YJ? < 0. Then there must 
be 17~ > 0, and from Eq. (4.24) one has ~1 (Y) < 0 and ~2 (Y) < 0. Thus both 'Y} 1 (t) and 
'YJ2(t) decrease along the trajectory of A starting at Y0• The trajectory reaches W(1> in a 
finite time where the value of 1J1 reduces immediately to zero, and 1]2 becomes constant, 
with the value equal to a. 
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Also, for Y0 in w;;> such that x~ < 0 and 'YJ~ > 0, both 'YJ 1 (t) and 'YJ 2 (t) increase in 
time, and the corresponding trajectory of A reaches W/1> in a finite time. 

In both situations one observes discontinuity in the motion of the system. The particles 
starting in W/;> and reaching W/1> behave as if they had been thrown in the direction of 
the transporting band moving with a constant speed along the x 2-axis in R~. D 

--------T-~-+----~~------------. 
x1 

Ex'''= Ex IV 

FIG. 4. Geometric structure of the space SA of the system A- the vector field generated by the system 
A on its dynamic space .A 1 = W<,)· It has been assumed that m2 > m1 and a= 0.5. 

5. Conclusions 

Regularity of nonlinear, nonholonomic mechanical systems was discussed, where the 
mechanical system A was called a regular one if its dynamic space ..II" (the space of motion 
of the system) was equal to the entire state space (the extended configuration space) of 
the system, and there was a well-defined dynamic equation describing the motion of A 
on ..ll.tt. 

This regularity definition applies fully to general dynamic systems, e.g., electrical 
systems or control systems. The dynamic system 57} is said to be a regular one if the dynamic 
space ..H of the system equals the entire (extended) configuration space of the system, 
and the system has a well-defined dynamic equation on .A. 

Regularity has been found to be an important property of a mechanical system because 
excluding systems which exhibit some kind of discontinuous modes, the well-posed mech­
anical systems are regular in the sense considered in the paper. The conditions ensuring 
regularity of a mechanical system have been formulated in Sect. 4. 

Nonregular systems have also been discussed. In Theorem 3 (Sect. 3 of the paper) 
a general procedure for finding the space of motion and the dynamic equation of the 

4 Arch . Mech . Stos. 2/90 
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system has been proposed. The procedure has been illustrated in the Example, in Sect. 4, 
where the nonregular mechanical system is being analysed. 

And it was surprising for the author to find that it is not an easy task to find the example 
of a nonregular mechanical system, such that no discontinuous changes in the x variable, 
describing the position of the system, are observed. In this context the situation among 
the electrical networks is quite different. One can find very simple constructions of nonre­
gular electrical networks [7, 8]. Such a construction is the electrical network built of two 
capacitors connected in the circuit. 

Several further generalizations concerning nonregular systems have been included 
in the Appendix. 

The d'Alembert principle was the basis for the considerations. The concept of the 
d'Alembert space has been introduced and it has been found to be very useful when the 
problem of finding the dynamic space (the space of motion) and the dynamic equation 
of a mechanical system with both holonomic and nonholonomic constraints is considered. 

Appendix 

We will state several facts which are the generalizations of the results in Sect. 3 con­
cerning the spaces of motion and the dynamic equations of nonregular lumped mechanical 
systems. The concept of (a locally vector-continuous) invariant submanifold is of basic 
importance in the considerations. 

DEFINITION A. I. For fixed zo = (Y0
, ~0 , ~0) E TWA, T:o denotes a continuous vector 

line in TWA passing through the point Z 0
• This means that: 

j. if(C0 , ~0) = 0, then 7;o = (Y0
, 0, 0), and 

jj. if (~0, ~0) ::/: 0, then lzo is a one-dimensional connected submanifold in TWA such 
- A - . 

that: Z 0 E lzo , lyo = py(/zo) is a one-dimensional differentiable submanifold of WA, lzo 
is the graph of a continuous function lyo 3 Y-. (~, ~) (Y) E Tyly;, and (~, ~) (Y) ::/: 0 for 
a/1 Y E /yo· 

(Thus lzo is the vector line of the first kind j -the equilibrium point (Y0
, 0, 0), or it is 

the vector line of the second kind jj.). 0 
In the considerations we need the following property of a subset of the tangent bundle 

of a differentiable manifold. 

DEFINITION A.2. We say that a subset B of TWA is local(v vector-continuous if for each 
point Z 0 in B there is a continuous vector line in TWA (the Definition A. I), which is contained 
in B and passes through the point Z 0

• 0 
The projection Pr(B) of the subset B ~ TWA in Definition A.2 need not have the 

structure of a differentiable submanifold of WA. 

THEOREM A. I. Let the subset B of the tangent bundle TWA of the manifold WA have 
the following structure: for each point Y 0 E Pr(B) there is a differentiable submanifold S of 
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WA contained in py(B), such that Y 0 E Sand the set 

A 
Ms = Bn TsWA, 
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A 
where TsWA = u TyWA, is a C0-vector subbundle overs [see [3]] of the tangent bundle 

YeS 

TW.A, or Ms is a continuous vector field on S. 
Then the subset B is locally vector-continuous. 

Proof. Let Z 0 E B, and let S be a differentiable submanifold of WA contained in 
Pr(B) such that Pr(Z0

) E Sand the set Ms = BnTsWA has the structure assumed in the 
text of the theorem. Then Z 0 E M s and there is a continuous vector line in Ms passing 
through the point Z 0 • The conditions which ensure that B is locally vector-continuous are 
then fulfilled. D 

DEFINITION A.3. The differentiable submanifold H of the extended configuration space 
WA of a lumped mechanical system A is an invariant submanifold for the system A if 

(A. I) Pr(SA nTH)= H. 

The submanifold H ~ WA is the maximal invariant submanifold for A if: 
1. H is an invariant submanifold for A, and 
2. His not a proper subset of the submanifold of WA, which is invariant for A. D 
We have the following theorem: 

THEOREM A.2. If the dynamic space Jt A of a lumped mechanical system A is the differ­
entiable submanifold of the extended configuration space WA of A, then vii A is an invariant 
submanifold for A. 

Pro of. It suffices to prove that for each Y 0 E .A .tb SAn Tyo .A A =1- l/J. 
Let Y( ·) be a solution of the system A such that Y(O) = yo. Then D Y(O) E SAn Tyo W A, 

and noting that Im(Y( ·))~.A A, DY(O) E SAnTyovltA. 
Thus SAnTyo vH A =1- l/>. D 

DEFINITION A.4. We say that an invariant submanifold H for the system A is locally 
vector-continuous if the subset SAnTH is locally vector-continuous. D 

THEOREM A.3. Let us assume for a lumped mechanical system A that every invariant 
submanifold for A is locally vector-continuous. 

Then H ~ .A .A for every invariant submanifold H for A. 

P r o o f. Let H be an invariant submanifold for A and let Y 0 be any point in H. 
It suffices to show that there is a solution of the system A passing through the point Y0

• 

From the condition (A.l) defining the invariance of H we have that SAnTyoH =1- l/>. 
Let a;o, ~0) be a vector in TyoH such that (Y0 , C0

, ~0) E SAnTyoH. By the local vector-

continuity of H there is a continuous vector line fo in SAnTH passing through the point 
(Y0

, C0
, ¢0

). For the differential equation dY/dt = f(Y), defined on the differentiable 

submanifold /0 = Pr(lo) in H and corresponding the vector line fo, there is a uniquely 

defined solution Y( ·) satisfying the initial condition Y(O) = yo, and Y( ·) is a part of some 

4* 

http://rcin.org.pl



172 A. SZATKOWSKI 

solution of the system A (Y( ·) satisfies the conditions specified in Definition 3, except the 

maximality condition on Dom(Y( ·))).Hence Y 0 e JIA. 0 

THEOREM A.4. Let us assume for the system A that every invariant submanifo/d for A 
is locally vector-continuous. 

Then the dynamic space Jl A of A is the set union of all invariant submanifolds of WA 
for the system A. 

P r o o f. By Theorem A.3, the set union of all invariant submanifolds for the system 
A is the subset of the dynamic space of A. 

Let Y0 be a point in Jl A· There exists a solution Y( ·)of the system A such that Y(t0 ) = 
= Y0 , for some t0 e Dom(Y( ·)),and such that lm(Y( ·)1Lf,) is a differentiable submanifold 
of WA for some open interval L1t in R, containing t0 • Since lm(Y( ·)

1
,1,) is an invariant 

submanifold for the s~tem A, we have proved that each point Y0 e Jl A belongs to some 
invariant submanifold for A. This completes the proof. D 

THEOREM A.5. Let us assume for the lumped mechanical system A, that every invariant 
submanifold for the system A is locally vector-continuous, and let the dynamic space JIA 
of A be a differentiable submanifold of WA. 

Then the dynamic space Jl A of A is the (unique) maximal invariant submanifold for the 
system A. 

Additionally, if the system A generates a vector field fA ( ·)on its dynamic space Jl A' then 

it = s ... r"IT..IIA-

P r o o f. From Theorem A.2 it follows that the submanifold .It A is an invariant 
submanifold for the system A. Noting then that the assumptions of the theorem assure 
that every invariant submanifold for the system A is a subset of ..II A' we obtain the first 
part of the thesis. 

We shall prove the second part of the thesis. 
Fix a point Z 0 e s ... r.T..IIA. By the invariance of the submanifold ..II A and the assumed 

local vector-continuity of every invariant submanifold of WA for the system A, there 

is a continuous vector line To contained in SA r. T Jl A and passing through the point Z 0
• 

For the differential equation dYfdt = f(Y), defined on the differentiable submanifold 

lo = Pr(Io) in Pr(S ... r.T .It A) and the corresponding vector line To, we have a uniquely 
defined solution Y( ·) satisfying the initial condition Y(O) = Y0 , Y0 = Pr(Z0). Y( ·) is 
a part of some solution of the system A. And next, from the assumption that the system 
generates a vector field on its dynamic space Jl11 (the vector field/A(·)), we obtain that 

there is a continuous vector line Tin£, such that T = lm(DY( ·)). Thus Z 0 = DY(O) ef. 

and hence s ... r.T Jl A ~it. On the other hand, from Definition 5 of the vector field gener­

ated by a lumped mechanical system A we have that .it~ s ... r.TJIA- Finally then, 

iA = s ... r.T.AA. o 
In the following Theorem A.6, being the extension of Theorem 3 of Sect. 3 of the 

paper, a general multi-step reduction procedure is proposed, which enables to exclude 
these points in WA, which are not in the space of motion of the system A. Let us note 

that Theorem 3 concerns only the case when .A 11 = Pr(S ... ) and£ = s .... 
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We consider a lumped mechanical system A =(&'A, mA, W;h FA(·)). Set w(O) = WA 

and xto> = s .... 
THEOREM A.6. Assume that the following holds for the system A. - ~ 
1. w(l) = Pr("1o)) is the differentiable submanifold of WA. 

Set xtt> = s ... nTWo>· 

- A 
2. w(2) = PrC"tl)) is the differentiable submanifold of WA. 

Set 

- A 
3. For each k ~ 3, W<k> = Pr("~-t>) is the differentiable submanifold of WA. 

Set 

Then, if for some k "<i> is the C 0 -vector field on the submanifold W<k> and if the d~fferential 
equation dYfdt = ~k>(Y) corresponding to the vector field"~> on W<"> has unique solutions, 

then W<"> is the dynamic space of the system A and 

L : = u (Y, f~>(Y)) = "~> 
YeW<"> 

is the vector field generated by the system A on its dynamic space .A A = w(k)• 

Proof. Note that W<"> ~ WA. Since each solution Y( ·) = Y(Y0
, ·)of the differential 

equation dYfdt = ~k)(Y) (defined on w(k)) satisfies the relation (2.6) for each t E Dom(Y( ·)), 

then each of them is a part of some solution of the system A. It follows then that w(k) ~ Jl A. 

We shall now prove that .A A ~ w(k)· 

Fix a point Y 0 E .A A ~ WA. It follows from the definition of the dynamic space of the 
mechanical system A that there exists a solution Y( ·) of A passing through Y0 at t = 0 
and, by assumption, the function Y( ·)is differentiable. Thus we have a well-defined vector 

] 0 = ( :t Y) (0) which is tangent to WA at the point Y 0 and by the definition of the solution 

of the mechanical system, (Y0 ,f0
) E s .... 

It follows then that yo E Wo) and hence, vi{ A ~ w< 1)• 

Using the same arguments, we successively obtain that vii A ~ w(2)' .A A ~ w(3)' ... ' 

and Jl A ~ JV(k)· 

Finally we then have that .A A ~ w(k) and hence .A A = w(k)• (Observe also that the 
spaces w(kp) and "~+r)' r = 1' 2, ... 'are identical with the spaces w(k) and "(i>, respec­
tively). 

Noting that: the solutions of dY/dt = f<k>(Y) are defined uniquely, each solution of 

dYfdt = ~k>(Y) is the solution of the system A and each solution of A satisfies the differ­

ential equation dY/dt = f~k>(Y), we obtain that: the solutions of dYfdt = J;k>(Y) define 

a flow on w(k) and jA: = ~) is the vector field generated by the mechanical system A 

on its dynamic space .;/!A = Wck>· 0 
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Observe that k = Dim WA + 1 is the maximal number of steps in the procedure descri­
bed in Theorem A.6 in the case when it is effective. 

Let us also observe that for a lumped mechanical system A = (9 A• mA, WA,, FA(·)), 
the multi-step procedure described in the text of Theorem A.6 always ends at the first 
step, if SA ~ T{py(SA)), in every case when it is effective. 
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