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Displacement field of a rectangular dislocation loop
" E. KOSSECKA (WARSZAWA)

THE DISPLACEMENT field of a rectangular tangent dislocation loop is evaluated, using the Green
function method. The results are given in an analytic form. In the neighbourhood of the edge
type segments of a dislocation line, the component of the displacement field perpendicular to the
line and to the Burgers vector has a logarithmic singularity.

Wyliczono pole przemieszczent prostokatnej petli dyslokacji stycznej postugujac sie metoda
funkcji Greena. Wyniki dane sa w postaci analitycznej. W poblizu odcinkéw linii dyslokacji
typu krawedziowego sktadowa pola prostopadia do linii i do wektora Burgersa posiada oso-
bliwosci logarytmiczne.

BeruncneHO mONe mepeMelleHuit NPAMOYTOBHOM IeTNIH KacaTe/bHON AUCIOKALMH, IO~
cy>KuBasacs metofom dbymxapuy I'puna. Pesyimrats! gaworcs B apanuTHyeckom BHe. B6ym-
3H OTPE3KOB JIMHMH JHCIOKALMH KPaeBOrO THIA COCTABMAIOLIASA MONA, MEPHeHANKYIAPHAA
K JIMHAM H K BeKTopy Bioprepca, obnagaer norapudmudeckoil ocobeHHOCTEIO.

1. Introduction

In THE FRAMES of the linear theory of elastic media, a dislocation can be considered either
as a surface defect, to which corresponds a discontinuous displacement field, or the line
defect, to which corresponds an unintegrable distortion field; both treatments being equi-
valent (see for example [5]). The displacement field of a dislocation has the constant jump
discontinuity —b across the surface S resting on the dislocation line L. b is the Burgers
vector. The dislocation surface S can be chosen in an arbitrary way; the quantities de-
scribing the state of the medium, the strain and stress fields do not depend on S, they de-
pend on its boundary L only. In this work, when considering the case of a rectangular
plane dislocation loop, we choose for S the segment of the plane cut out by the loop.
But our purpose is only to simplify the calculations.

In this work we derive and analyse the expression for the components of the displace-
ment field of a rectangular dislocation loop. It is one of the basic problems of the mathe-
matical dislocation theory. The analysis of the expressions-derived indicates that the solu-
tions of the problems of dislocations available in the frames of the linear elasticity theory
are highly unsatisfactory. The displacement field of a dislocation goes to infinity in the
neighbourhood of a dislocation line, what is an undesired, unphysical effect. The singu-
larities are due to the single force distribution along the edge type segments of a dislocation
line, necessary to assure the momentum balance of a dislocation.

2. The calculation of the displacement field of a rectangular dislocation loop

Let us consider the rectangular plane dislocation loop L lying (in the appropriate
coordinate system) in the plane (x, z). The rectangular piece of the plane (x, z), cut out
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by the dislocation line, is chosen as the dislocation surface S. The surface S is given by
(see Fig. 1)

(2.1) x'=[x,y,Z]1eS: - M < x'<M,
y'=0,
—-L<z’< L
Y4

Fia. 1.

The normal vector of the surface S is running along the y-axis. The Burgers vector of the
considered dislocation is running along the z-axis, so it is the tangent dislocation loop,

2.2) b = [0, 0, b].

The segments of the dislocation loop parallel to the z-axis have thus the character of a screw
dislocation, whereas those parallel to the x-axis have the character of an edge dislocation.

The displacement field u of a static dislocation in the infinite elastic medium is given
by [1, 4]

23) () = [ dsybuconVsGulx’'~X), X €S,
s
a
V.= .

where S is the dislocation surface, b is the Burgers vector, ¢ is the tensor of elastic con-
stants of the medium and G the Green tensor of the static Lamé equations.
For the isotropic medium

Cixim = A0 O+ p(011 Om+ Oy Or)s

(2.4) 1 [ép 1 A+p
, St P e 1]l v 23, ) = |x'—
{ r 2 A42u Vi ,r}, re K=,

A and p are Lamé constants.
The field u satisfies the homogeneous Lamé equations outside the surface S, having
the jump discontinuity equal to —b across S:

2.5) )| = w*(x)-u"(x) = —b, x€5,

u*(x) and u™(x) are the one-sided limits of u at the point x of S, when approaching S from
its positive or negative side.
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In what follows, we consider the dislocation in the isotropic, elastic medium. For the
dislocation loop given above, we obtain thus the following expression for the displacement
field:

M L
26) u,=b fd“sznV:Gtr = by f dx’ fdz'[VzG,3+VaGu]
s _

= bﬂ fdx fdz'VzGB-bp fdx'clzlf-_[,

Substituting into the above formulae the expressions for the components of the tensor G
given by Eq. (2.4),, we obtain the following formulae for the components of the u field:

b A+pu y=L
“E T f“ *ViVar|_ o
@7 -2 fd [——+ ] -
i, A+2p pa
b [ 1 b A r pL
bl r r +F f 'v
U=t fdx fdzv‘ tanarae J XV ,

z'= =L

r=y & =x)2+y2+(z'—2)>
The first term in Eq. (2.7); is the solid angle at which the surface S is to be seen from the
point x.
Let us calculate now the components of the field u. For #, we obtain from Eq. (2.7),
the following expression:
=L

2.8 = =
@8 u Z=—Li¥=-M 4 A+2pu Fe—Lly=-M

=M b il+p( )

i ar V)
Inserting the integration limits, we thus obtain from here
b A+pu 1 1

2.9 R WL ) [ N
29) u 4n .1+2pzy VIM=xy*+y*+(L-z)* Y M+x)*+y*+(L—2)?

1 1
B V(M —=x)2+y2+(L+z)? # |/(M+x)2+y2+(L+z)=]'

The field u, is equal to zero for x = 0, i.e. along the symmetry plane of the dislocation
considered. , is the continuous function of the variable y for y = 0, that is it does not
have the jump discontinuity across .

We calculate now the expression for the field u,. Having performed the differentiation

2
in the formula (2.7), (Vir = Lr - —J-;s—) , we obtain for u, the expression

_ b 1 A+puy
.10 f ‘ ? A+2u r? }
-M

=L

2'=~L

4*
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We introduce the denotation

(2.11) e = y*+(z'—2)%

Using now the formulae A4,, 4, for the indefinite integrals, we obtain from Eq. (2.10)
the expression

b G Ly Atp y* x'—x
43{1_'_2 In(y x'—x)?+0*+x x)+1+2p opa-a (W BN
We examine now the first term of the above expression whlch has the singularity char-
acteristic of an edge dislocation:
(2.13) I=In(Yx=x+e2+x—x)[ " oM

= In(Y (M=% +0*+M—x)—-In(y M +x)*+¢*— M ~—x),

0* = y*+(L-2)~

For ¢ =0, i.e. for z= L and for x < —M, i.e. outside the surface S, the expression
is nonsingular, having the asymptotic form

sl |[¥=M
212 u,= }

|x|+M
xI-M"

For —M < x < M and for p =0, i.e. at the boundary of the surface S perpendicular
to the Burgers vector, the cxprcssmn (2.13).is singular, we extract its singular part using
the formula

(2.149) ) =>uln2(lx|+M)—ln2(lx|— =In
o

(2.15) In(Y/x*+a*+x)+In()/x*+a*—x) = Ina>.
Therefore, '
(2.16) I= —2Ing+In(y(M—x)*+0*+M—x)+In (}/ (M +x)*+0>+M+x).
Thus for —-M <x< M
(2.17) : I :,—-2lng+!n2(M—x)+ln2(M+x).
4

For x > M, the expression (2.13) is nonsmgular usmg Eq. (2.15) we can write it down
in the form

(2.18) I= —ln(|/(x-M)’+g’+x—M)+ln()/(x+M)‘2+e’+x+M),

Tleon = ~In2(e=M)+In2(x-+M) = In "*ﬁ

We are not going to analyse in details the singularities of u, at the corners of the surface S.
Finally, from Egs. (2.12), (2.13) and (2.16), we obtain the following expression for u, :

[~2Iny/y?+(L=2) +In () (M=% + 37+ (L—2)* +M—x).

+In(y (M +x)*+y?+(L—z)*+ M +x)]
4 Atu y? M~x M+x ]}
A+2py?+(L—z)? | Y (M=x)2 4y +(L—2)? |/(M+x)3+y’+(L+z)2

219 u, = __{“2#

b ,
+ g bt
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u, is the symmetric function of the variables x and y. In like manner as u,, u, also does
not have the jump discontinuity for y = 0, i.e. across the dislocation surface S.

We calculate now the expression for the component u; of the field u. Performing differ-
entiation in the formula (2.7);, we obtain for u; the expression

: 1 y yz' -z
(2.20) VZ --r— = —‘;T, v:v;r = T) s
M L M
__b o (a0 Y b Atp f (2 =2) [F
(2.21) Uy = —E fdx fdz 7-‘-5% dx r—3 f-_L.
-M A -M
Using A4,, we obtain therefore
M
_ b i y(zr_z) =L
am wgf- S T b
+ Avp y@'-z) x'-x["F M
A42uri—(x'—x)* r |re_Llve-m
From A3 we obtain the following expression for the integral in Eq. (2.22):
dx' 1 |z2'—z] x'—x
2.23 f g = . arctg —— ——
= PG ~hE-a "t r
Hence
_ b _ x'=x2z'—z A+p y(z'-2) x‘—x}""’“ i
(2.24) ! sy E{ arc tg = T r -G =P T T

We transform the above formula to extract in an explicit form the discontinuous part
x'—x2z'—z .

, dis-

of the function u; across the surface S. We replace the function arc tg

continuous for y = 0, using the identity

% =X " A
(2.25) arc tg—y— - sgnxsgny —arc tg o

which follows from the multiplication by sgn x sgn y the identity (sgn x is the sign function):

x| = |yl
2.26 arctg— = — —arctg—:.
i =2 x|
Hence
(2.27) —arc tg? 2% _arc tngy_—x- z’:z — ;sgnysgn(x'—x)sgn(z’—z).

Inserting into the expression consisting of sign functions the integration limits, we obtain
(2.28) sgnysgn(x'—x)sgn(z'—z) #2552 Mu

= sgny[sgn(M —x)—sgn(— M —x)] [sgn(L—z)—sgn(— L—2)]

= 4sgny[0(x+M)—0(x— M))] [0(z+ L)—6(z— L)},

6(x) is the Heaviside function.



882 . E. KOSsECKA

The product [0(x+ M)—0(x—M)] [6(z+L)—0(z—L)] is equal to 1 for x e [— M, M],
ze [—L, L], and is equal to 0 outside this set of points.
We thus obtain the following expression for u; :

b y VM=x)"+y*+(L-2)
(2.29) Uy = E; arctg M—x ; A

y ]/(M+x)2+yz+(L_z)z+arctg Yy VIM=x)2+y*+(L+z)?
M+x L-z M-x L+z

y VM+x)2+y*+(L+z2)?
M7 e L+z

+£ J.+,ul y(L—2) [ M-x o M+x
4n A+2p |y*+(L—2)* |/ (M—x)* +y* +(L—2)° I/(M+5c)=+y=+(L—z)=]

y(L+z) [ M-—x i M+x i ]}
V+L+2? | YM=x2+y*+(L+2)* Y (M+x)*+y*+(L+2)?

+arctg

— 2 sgnyl6(e+ M)~ 0(:—M)] [0z + L)~0(z— L)},

Only the last term of the above expression is discontinuous across the surface S, the
remaining are continuous and equal to zero on S. For—-M <x <M, -L<z< L,

usy=——, u3 » Uz —u3 = —b.

2 i

3. The displacement field in the neighbourhood of the dislocation line

We examine now the asymptotic behaviour of the field u in the neighbourhood of the
boundary of the surface S, where this boundary—the dislocation line—can be approxi-
mately considered as the screw or edge dislocation.

First, we examine the behaviour of the displacement field near the segment of the line
being parallel to the Burgers vector (the screw dislocation).

We put x = —M+x" and assume that the coordinates x", y, z are small when com-
pared with L and M, i.e. we are in the neighbourhood of the central part of the section
AB of the dislocation line L. With these assumptions

0(z+ L)-0(z— L)=1,
0(—2M +x") =0,
y VM+xP+y L) oY
e Liz ==-arctg;‘—,;,
—-_x)2 2 2
arc th’:x'/(M x) z'i'z"‘(‘['#ﬂ =0

y(Ltz)
y:+(Lt2)?

3.1 arc tg i
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From the above follows
u, = 0$
AMZ 1 T2
(3'2) U, => In ‘_M‘M-!-._._.__Ll'_[‘_-i-.?_y ’

Uy = % arc tg % - % sgnyf(x").

If we assume furthermore that L » M we obtain the expression for the field of a screw
dislocation

u, = 0, U, = 0,

(3.3) b b

I l N r

Uy = 5-arc tg o7~ 7 S8y (x").

uy is discontinuous for x* > 0, the discontinuity being equal to —b. The assumption
that z is small is essential because for z &~ L, u, goes to infinity as In|L—z|.

We examine now the behaviour of the displacement field near the segment of the
dislocation line being perpendicular to the Burgers vector. We put z = —L+2z”, 2", y, x
are small when compared with L and M, i.e. we are in the neighbourhood of the central
part of the segment DA of the dislocation line (see Fig. 1). With these assumptions

u; =0,
(3.4
[-2lnQL)+2ln(M+yYM?+4L%)+2In ) y* +22

—2In2M]- 2(A+p)  y? }

B2 = T am {14-2

A+2u  y 422
4ML A+ 2
Inyy*+z"2—In ————i— S ;
23!“2 [ Vyrean M+ |/M=+4L=] A+2u y’+z"=}
If we make the additional assumption that M > L,
b o 3 Atp ¥y
(3.5) u, = ELﬁ—ﬁ[ln Vy 422 —In2L)+ —— TP YT
Moreover,
] —0(x— 1,
(3.6) (x+M)—-0(x—M) =
0(—2L+z") = 0.
Thus
b y b 24+p yz" b i
(3.7 Uy =5 arc tg?+2—xmm — - sguy 8(z").

We obtained the expres;sion for the field of an edge dislocation line.

4. Comment upon the singularities of the component u,

The singularities of the component u, of the displacement field—perpendicular to the
dislocation surface—in the neighbourhood of the edge type segments of the dislocation
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line, are an objectionable fact in the model of a dislocation considered as the surface
of discontinuity in the continuous, linearly elastic medium. The origin of these sirgular-
ities is clear if we go back to the force distribution corresponding to a dislocation. It was
demonstrated in [7] that the displacement field of a plane dislocation surface, with the
tangent Burgers vector, can be interpreted as due to the force distribution:

.0 2
@n X =X, +X, = pb, [ dsn,V,03(x~E)+un, § din, gny tb, 65(x~E),
s L

8;(x—E) is the three-dimensional Dirac delta function, n the constant normal vector
of the plane surface S, © the tangent vector of the line L. The first term of the above for-
mula is the surface distribution over the surface S of the force couples, to which corresponds
the momentum density ub x n. The second term is the distribution over the line L of single
concentrated forces having the direction of the vector m and the magnitude n- [t xb]
(see Fig. 2). For a screw dislocation line Txb = 0, for an edge one |t xb| = b. The dis-

Screw dislocation line  Edge dislocation line

FiG. 2.

tribution of double forces is responsible for the jump discontinuity of the displacement
field. The distribution of single forces is necessary to secure the momentum balance of a dis-
location; it is exactly the source of logarithmic singularity of a displacement field, corres-
ponding to the singularity of the Green tensor for the two-dimensional problem.

5. Conclusions

The displacement field u of the rectangular dislocation loop, calculated using the method
of Green function, can be presented in the analytic form. The jump discontinuities of u can
be excluded from the whole expression for this field.

The component of the displacement field parallel to thz loop plane has the logarithmic
singularities, characteristic of an edge dislocation, in the neighbourhood of those segments
of the dislocation line where the Burgers vector is perpendicular to the line.

In the neighbourhood of the centers of rectilinear segments of the dislocation line,
the asymptotic form of the displacement field is that of an edge or screw straight dislo-
cation line.
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Appendix

Here we present the formulae for the indefinite integrals used in the paper. The basic
ones are:

(A.1) f'n/—% = In(x+y/x*+a?),

x2

X

a?yx*+a?’

dx _
f]/x‘+a_23

and the less known (see [6], 2.284)

(A.2)

f L —_— = “__1 arc tg i 2 __x
(p+a+x?)ya+x* Y —pla+p) 0+P|/a+x”

—pla+p) >0, p<NO.

(A.3)

from which follows

f"" dx’ _ 1 — |z'—z] x'—x
T ey o P 1 e | s T

r=yYE=xF+y+ (' -2)>

(A4)
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