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Influence of hinge line gap on aerodynamic forces acting
on a harmonically oscillating thin profile in an incompressible flow
Part I

S. FILIPKOWSKI and M. NOWAK (WARSZAWA)

By APPLYING the method of strongly singular integral equations the solution of the Birnbaum-
Possio equations is derived for a system of two profiles (profile with a control surface) lying
on one straight line parallel to the direction of flow at infinity. The solutions are then transformed
to a form in which the pressure distributions and aerodynamical coefficients may explicitly be
expressed in terms of the elementary functions and canonical forms of elliptic mtegrals Only
some of the integrals (concerning the wake in the gap and behind the profile) require numerical
calculations. The influence of the size of the gap on the pressure distributions and aerodynamical
coefficients (with various values of the frequency coefficient) is illustrated by graphs.

Postugujac si¢ metodami réwnan calkowych silnie-osobliwych, otrzymano rozwiazanie réw-
nania Birnbauma-Possio dla ukiadu dwoch profili (profilu ze sterem) lezacych na jednej prostej,
rownoleglej do kierunku przeplywu w nieskoriczonosci. Nastgpnie przeksztalcono je do postaci,
w ktorej rozklady ciSnient i wspdlczynniki aerodynamiczne daja si¢ wyrazi¢ jawnie za pomoca
funkcji elementarnych i kanonicznych postaci calek eliptycznych. Tylko nieliczne catki (dotyczace
sladu wirowego w szczelinie i za profilem) wymagaja obliczefi numerycznych. Wplyw wielkosci
szczeliny na rozklady ciénien i wspolezynniki aerodynamiczne (dla réznych wartosci wspolczyn-
nika czgstosci) zilustrowano wykresami.

IocnyuBasAch METOZAMH MHTETPANbHBIX CHNIBHO CHHTY/IADHBIX YpaBHEHMi, MOJYYEHO
pelieHre ypasHennsa BnpubGayma-IToccno mna cucremsr aByx mpodmneii (mpodmnsa ¢ pynem)
JIeXAlHX HA OHON MpAMOI, mapasne/bHOI HanpaBieHUIO TeueHHS B OeCKOHeYHOCTH. 3aTeM
TIpeoGpasoBAHO OHO K BHJY, B KOTOPOM pacIpefeNicHMA JaBJICHMA M a3POAMHAMAUECKHE
K03((HIHMEHTEI MOXKHO SBHBIM 0Opa3oM BLIDa3HTh NMpPH NMOMOIUH 3JEMEHTapHBIX (ByHKUMA
H KaHOHMYECKHX BHJIOB JUIMITHYECKHX HHTErpajoB. TOJBKO HEMHOTHe MHTErpanbl (kaca-
IOLUKECA BHXPeBOro Cilea B 1Le/H U 3a npoduiem) TpebyIoT UncneHHBIX pacyeToB. Bausuue
BEJIMUHHEI ILEIM Ha pachpeneneHus MAaBreHMil M aspofuHamuueckue KoadduimeHTs! (s
PasHbIX 3HaYeHMi KoaddHIMeHTa YacTOThI) HIUTIOCTPHPOBaHO rpadHKamMu.

1. Introduction

FUNDAMENTAL theoretical results concerning the pressure distribution on a harmonically
oscillating profile in an incompressible flow were obtained in the thirties by THEODORSEN,
KUssNER, SCHWARTZ and others [1, 2]. A comparison of these results with experimental
data demonstrates the practical applicability of the model used. The methods of analysis
of aerodynamic forces distributions on three-dimensional lifting surfaces developed later
are based on similar assumptions and utilize the same scheme of linearization of the
boundary conditions at the lifting surfaces and in the wake. The mathematical formulation
of the problem is reduced to a singular integral equation relating the prescribed normal
velocity distribution to the unknown distribution of pressure differences between both
sides of the lifting surface. The singularity of the kernel gives the square root singularity
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of the functions describing the distribution of pressures on the leading edge and its deriv-
ative on the trailing edge. The edges of the control surfaces are the discontinuity lines
of the boundary condition (normal velocity distribution). For the function representing
the solution of the integral equation, these lines are the logarithmic singularity lines.
In the case when the lifting surface contains narrow gaps enabling the flow perpendicular
to the surface, considerable irregularities of pressure distribution appear in the neighbour-
hood of the gaps, thus making the numerical calculations more difficult.

The scheme of a profile with a gap is shown in Fig. 1. The normal velocity distribu-
tion w(x, t) is prescribed along both segments modelling the profile with a control surface.
If the gap 8 = f—a is large enough, the system may be treated as consisting of two profiles;
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on the trailing edges of each of them the Kutta-Joukovski condition is satisfied, while
on the leading edges square root singularities appear in the pressure distributions. With
decreasing gaps the aerodynamic interaction between the two sections of the profile is
increased, what results in considerable changes of the pressure distributions, mainly in
the vicinity of points « and f. With 8 — 0 the weak singularity on the control surface
(at p) transforms in the limit into a logarithmic singularity when w(a, ) # w(B, t), or
into a regular point when the function w(x, t) is continuous. The changes at the point &
are even more considerable since the zero pressure difference for 8 > 0 is replaced either
by a logarithmic singularity or by a (non-zero) finite value of the distribution function.

Two particular cases of the model shown in Fig. 1 were examined in detail. The first
one was concerned with the situation when a = § since then the model is reduced to
the classical one without a gap. The second case is connected with the investigations of
aerodynamic interference of two profiles [3] and concerns large gaps (e.g. when 8 > 1).
The most difficult case for the analysis yet, at the same time, the most interesting one
(from the point of view of determining the aerodynamic forces on a profile with a control
surface) corresponds to 0 < 4 < 1: very few papers are known to deal with this problem.

In the paper by WHITE and LANDAHL [4] the stationary case of pressure distributions
at a gap are investigated by means of fitting the asymptotic solutions. In the monograph
by Sepov [5] closed-form solutions are given for the forces acting on each segment of the
profile in a stationary flow and for the apparent mass coefficients (in a flow with constant
circulation). The complete, linearized non-stationary model of flow about a system of
thin profiles with chords lying on a straight line, the effect of wakes being taken into
account, was considered in [6, 7). Various methods of determining the closed-form solu-
tions for harmonically oscillating profiles were given there, but no effective method of
calculation was devised.
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A comparison of the measurements of the pressure distributions on vibrating profiles
with the results obtained by the classical methods of calculation leads to certain discrep-
ancies which may be supposed to be due to the existence of the gap[8]. It becomes neces-
sary to devise a method of evaluating the aerodynamic forces which would be useful also
for arbitrarily small gaps. The only non-stationary solutions available [5] are concerned
with a very particular case of motion with a constant circulation.

The present paper retains the full linearization of the model of the phenomenon, but
presents the rigorous solution of the problem of the effect of a gap on the pressure dis-
tribution acting on the harmonically oscillating profile with the control surface, and
on the aerodynamic coefficients of the profile. The problem is solved by the method of
singular integral equations (based on [7]), the solutions being then transformed to a form
analogous to the well-known solution concerning a profile without gap [1, 2, 9]. Both
the pressure distribution over the profile and the aerodynamic coefficients are expressed
in terms of elementary functions and canonical forms of elliptic integrals. Only a few
integrals depending on the geometry of the system and on the frequency coefficient (and
connected with the wakes) require numerical procedures. The method of calculating the
aerodynamic coefficients is convenient for immediate applications in the analysis of flutter
of the profile.

Linearization of the boundary conditions in the vicinity of the gap represents a simp-
lification which sometimes may not be justified. For instance, in the case of a narrow gap
one cannot exclude a considerable influence of the thickness of the profile.. This problem
has not been studied so far but, on the other hand, it may be conjectured that the simplified
linear model (representing a direct generalization of the classical model [, 2]) may, in
spite of that, make it possible to obtain certain technically important information as to
the effect of the flow through the gap upon the aerodynamic forces. However, in the case
of a thick profile the parameter & should be interpreted as a certain “effective” gap width,
and not as a real geometrical dimension to be measured in the existing structure.

2. Formulation of the problem

The profile with a control surface is placed in a uniform flow of an incompressible
and inviscid fluid; the profile performs harmonic oscillations about the mean position
(Fig. 1). The undisturbed flow velocity is U. The flow is described by the equation of
continuity, Euler’s equation of motion and by the boundary conditions at the profile
and in infinity. In the case of a thin profile and small amplitude of vibration, the lineariza-
tion of the equations and the boundary conditions at the profile are permissible. The
influence of the history of motion (being a characteristic feature of non-stationary flows)
is manifested here by the existence of the wake convected behind the profile at the velocity
U of the unperturbed flow. The x-coordinate in Fig. 1 is normed by assuming the semi-
chord b of the profile as a unit of length. According to the assumptions, the boundary
conditions at the profile are prescribed on the segments (— 1, @) and (8, +1) of the x-axis.
The segments (, f) and (+ 1, ) of the x-axis are the lines of discontinuity of velocities
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which constitute the wake convected at the velocity U. The vertical velocity at the profile
is prescribed, and at an arbitrary instant of time ¢ it may be given in the form

w(x, t) = w(x)e"™,
w(x) being the (complex) vibration amplitude. The problem consists in determining the
distribution of pressure differences between the upper and lower profile surfaces
Ap(x, t) = Ap(x)e™.

The formulation presented here is based on the same assumptions as the classical
formulation for solid profiles [1, 2] and the only difference consists in the fact that the
boundary conditions are prescribed not on the entire segment (—1, +1) but along the
line L consisting of two segments (—1, «) and (8, +1). As a result, the prescribed func-

tion w(x) is also here related to the solution 4p(x) by means of the Birnbaum - Possio
equation [2, 9]

@.1) wx) = o [ K(s) p(&)dE,
L
the (singular) kernel being given by

(2.2) K(s) = _ZI;; - ’82: {Ci(ls])+i[.5‘i(s)+%]}.

Here w = vb/U is the frequency coefficient, s = w(x— &) and y(x) is a function connected
with the pressure distribution by means of the formula

(2.3) Ap(x, 1) = —oUy(x)e™.

Here g is the density of the medium. Along the trailing edge of each segment the Kutta-
Joukovski condition y(«) = y(1) = 0 is fulfilled thus ensuring the uniqueness of solution
of the integral equation (2.1).

3. Solution of the Birnbaum-Possio equation

The kernel (2.2) of Eq. (2.1) contains, in addition to the pole in the first term, an
additional logarithmic singularity of the cosine integral function Ci(|s|). The typical
methods of solving the singular integral equations [10] are based on the formulation and
solution of an auxiliary Riemann bounddry-value problem of the analytical function
constructed according to the singular part of the kernel. In the particular case of Eq. (2.1)
in the formulation of the Riemann problem, account must be taken of the multivalued
logarithmic term of the kernel.

The variables x and & in Eq. (2.1) assume real values. In order to formulate the Riemann
boundary-value problem, the right-hand side of Eq. (2.1) is analytically continued onto
the entire complex plane z = x+jy (x is the only variable occuring in the physical model).
The imaginary unit j - ;/ —1 appearing in the analytic continuation is not connected
with the imaginary unit i = /=1 introduced to the kernel (2.2) in order to express the
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harmonic time-dependence, and hence ij # —1. Taking into account the form of the
kernel and separating the singular terms, we obtain

60 00 =g [k rioeeanE-0+ Pl ye,
L

where P(z) is a certain integral function of the variable z = x+jy. The first term of @(2)
is expressed by a Cauchy-type integral and hence it represents a function analytical in
the entire z-plane cut along the line L. The second term of the integrand in Eq. (3.1)
possesses branchpoints in § = z and at infinity. Cutting the complex plane z = x+jy
along the x-axis for —1 < x < oo and selecting the proper branch of the logarithm, the
following limiting values may be obtained for z — x +j0:

In(§—2z) - In|x—¢| §>x,

In(6—z) » Injx—§+n O  &<x,
this secures the uniqueness of @(z) in the z-plane. Denoting the limiting values of @(z)
on the x-axis by @*(x) = ®(x+j0) and &~ (x) = D(x—;0) and using the Plemelj-Sochock,
formulae [10] for the Cauchy integral in Eq. (3.1), we arrive, on the basis of Eq. (2.1)
to the following Riemann boundary-value problem along the entire x-axis:

Dt (x)-D(x) =0 —w<x< -1,
Dt (x)+ D (x) = 2jw(x) -1<x<«a,
(3.2 Dt (x)—D(x) = —iwe =2, for a<x<§B,
D* (x)+ P~ (x) = 2jw(x) p<x<1,
Dt (x)—D~(x) = —iwe™"**Q2, l<x<o

with the following notations:
a 1
Q = [ey@®dt and  Q, = O+ [ eoty(@)de.
-1 B

Moreover, the relations following from the form (3.1) of @(z) are satisfied on L,

B+ (x) =B~ (x) = y(x)—iwe~"=* [ eoty(g)dé —1<x<a,
(3.3) o for
D (x) =B~ (x) = p(x)—iwe==[Q, + [ e'oty(&)de] psx<l.
[

The constants 2, and £, are determined from the Kutta-Joukovski conditions y(a) =
=y(1) = 0.

The procedure of solving Eq. (2.1) may then be divided into the following stages:

1) Solution of the boundary-value problem (3.2). The function @(z) is expressed in
terms of w(x) and the constants 2,, 2,.

2) Insertion of @(2) into Eq. (3.3) and solution of the resulting system of the Volterra
integral equations.

3) Determination of the constants 2,, 2, from the Kutta - Joukovski conditions.
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Stage 2) presents no serious difficulties since, with the notation
p(x) = B*(x)—P~(x) for xelL,

the simple set of integral equations (3.3) is solved to yield

Yx) = p(0)+io [ p(é)dé “l<x<aq,
21
(3.4) . for
y(x) = tp(x)+iw[.Ql e P 4 f?’(é)df] f<x<l.
B

The solution of the boundary-value problem may be obtained directly by known methods
[10] and to this end it is convenient to write it in the form

(3.5) D*(x) = G(x) P~ (x)+g(x),
the coefficient G(x) and the term g(x) being given by
G(x) = =1 g(x) = 2jw(x) xe L,
(.6) ,g(x):O . —ow<x< -1,
G(x) = +1 {g(x) = —iwe~"*Q, for e<x<§f,
g(x) = —iwe™"*Q, I <x<o0.

The canonical solution of the homogeneous problem (obtained from Eq. (3.5) by setting
g(x) = 0) in the class of functions bounded at the points z = « and z = 1 is given by
the expression

C-1ie-aF /K@
G Xl =P ]/ .

@rie-pp ¢ B
Here

Ri(@) = (z+1)z—f) and Ry(2) = (z=1) (z—a).

It is assumed in addition that Eq. (3.7) defines this branch of holomorphic function in
the complex plane cut along L which has the following expansion with respect to the
decreasing powers of z in the neighbourhood of the point at infinity:

X(2) = ]/ ﬁfg; =148,z 46,272 F ....

The limiting values of X(z) on L are purely imaginary, and due to the assumption X*(x) =
= X(x), also X~(x) = —X(x). Using the canonical solution X(z) we immediately arrive
at the known form of solution of Eq. (3.5),

X@) [ g()de
o) = 5o __£ Ty HEC.

Here C is an arbitrary constant. From the definition (3.1) it follows that &(—o0) =0
and hence, if the solution is required to vanish at infinity, we should assume C = 0.
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The auxiliary function @(x) = @*(x)— P~ (x) = 20*(x) appearing in Eq. (3.4) has
now the following form:

2 Ry(x) Ri(©) w) ,
@B )= ?j]/R,(x) {f ]/ R E-x°
B
iw R,(§) e it R (%) e—‘ﬂf }
‘T[Q‘afl/ﬂz(e) i Q‘“/Rz(s) =3 ]
It is evidently real-valued with respect to the imaginary unit j since
R;(x) l-x x—o
_lfR(x) '/I+xx -y for xelL
_/R@E __/1+E E-P
J]/Rz(f) - 1-¢ &—ua for fel
R,(§) E+1 E-PB
l/ XE) l/5~1 F-a v REk

The final stage in solving Eq. (2.1) is the determination of the constants £, and £2,.

Substituting the values y(a) = ¥(1) = 0in Egs. (3.3) and (3.4), we obtain the two neces-
sary equations

and

and also

a 1
(3.9) [o(dx = e =@, and [ p(x)dx = e, —e~ Q.
=1 B

The expressions (3.4) and (3.8) together with Egs. (3.9) completely determine the solution
of the Birnbaum — Possio equation (2.1), though their direct application to the determina-
tion of y(x) for a prescribed distribution w(x) would be very difficult. The next stage of
the procedure should then consist in eliminating the auxiliary function ¢(x) and the
indefinite integrals in Eq. (3.4), and also in further simplification of Egs. (3.9).

No assumptions concerning the size 8 = f—a of the gap were made in solving Eq.
(2.1). It is then possible to assume, in particular, that 4 — 0 and to obtain the knowry
solution for the profile without the gap. To this end it is sufficient to observe that on the
basis of the first equation of the set (3.9) both expressions (3.4) assume in the limit the
same form, and in the formula (3.8) the integral over the gap vanishes. The only necessary
constant £, may be evaluated from the equation obtained as the sum of Egs. (3.9).

A certain physical interpretation may be ascribed to the individual terms of the solu-
tion of the Birnbaum - Possio equation. The function @(x) determines the total vorticity,
on the profile with a control surface, while y(x) is termed, according to the definition,

the bound vorticity. The relations (3.4) express, due to this interpretation, the law
of conservation of circulation.
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4, The set of equations determining the constants 2,, Q,

In order to determine the constants 2, , 2,, we may use Egs. (3.9) or any linear combina-
tion of these equations. In particular, by summing up both equations we obtain an
equation which is more convenient for calculations,

fqo(x)dx = e }°Q,— (e —e~ ) Q, .
i

Taking account of the form (3.8) of @(x) and changing the order of integration, the follow-
ing equation is obtained

G I l/&(ﬁ) _
_ R,®
P J VB e

with a structure similar to that corresponding to the profile without the gap [9]. In spite
of the fact that we have not succeeded in expressing the integrals occurring in Eq.
(4.1a) in terms of known transcendental functions, we state that they represent relatively
simple single integrals of elementary functions.

In order to derive the second equation in a similarly simple form like Eu. (4.1a), a change
of variables proves to be useful. Since in Egs. (3.9) elliptic integrals appear, the transfor-
mation should be based on elliptic integrals. Let us introduce two parameters

(a+1)= 1 /THa (- ;. JT=F
(4.23.) 21 V =JV »
~1)3 @+vz ¥ 1P

the moduls k and a complementary modulus k',

_ _ l+a 1-8 2
(4.2b) k-—Zu’h«-'l/m—H_—ﬂ’ =VI-F = ]/(l+oz)(l-ﬁ)

The new variables u,(x) and v,(£) are defined by the transformations

1 1
(4.3a) Zoomu, = ST e, w61
(x—1)2 E+1)?

where snu= sn(u, k) is the Jacobi’s elliptic function [11, 12]. The transformations (4.'3)
are not unique since the function sn is doubly periodic. To secure the single-valued trans-
formations, the range of variability of u, and v, is confined to the rectangles

O0<Reu; <K, -K <Imu <K,
0< Reyy; <K, -—-K <Imy, <K,

where K = K(k) is the complete elliptic integral of the first kind for the modulus k, and
K’ = K(k'). Extending the real variable x to the entire complex plane z = x+jy. it is
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easily verified that the first condition of the set (4.3a) transforms the upper half-plane
of the variable zinto the upper half of the rectangle mentioned before, Fig 2. Simultaneously,
theline —o0 < x < + 0o is mapped onto the periphery of the rectangle (0, X, K+jk’, jK"),
its edges corresponding to the ends of the segments of L. And, similarly, the second con-
dition (4.3a) generalized to the complex plane { = &+ jn transforms the upper half-plane

K Bk’ iK' KejK'
Lt Ug, V2
/] = Xk 0 e B K
~%o0  Up,Vq
iK' K-jK" KL = K-jK’
FiG. 2.

of variable ¢ into the interior of the rectangle (0, K, K—jK’, —jK"), and the line —0 <
< & < +o into its periphery. The variable u, is real-valued for x € [~1, ], and the
variable v, — for £ €[, 1].

Equally useful as u;, v, could also be the variables u,(x) and v,(£) defined by the
relations

(4.3b) snu, =

sny,; = .
ksnu, * 2" ksno,

Using the correspondence x — , and & — v, shown in Fig. 2, we obtain
(4.30) u; =u—jK', v, =0, +jK".

The points at infinity of the variables x and & correspond, owing to Egs. (4.3), to the
following values of « and v:
1

1
.mu;=—1—l~ or .'z'jrn.tz=1—z for x=+4 o0

and

.mvl=-1— or .mv,=-L for &=+ .
13 1

The variable u, is real-valued for x €[8, 1], while v, —for & € [~1, ] :

Both transformations x «» u and & «  are equivalent and in particular cases we should
select the one which leads to simpler considerations or results. The range of variables
and v not only secures the uniqueness of the transformations (4.3) but also makes it possible
to write the expression occurring in Eq. (3.8) in one form, valid for the entire range of
variables x and &

R,(x) .o/ 1—43  cnuy =.]/1—}.§ snuydnu,
@9 l/"R.(x) “‘"]/1-3% mudna, Y =i o !

6 Arch. Mech. Stos. 4/80
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R(§) _ l/ 1—-43 cnvy l]/ 1—24} snv,dnv,
Rz(;) l _Rg mvldﬂﬂl - j l --11% C?lﬂ'z '
Here sn, cn and dn are the Jacobian elliptic functions for the modulus k = Ay ds.

The second equation determining the constants £,, 2, is conveniently assumed as
a linear combination of the expressions (3.9),

a 28
p(x)dx— —=II(A1, k) | @(x)dx
J e Tt |

= ¢ 4 %’—H(Zi, k) (e~ —e~iew)Q, -%317(1;, k)e~i=Q,

with the notation
2

§=l/(l—1";)ﬂ— 3 = T/ﬁ"(‘”“_ﬁ’

and with
K d'
u
l} 2 = —_—
(11’ k) if 1 _A%mzu

being the complete elliptic integral of the third kind, On using the relations

Ry() é—a . cnvdny,
* I/Rz(a‘ T Y

1 Ry(x) dx . é—u
fl/ :(x) E—x Zg[H(Af,k)— E+1

we obtain, after rearrangements, the equation

and

ngl L] k)] ’

B

(4.5 iR, f [j "";;‘*"’1 II(k? v, , k) +gIT (32, k)]e—‘“‘df

+.Q,[—:;- ey olI1(A3, k) (e — e"“")]

-]
+in®, f ‘"—1‘;‘3‘3111@ 29,, k) +glI(32, k)] e-lotdg
1 l

—Q,8lI(3%, k)e~'® = —2 f f%g’ﬂﬂ(kisnwl, k)w(&)dE.
L 1
In order to simplify the further transformations, the Jacobi’s Z-function is introduced

[11,12]. If & ¢(—1, «), then

cnv,dno, (k2o , k) = K cnv,dnv,

.
%%, g +KZ(v,) = KZ(”:)+J-—2'--
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Both notations are equivalent. If £ e(— 1, «), the integral II(k*snv,, k) is singular and,
considering its principal value, the constant term jz/2 should be subtracted from these
expressions. On the basis of the definition of the Zeta function we have
dZ(w) ,, E
dv dn* ¥
here E = E(k) is the complete elliptic integral of the second kind. Taking into account
the limiting values of the Z-function

20) = 2(K) =0, Z(K+K) = —j5

Eq. (4.5) may be integrated by parts. The integral taken over the gap yields

8
: 4 d >
io [ [J' T TG snoy, )+ ¢T3, k)]e iot gg

B
oot
=iw f [jKZ(v;)-— -:zi +glI(A%, k)]d( S )
() E
o= 32'— e™'o*~glI(3}, k) (™' —e~ ") +jK f (dn’vz - -k—)rwv,.
vala)

Similar transformations of the second integral in Eq. (4.5) are slightly more complicated
due to its infinite upper limit. The identity
cnv, dnv, cnv, , Snv,cnv,
smv,  snou dnu, dnv,
enables the first part of the integrand to be transformed to a form more suitable for calcu-
lations. Taking into account the limits

va&;vl g .
lim ——— = ==, limII(k®sn*v,, k) = II(A%, k
| oes ] o ( 1, k) = 1I(A3, k)
and

SN, cnv,

J1=iE
. . s 2 o . 2 T 2 2
lim jKZ(v,) = gl1(3, )-K],  lim k? == = jd ]/-——'1__ v

we obtain

w
, . cnv dnv, — 2 —im¢
ti lf [; AT Mooy, K+ glI(3E, k)| e a

=iw ;f [jK Efl:é;%’fl +jKZ(0)+glT(A2, k)] P 13

. 1—&§f L JI=H e, _)_M ~ ]/l-ﬁ.% o
*""Kl/l—ag 1 ( *']/1—1; For | LRl 'S

[
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vi()
E

. o 2 O0s | e
+gH(Al, k)e +}K l""-E -k dn*vl e dvl.
oy(f)

Retuming back to the integration variable &, multiplying Eq. (4.5) by a constant factor

od ]/ 3 1’ and rearranging the terms, we arrive at the following form of the second
equation determining the constants £, 2,:

(@4.1b) {”ﬁ Efmds—fgﬁ%&}g‘

—a [ £+ elot

{H“fvw 7 ) —dyR® ©

ol 5 e o

2 /1=K ( cnvgdnv, .0, ,
=?]/1—;; oo T onoy, kyw(E)d.

Here Y/R(§) = Y R(6+j0) is the limiting value of the function

VRGY = (413 c=1)i (=i (e,

Equations (4.1a) and (4.1b) tend at 4 — 0 to the same form since
1—-4? cnv,dno, R,(%) 1+&
im g V1ol Tt Mo b = )/ -/ TEE

If the function w(£) is represented by polynomials on all segments of L, the right-hand
side integrals in Eqs. (4.1) may be evaluated analytically and written in terms of trans-
cendental functions (canonical forms of elliptic integrals).

5. Pressure distribution on the first segment (profile)
The expression (3.4) determining the pressure distribution on the profile with a control
surface may be transformed following the procedure used in the case of a profile without

the gap, [9]. In order to simplify the integral occuring in the first expression of (4.3), it is
convenient to consider the following linear combination of integrals:

G.1) _J: tp(x)dx—%:['qa(x)dx— %g-[ﬂ(ul. 2, k)-%‘—ﬂ(i},k)] Lf o(x)dx

x
= [ptax— Y1 g, -2 [H(ul. A2, k- - I, k)] [0,
-1
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2
(5.1) e —eo2,) = 2 [ A, o) w)ae
[cont.] b 4 ¥
) B
+ %91 !{jA(“l s 1) ’28'[”(“1 s A3, k) — % H(41, k)]} e~=tdg
+%&Jmem44ﬁ%M@—%m&§me.
Here
dn
Ay, v;) = =2 _"-”-‘;;TI‘E Iy, k*sn?v,, k)~ -t;(lﬂ(kzsnzvl, k).

The function I1(u, A%, k) denotes the elliptic integral of the third kind defined by the formula

- dv
120 = [ s
[1]

The function 4 (v, v) plays in the case considered the role of A,(x, &) and 4,(x, &) in
the classical case of a profile without the gap [9]. The fundamental properties of A(u, v)
were derived and collected in the Appendix (published with Part II of the present paper).
It can be used to perform the necessary integration by parts:

bt 111}

. ﬂ -
E-:S—f{jA(u,,vl)—Zg[H(u;,1§,k)—%ﬂ(1f,k)]}d(e w)

U,

- o e"”"-{-%[ﬂ(ul,}.i, k)-—%ﬂ'(l%, k}] (e7'"t = g~'on)

uitf)
1. 0
+;J‘ (’: e—m__afix A(uy , v1)do,

‘and

lw

_ﬁf{jd(ul,v,)—Zg [H(u,, A3, k)— %H(ﬂi, k)]} d( e:t:)

ki 4

vy(w0)
__ % 2 Uy 2 = I-f — ot
= ?[H(ul,ﬂ.l,k)—fﬂ(ii,,k) e '{-;_} ) e

o1

7}
v,

A(uy, v1)dv; .

On substituting these results in Eq. (5.1) and rearranging the terms, we obtain the simple
relation

X

J@ma=§!ame®ﬁ

-1
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v4(P) oy(c0)
1, o i @ & ad
+;-J[-Qt f e NTEA("UE’;W”:‘*Q: f € ‘"E‘a“;t"A(“L,V:)dﬁ]-

o4(a) vy(1)

The second and third integrals in Eq. (3.8) may be transformed by means of the formula

Ri(x) ]/Ri(f) dé =2 cnuy dnu,y dv, +I/Rz(x) §+1 dt
R,(x) Ry(&) &—x snu; 1 —k2sn*u,snv, R,(®) yYR(®

to yield the required form of the expression determining the distribution of pressure
_2 /R ]/ R () w(®) 2
(52 y( = ';"'.l/ R.(¥) f Rz(f) E—x d+io !A*(v: w)w(é)dé
R;(x) E-F-l e-intg 2 cnu,dnu, 1
[ ]/ R J VR® otk — T 2 — II(k*sn*u,, k)

1(x) 3 E“F'l _laed
g f VRE ] [ l/ Re ) VR C ©
2 cnu,dnu; 1

8’ snu,

¥ —‘NE
o Tksm u,,k)f dE].
VR(&)

In this formula the definition of the function A*(v, 4) given in the Appendix has been
utilized. The first integral in Eq. (5.2) concerns the stationary solution, the second one
is due to the apparent mass. The term proportional to 2, expresses the effect of the wake
in the gap between the profile and the control surface. The last term is due to the action
of the wake behind the trailing edge of the control surface.

For a'—+ B the solution (5.2) is transformed to the classical solution for the profile
without the gap. It is proved in the Appendix that with k = 1 (i.e for a = f§)

1-xt+Y1—x2 Y18
1—x6—y1-x2 Y1-£

A(u,v) = A,(x, &) = -—;— lnl

and, simultaneously,

I/Rz(x) l/ R(® _ ‘1‘232']/'1+s
RL(J:) Rz(é'} l+x l—E )

The third term in Eq. (5.2) vanishes for « — ﬁ, while the fourth one tends to the limit

w
.'/1+xf]/52 =_TQZ

It is then found that for & =

+1
1+& w(®
o =29/12% = ]/ [HE O gt tia [ Ay(x, yw(E)dE

L 2
ﬂ?'Q ]/l+x HE(@)-

1-x
I+x
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From each equation of the set (4.1) it follows that

2f ]/ﬁ w(E)ds—mQ,U( £+1 B ) _WH_;]

= —io % 0,[HP (@) +HP @),

After eliminating the constant £2,, the known solution is finally obtained:

+1
53 y(x)=—]/,+x ]/‘” 2O gevioZ [ A owea
iy

~Zu-cny/ 1= [ ]/ 1L e,

H{ (@)
H{»(w)+iH§P (w)
is the Theodorsen function containing all the necessary information on the history of
the motion. _
In the case of a finite gap (x # f), the integrals in Egs. (4.1) and (5.2) depending on
the geometry of the system and on the frequency coefficient @ must be evaluated numer-

ically since they could not be expressed in terms of known functions. These are the follow-
ing four integrals taken over the gap:

where

C(w) =

_iﬁd&.

I(w) = ,
R I/R(E) f V-8 G- G0

i | SEL . _ 1+¢ e lotgdE
I’(w)"fwz(s) e f]/l-f VE-o3-5

5.4)
E e—-lo& _ -iwfdé

I3(w) = f 'I/R(f) dé f £ % (l-—-f)]/l—fz ’

(/@ (E7T=
e f Ve - f Vs <

and the four integrals taken over the (infinite) wake behind the trailing edge of the control
surface

..Mdf
d
I/R(E) 4 f VE-1)(E-0) (E-p)

(G5 L= f
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Ee—icofdz:
V@E-1)E-o) E-P)

E+1

&5 S =f VR®
—— ]/.5+1 e-latgf
Ts(@) = lff « VR® ~ f -1 ¢-aYE-09G-H "
Jo(w) = (l/-ﬁ:—g —l)e“‘”edf+%

[ JIEEDE=B ) e-io
_J (1 et 1)+ T

e~ 14dE = J,(w) +f

The integrals (5.4) may easily be evaluated numerically by means of the Gauss - Jacobi
quadratures. The method based on the interpolation formula by Everett (described in
[13]) may be applied to the integrals (3.5). The square root singularity of the integrands
for £ — 1 may be removed by using suitable linear combinations of integrals containing
the Hankel functions.

In the case of the function w(§) represented by polynomials on each of the segments
of the line L, all the remaining integrals occuring in Eq. (5.2) are expressible in terms
of elementary functions and some other transcendental functions which are easily evaluated
(canonical forms of elliptic integrals).

Transformation of Eq. (5.2) to a form analogous to Eq. (5.3) by eliminating the constants
£,, 2, according to Eq. (4.1) is not purposeful since in the case of a profile with a gap
there exist no functions depending exclusively on the frequency coefficient @ and revealing
similar properties as the Theodorsen function C(w).

6. Pressure distribution on the second segment (control surface)

Transformation of the second expression of Eq. (3.4) is based on the following com-
bination of integrals:

1 1
f plx)dx— 42 z( gs(x)dx-gf[ﬂ(u,, 3. 0-22 s, k)] Lf P(2)dx

1

= f:p(x)dx— %’— (e =2, —e““‘”.Ql)——— [ﬂ"(u;, A3, k) - —3}7(2%, k)]

X

x feeQ (e~ 90,1 = 2. [ A(us, vy wie)de
L

+ —Qlf{.l/l(ﬂz,‘b‘z) ZgIH(az, A2, k) - —%H(ﬁ,k)]}e-‘“fdg
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L]

+ %inf {jA(uz, v,)—2g8 [H(ﬂz, A%, k)— %H(Z%,k)]}e"“’d&.

Performing the integration by parts and rearranging the terms, we obtain

x 1

Q e-w_r_bfq,(x)dx = ,Qze"‘“’—ftp(x)dx = %fd*(v, w)w(é)dé
% L

1 v2(P) P vz() P
+;j[ 1 f e_f"e "éw'—-A(ﬂg,Uz)dﬂz'f'Qz f B_!“{ 'a'TA(u 2,02)(‘02] .
v1(@) A RO 2

Since dv, = dv, and, as shown in the Appendix, 306—/1(1:,,02) = —;—A(ul,ﬂl), the
2 1

introduction of new variables ;, v, and comparison with the analogous relation for the
first segment makes is possible to verify that the right-hand sides of the two relations
are identical. Consequently, the forms of expressions defining (x) must also be identical
what proves that Eq. (5.2) determines the distributions of pressures on both segments,
that is for arbitrary values of x € L.
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