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Influence of hinge line gap on aerodynamic forces acting
(E)'n a harmonically oscillating thin profile in an incompressible flow
art 11

S. FILIPKOWSKI and M. NOWAK (WARSZAWA)

By APPLYING the method of strongly singular integral equations, the solution of the Birnbaum-
Possio equations is derived for a system of two profiles (profile with a control surface) lying
on one straight line parallel to the direction of flow at infinity. The solutions are then transformed
to a form in which the pressure distributions and aerodynamical coefficients may explicitly
be expressed in terms of the elementary functions and canonical forms of elliptic integrals.
Only some of the integrals (concerning the wake in the gap and behind the profile) require
numerical calculations. The influence of the size of the gap on the pressure distributions and
aerogynmniml coefficients (with various values of the frequency coefficient) is illustrated by
graphns.

Postugujac si¢ metodami réwnaf calkowych silnie-osobliwych, otrzymano rozwigzanie réw-
nania Birnbauma-Possio dla ukladu dwéch profili (profilu ze sterem) lezacych na jednej prostej,
réwnoleglej do kierunku przeptywu w nieskoficzonosci. Nastepnie przeksztalcono je do postaci,
w ktorej rozklady ci$nieni i wspdlczynniki aerodynamiczne dajg si¢ wyrazi¢ jawnie za pomoca
funkcji elementarnych i kanonicznych postaci calek eliptycznych. Tylko nieliczne catki (doty-
czace §ladu wirowego w szczelinie i za profilem) wymagaja obliczefi numerycznych. Wplyw
wielkosci szczeliny na rozklady ciénieri i wspolczynniki aerodynamiczne (dla réznych wartosci
wspolczynnika czestosci) zilustrowano wykresami.

Tlocny»uBasch METOJAaMH HHTETPATBHBLIX CHJIBHO CHHTYNAPHBIX ypaBHeHuil, IONydeHO pe-
niepne ypaBHenus Bupubayma-Iloccuo gns cucremsl aByx npodmeit (npodwia c pynem)
JieyKalyX Ha OOHONH NpAMoif, mapanie/bHON HaPaB/IeHHIO TeUeHHMA B GECKOHETHOCTH. 3aTem
mpeobpa3oBaHO OHO K BHJY, B KOTOPOM pacipefie/ieHHA HaBJIeHHH W a5pOoMHAMHUECKHe Ko~
bHLMEHTHI MOXKHO ABHBLIM 00pas’om BHIPA3HUTh IPH MOMOILH 3MeMEHTapHBIX (yHKimA ¥ Kano-
HHYECKUX BHJIOB 3JUTMIITHYECKHX HHTErpasioB. ToNBKO HEMHOTHE HMHTErpPayibl (KACAIOIIHECH
BHXPEBOro cJiefja B 1iey | 3a mpodusnem) TpebyioT uicneHHbIX pacyeToB. BnuAnue BeHIuHb
INeMM HAa pacmpefeseHHs AaBieHHN ® aspoaumHamuueckme KoaddHUMEHTH! (1A PASHBIX
anaveHnit KoadbduiMenTa YaCTOTEI) WUIIOCTPUPOBaHO rpaduxamu.

7. Evaluation of aerodynamic forces on a profile with a control surface

IT HAS ALREADY been mentioned before that if the boundary conditions (that is the functions
w(x)/U) may be described by polynomials along each of the segments, then there exists
a simple method of calculation of the integrals appearing in Egs. (5.2). In order to comply
with the notations generally used [9], the parameters « and § determining the gap will
now be replaced with e = f and 8 = f—a. In further considerations the fundamental
role will be played by a sequence of constants (elliptic integrals)

(.1 voea (&% for w=0,1.3,..
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satisfying the recurrence condition

%"%’2‘1( +i) Unest 251 (1—efe20)0,.,

(7-2) Utz = — 2

2n+1 6(
n+2 2

which may be derived by the method described for example, in [14]. The integration
contour C in Eq. (7.1) is either the complete line L or the segment (e, 1). In the first case
the constants (7.1) are denoted by U,, and in the second case — by U,’. The recurrence
formulae (7.2) are identical in both cases but differ by the first terms of the sequences.
Direct calculation yields

1—

(7.3) U= —m, Uy = (1+e)gK—2gl1(33, k),

U} = n(e+ %) Uy = —eU'{—Z-—'S--!—&gH(ﬁ.%, k)

The sequences of the constants U, and U,’ form the basis for the definition of the additional

sequences V,, V. and W,, W,':

Vl oot Ull-l-l + (l +8) Uu

Wl = Upst ""(l "'"e) Ull
The first two integrals appearing in Eq. (5.2) may be (with w(x)/U = (x— e)") expressed,

after lengthy transformations, in terms of U, and V,,

Ry (x) 1(5) dé
% ) f ]/R;(E) "Fx

= RUB ()~ Vo, (] (x =6 = D Vornlx—e)"®, ()

m=0

(7.4) for n=0,1,2,...

and

[ 420,00 @—erdt = - U@ - Vo, e
(o]

_w,,“qs,(x)-f Vomals o1, (9,
where "~
s eo-5YRG -Vl
and '
(16)  Py(x) = ~l— C"‘;;f"‘ H(snuy, k) = > —IK (:—i%:—:} k)"x(x)-
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Equations (4.1) yield in the present case the set of equations
iol(0)2, +ind(0)2, = A,

[li?- L] I (w)—I3(w)— Wh(ﬂ’)] Q0+

o Rl(f) —p\ = -
A.—b!]/m')-(f e)'dl = —=2V,44,

_ l—Af m\gdﬂvl 1 2 - Rl(é) e
—2J['/ l—;.% _W‘K'H(k s”zvhk) ]VW](E e)"dé

l+e +2n+1 l1+e
l+l. +1

Once the coefficients 4,, B, are found, Eqs. (7.7) may be used to determine 2,, 2,
and the pressure distribution

[”" LA J;(w)]az - B,

where

and

W)+(l+)

a9 809 = 221,

where

a9 fi9 = —{w——) RUB:() - Vo By (9] (x—e)"

e { Vom 5 Ua(@)Q; +72(0)2:]

+2(V.~u+;—+l - ,..“) (x—e)"+

+%[% Ussi +14 (w)ﬂlwx(w)ﬂz]d’z(x)-

If the boundary condition w(x)/U = (x—e)" is prescribed along the entire line L, then
the sequence of constants U, (# =0, 1, ..., n+1) should be substituted into the above
expression (to be denoted later by f,(x)), while if it applies only to the second segment (at
the first segment w(x) = 0), then the corresponding function f,'(x) will be obtained from
the sequence U)/(n =0, 1, ..., n+1).

Determination of the generalized forces on the profile is simple since the necessary

integrals are easily expressed in terms of the elements of the sequence U, and W, and
namely

1 (x —e)"!’l}ﬁl’; (x)

[ =@, (x)dx = W, + W,
c

7.10
1 l1+e

- 1 E
J (x—e)"P,(x)dx = e X

(W,,+,+2’"“ 8 ) 7

m+1 2 m+1



538 S. FILIPKOWSKI AND M. Nowak

The method of notation of the results used here enables us to pass directly to the limit
8 — 0. The recurrence formula (7.2) reduces after substitution 8 = 0 to a formula relating
three consecutive terms of the sequence. The initial elements are (with § = 0)

Ups=0, Up = oo,
U; = —m, Uy = —arccose,
U; = en, U, = earccose— ' 1—e?.
It is seen that only the constant Uy is unbounded for § — 0; however, it occurs only
in a linear combination with Vg and

. 1 7 = 1 l"xe+ Vl ""xz v l"‘ez 1—-x
?£[2U0¢z(x)—yo¢1(x)]— E’lﬂ i =rau '/l =2 'Vl = .'l"+—x81'00058.
In addition,
; 1—x . _ 1+e 1—x
il—l']g(pl(x) = 1+x and gﬁ,(x) =— ]/T:}-_x'

Thus Egs. (7.7) and (7.9) may be directly applied to arbitrarily small gaps . If the boundary
condition w(x)/U = P,(x) is prescribed in the form of an arbitrary polynomial of order »,

it may be written as P,(x) = D a.(x—e)™ and the pressure distribution is the linear
m=0

combination

4909 = 2 ¥ anfu0).

m=0

8. Degrees of freedom and generalized forces

If the profile and the control surface form rigid segments, the displacement of the
system may be described by means of four generalized coordinates shown in Fig. 3. The
coordinates k() and z(¢) correspond to translations of the profile and the control surface,
respectively while a(t) is the rotation of that system about the axis placed at the point
with the coordinate a, and f(f) denotes the rotation of the control surface about its mose.

| I e-6| le -1 a ; 1
o <3

-1 ed le |41 -1 e-6 /\4-1'
J_Z:’b \/ \/,.3

Fic. 3.
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For an arbitrary motion of a profile with a control surface, the definition of generalized
coordinates leads to the following formulation of the boundary condition:

0 -1 <x<e-6,
w(x)
U

for

io h
= -——+ [1+iw(x a}]rH- -F[l tio(x—e)]p e<x < +1.

Here h, «, 2, § are the (complex) amplitudes of the generalized coordinates.
The elementary pressure distributions corresponding to unit generalized coordinates
are the following:

() = 2 iofy(»,
Hpu(3) = 2T ({1 +io(e~a)fs() +iafi 9},
Ap.(5) =2 iof (9,

Apy(x) =

2 Fe@+iaf)a),

the functions fy, fo, f1, fi being found from Eq. (7.9). The pressure distribution in an
arbitrary motion of the profile is obtained by superposing the elementary distributions

Ap() = Apu(x) -+ Apu)a+ Ap,(3) -+ App()B.

Each generalized coordinate corresponds to a suitable generalized force, and namely,
in the case of the coordinates 4 and z these are the resultant forces L and P acting on the
profile with a control surface and the control itself, respectively, while the generalized
forces M and T correspond to the coordinates and represent the respective couples. Hence
we may write

L=b pr(x)dx (L,,-—+L,a+L, b 'FLﬁﬁ)

2
M = b? f(x—a)AP(x)dx = eg b‘(M.% +M¢¢+M.% -l-Mpﬁ),
L

1
oU? h
P=b | Ap(x)dx = =——b P.?+P,¢+P,-E—+P,ﬁ

1
2
T = b? f(x—e)Ap(x)dx = 9[2" b’(T.—g-+T.u+T,-g—+T;,ﬁ).
e

The sixteen aerodynamical coefficients L,, L, ..., T (being functions of the frequency
coefficient w and of the geometry of the system) are evaluated, by means of Eqgs. (7.10),
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in closed forms. The known solutions for a stationary flow and the attached mass coef-
ficients [5] constitute particular cases of the general solution given here, and they may be
obtained by disregarding all but the first (or second) terms in the expression (5.2) and by
suitable simplification of the expression (7.9).

9. Examples of numerical calculations

To illustrate the effect of a gap on the pressure distributions and the magnitudes of
aerodynamical coefficients, the results of calculations concerning a profile with a 40%,
control surface (e = 0.2) are shown in Figs, 4-9 for various values of the frequency
coefficients w and various gaps 8. The graphs illustrate the distributions of the pressure
coefficient jump on the profile, that is of the parameter

4p
Cp = oU?
2

for various modes of motion (degrees _of freedom). In the upper parts of the graphs the
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distributions of the real part (Rec,) are given, that is of the component with phase comply-
ing with the variation of the corresponding generalized coordinate. Lower parts of the
graphs refer to the imaginary part distributions (Imc,) of the pressure coefficient jump,
i.e. to the component with the shift /2. Figures 4 and 5 are concerned with the same
degree of freedom (displacement of the control surface) but with different frequency coef-
ficients (w = 0.5 or = 1.0). The real part distribution ¢, depends in this case only slightly
on the changes of the frequency coefficient and has a form similar to that corresponding
to the stationary case [4]. The imaginary part (Imc,) which in the stationary case equals
zero, increases with the increasing frequency coefficient, the effect of the gap being man-
ifested by a distribution discontinuity. Figures 6 and 7 illustrate the effect of the gap
in the case when the profile moves with an undisplaced control surface. If é = 0, all the
distributions (beyond the leading edge) are continuous but (even for an arbitrarily small
gap) a singularity in the c,-distribution appears at the nose of the control surface, and
the pressure difference (Kutta-Joukovski condition) vanishes at the boundary of the gap.

Consequently, the changes in the pressure difference at the profile affects the values
of the aerodynamical coefficients which characterize the corresponding generalized forces.
In Figs. 8 and 9 we can see examples of the influence of the gap on the values of certain

T
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aerodynamical coefficients. Separately shown are: (upper parts of the graphs) variation
of the modulus of the ratio of the given coefficient to its value at § = 0, and (lower parts)
variation of the argument denoting the phase shift produced by the gap.

Appendix. Properties of the function 4(u,v)
The function 4(u, v) is defined by the formula

cnﬂdm)

(A.D) A(u,v) = —

[n'(u k2snv, k) — *n(msw k)]

Simple transformations make it possible to write it in the form

- 2k’snﬂcnvdnwsn2p J‘ k*snvcnvdnosn®p
ha Adum - -26’. 1—k?sn*vsn?u dut2 1—K%snvsnu “

Using known (cf. [12]) relations, each of the integrals in Eq. (A.2) may be expressed in

terms of the Theta and Zeta Jacobi functions. Z(v) = %
- k?snvcnvdnosn®p 1, 6u—vo)
1 —k2sn?vsn*u g = ?ln 6(u+v) HeZ(®).
If u = K, then
K .
k2snvenvdnosn®u 1, 6(K-v)

=—In +KZ(v) = KZ(0).

1—k?sn?osn’pu =3 0(K+v)

Substituting these relations into Eq. (A.2), we obtain a particularly simple expression

O(u+v)

O(u—v)’

which holds true for arbitrary u and o with the only important reservation that both in-
tegrals in Eq. (A.2) should be non-singular. Theta functions being even, it follows that
A(u,v) = A(v, u). Equation (A.3a) may also be used to obtain the limiting values of
A(u, v) at the points v corresponding to the ends of the line L since

A(u,0) = A(u,K) =

(A3a) A(u,v) = In

A, jK) = jn (1 —-,%), A, —jK') = —J'n(l -%).
(Ada)

AQu, K—jK’) = jr .

A(u,K+jK’) = —jn X

St
K 3

If at least one of the integration contours in Eq. (A.2) contains such a point p, that
1—k*sn*vsn®u, = 0, then the corresponding integral (or both) should be interpreted in
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the sense of the Cauchy principal value. From the condition sn?u, = 1/k%n?v it follows
that u, = v+jK’. Taking now into account the range of variability of the arguments
of the function 4 («, v) shown in Fig. 2, we can find out that this result is true only if one
of the arguments of A(u,v) is real and the other one belongs to one of the segments

,v-jK%‘(G,u)v. : KoK
utjK
u
0 O K
: u-jKk’ -
= & K-jK
i v+jK'e(Ou) 3
Fic. 10,

(jK’, K+ jK’) or (—jK', K—jK"). From the correspondence of the variables x — u, £ > v,
it follows that the variables x and £ belong then to the same segment of the line L; in
such a case the relations (A.3a) and (A.4a) cease to hold true.

In order to investigate the case of singular integrals, let us assume the variable u to
be real-valued (Imu = 0) and 0 < u < K (Fig. 10). Due to the definition of the principal
value of improper integrals, we obtain

Figy vEjK € (0,u),

* kisnvcnvdnsn? ) 1. 6u-v)
g u = l Bato) +uZ(v)+ when

0 v;l:jK'é(O,u).

The sign of the additional term results from the condition of single-valuedness of the
function In[0(u—v)/0(u+v)] within the rectangle with corners at jK', K+ jK’, K—jK’,
—JjK'. Similarly,

] i
¥ vtjK' e (0, K),
J’ k2snvenvdnvsn®p du = KZ(0)+ wibiod
2op2
S 0 v+jK' ¢ (0, K).

These expressions enable us to generalize the relation (A.3a) to the case of singular in-
tegrals (under the assumption that Imu = 0)

ijx(l—-;—) R 104,
(A3b)  A(,v)=In GE““’) + :f;jn-;— when v+jK’ € (u, K),

0 in remaining cases,
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and to determine the limiting values
lim A(u,9) = lim A(u,v)=0 when 9ve(jK,K+jK'),

o JK' v=+K+JjK'
A tm A,y = lm Aw,)=0 when ve(—jK'\KiK).
v—s—jK’ v+K—-JK'

The expressions (A.4) should be interpreted in such a way that if x € L, then the left-
and right-hand limits for £ approaching the ends of this segment of L to which x belongs
differ from each other, the ,,interior” limits being given by Eq. (A.4b), and the ,,exterior”
ones by Eq. (A.4a).

For the variables u, = u;—jK’ and v, = v, +jK', the following relation holds true:

B(u;+v,) In

I S —v0) ~ ' Bt —0, 725K

M 4
8("2 +ﬂz) _ ln [-e}‘—f (#3—v2+JK) SE:Z +:2;
27— VvV2

g 0w +vy) u;, —v
=1 6(uz —v,) +uj( IK ) il)'

The sign of the last term should be opposite to the sign of Re(u—v). Using this relation
and the formula (A.3b) we directly obtain

A(v,,u;) Im(u, —v,) = X',
" Ay, 0) = Lz(o, iy TR e W
§aa A 9= A(vy,uy) h If“("z —u,) =K',
“29) = Aw,,u) V" Im(v,—u,) # K.
From the definition (A.1) of A(u, v) it follows that
i) _ cnodno 1 1 oy
(A5) EA(!"”) - sno [l —k2%sn?usn?v ?H(k i k)]'

This expression may also be used in calculating the derivative 44 (u, v)/dv under simul-
taneous application of the formula (A.5). In particular, if x € L, then

II(k*sn*uy , k)+IT(k*sn%u,, k) = K

and so
d _ ., Cnuydnu, [ 1 1 2
(A7) EA(‘U“"J =2 snu, 1 —k2sn?u, sno, —-fﬂ(k o'y, )
_ 9 _ o Cnuzdnu, 1 1 2 "
= fo, Avz,u;) = =2 snu, [ 1 —k2sn?u,sno, -fn(k snuz, k2],

independently of the assignation of & to any of the segments.
With the notation

3 1
(A%a) [ Mr@uww®dt = [ Ay, u)w@)de+ [ Aoy, u)w(E)de,
L =1 I}

true for any x € L, Eq. (A.5) may be used to obtain
J Ay, vywieae xel-1,d],

L

(A8b) [ A%, uyw(E)dt = for
i [ Aws, vy w(e)ae xe[8, 11.
L
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The function A(u, v) is defined by Eq. (A.1) for arbitrary values of 0 < k< 1. Of
particular importance is the limiting case for kK — 1 corresponding to a profile without
the gap (8 = 0). On the basis of the known relations [11] concerning the limiting values
of elliptic integrals, it may be written as

1 1 1+ snusnv
i 1 LT Ssnn
hmH(u k*sn*v, k) = hm[ poe ( ;) s"ulnl—snusnv)]"

If the integral IT(u, k?sn*v, k) is singular, its principal value should be evaluated by con-
sidering the absolute value of the expression under the logarithm sign. In the particular
case of u — K,

1

k-1 Cn%D

lim [——H(k’snzw k)]
k=1
Taking into account the additional property of dnv — cnv, we derive, by means of Eq. (A.1),
a relation suitable for calculating the limits:

. : 1 4+ snusnov
(A.g) ll_].l} A(ﬂ s fJ) = }‘lil:. In l-::m .
In the case of the singular function IT(u, k*sn?v, k), the absolute value of the expression
under the logarithm sign should be taken in the formula (A.9). From the definition (A.3)
it follows that

-

1 (x+1)? -1

Snuy snv; = e
(x=1*(¢E+1)?
and
1 1
—1)2 2
Snu,snv,; = i _(E__Il__(.ﬁl 5

1 1
(x+1)*(¢-1)?
with k = | and x, £ € L we then obtain

T¥x _ /1= 1—x _ /1+¢&
snu;snv, = V =% ]/i?g_ and snuysnv; = ]/l+x ]/

and so
1-x¢+ Y1—x2 Y18
1-xt— Y1-x2 Y1-&

With k = 1 and x € L, £ ¢ L we obtain, however,

l+x £—1 E+l
snu,snv; = — T and snu,snv, = j l-r-x § T’

where

.q /1% E—1
1—j '/-— et S
A(uy,v,) =In ;;z i__i_;_ =j(2arctg]/:+§ %— )-—jA,(x,E)
b 1-x I/E+l

= A,(x, §).

A(uy,vy) = A(uz, ;) = '%"1111
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and

A(uy, v;) = jldy(x, &) +x].

The functions 4,(x, &) and 4,(x, &) appear in the known method of solution of the
Birnbaum equation [9]. From the derived properties it follows that A(u,v) combines
the roles of both functions, even in the more general case of a profile with a gap.
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