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The unified theory of variational principles in nonlinear elasticity
GUO ZHONG-HENG (BOCHUM and PEKING)

THE PRESENT paper deals with the most important variational principles in nonlinear elasticity —
the classical potential energy theorem, the complementary energy theorem and two other com-
plemjtary theorems much discussed in the literature recently (Lévinson's principle and Fraeijs
de Veubeke’s principle). It is shown that all these principles and their generalized versions can
be derived from the virtual work principle in a unifying manner. The various principles joined
then in a common frame constitute an organic complex. The flow diagram will convey the reader
a picture of the interconnexion between the various principles.

W pracy rozwaza si¢ najwainiejsze zasady wariancyjne nieliniowej teorii sprezystodci — klasycz-
ne twierdzenie o energii potencjalnej, twierdzenie o energii uzupelniajacej i dwa inne twierdzenia
uzupelniajgce, szeroko dyskutowane we wspbiczesnej literaturze: twierdzenie Levinsona i Fraeijsa
de Veubeke. Wykazuje sig;.ze wszystkie wymienione zasady i ich uogélnione wersje wyprowadzi¢
moina w sposéb jednolity z zasady prac wirtualnych. Zasady te, po. uj¢ciu we wspélne ramy,
stanowia organiczng calo$¢. Zamieszczony w pracy schemat blokowy pozwoli czytelnikowi
w sposob jasny uzmystowi¢ sobie wzajemne zaleznosci migdzy poszczeg6lnymi zasadami.

B paGote paccMaTpuBalOTCA camble Ba)KHbIE BapHALMOHHBIE NPHHLMNGI HeJMHEHHON TeOpHH
YOPYIOCTH — KJIACCHUECKAS TeOpeMa O INOTeHLHANLHON SHePruM, Teopema O 0!

9HeprHH M [Be APYTHé NONOIHATENLHEIE TeOpeMbI IIMPOKO OOCY:KIaeMble B COBPEMEHHOR
JMTepaType: Teopemhl! JleBuncona B Ppeiiza ge Beybexa. ITokasbiBaerca, 9To BCe MepeqHC-
NIEHHBIE NPHHUMIBI B WX 06oOLleHHble BAPHAHTE! MOYKHO BLIBECTH eAmMLIM ofpasom B3
UPHHUMNA BHPTYaNbHBIX paGorT. DTR NPHHIMIBI, HOCHE NOMELleHHMsA MX B ofmue pamKH,
COCTRBJIAIOT €RHYIO eocTs. TloMellieERasn B paboTe CTPYKTYDHAA CXeMa MOSBOJAT TATATEIIO
OCMBIC/THTE B3aHMHEIC SABHCHMOCTH. MEXKY OTACHBHBIMH TIPHHITHIIAME .

1. Introduction

THE PROBLEM of whether there exists in the nonlinear elasticity theory a complementary
energy theorem involving only the stress variable as in the linearized theory, has been
widely discussed in recent years. The complementary principles hitherto proposed can
be divided into three groups. The representative of the first group is Reissner’s principle
based on the Kirchhoff stress tensor [1-5]. It has been regarded, however, as a theorem
not in its truly complementary form because it also involves.the displacement vector as an
independent variable besides the Kirchhoff tensor. The next group is Levinson’s principle
[6-15] which is based only on the Piola stress tensor = and once passed for the truly com-
plementary principle. Unfortunately, this principle is not always valid because the Piola
stress-deformation gradient relation can be inverted provided, even in the simplest case
of isotropy, ©* - ¥(*) have at every point of the body distinct eigenvalues (however, it is

(*) “*” denotes the conjugation of a tensor.
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difficult in advance to know whether this requirement is fulfilled). OGpeN [14] has given
a criterion to choose the suitable branch, nevertheless, the multi-valued inversion involved
(for isotropy at least four distinct branches) would raise difficulties in application. Fraeijs
de Veubeke’s principle based on the polar decomposition is always valid [10-15]. But
here, besides the Piola stress tensor, the rotation tensor is also involved as an independent
argument. Again, it does not come up to the expectation for a truly complementary form.
It seems that the appropriate formulation of the complementary theorem requires a further
study.

The aim of this paper is to show that all these variational principles can be derived
from the virtual work principle in a unifying manner, the interconnection of the particular
principles being given.

2. Mathematical formalism

_ In this paper the two-point tensor field method will be used [16, 17]. Let the reference
configuration # and the actual configuration r of the body # be referred to two indepen-
dent curvilinear coordinate systems {X“} and {x'}, respectively. Their corresponding
basis vectors and matric tensors are

G,, GA G, G*,

&8s g, {TH g’
The deformation of the body # from 2 to r can be presented in the form
@.1) x=x(X) or x'=xi(X4,

i.e. the generic particle X of the body assumes the position x in the configuration r.

All vectors with X as the application point form a Euclidean space of 3 dimensions,
denoted also by ®, causing no confusion. Any element of space # can be expressed in
a linear combination of G, or G4, for example, V = V4G, = V,G4. We have, for in-
stance, v = v'g, = v,g’ similarly for space r. Consider now four tensor product spaces:
ARR, RRr, r@A, r@r, the elements of which can be presented in a linear combination
of G,®G;, G,Bg:, 8:QG,, g:®g; (the covariant basis vectors can be replaced by the
contravariant one. To avoid having to write numerous tensor product symbols, we adopt
the convenient Gibbs dyadic notation), for example:

R = R**G,G,;, S =SG,g,
T = Tg,G,, U= Ulgg;.
By introducing the dot product operation the elements of the tensor product space (of

9 dimensions) become the linear transformations (or the tensors) from 3-dimensional
space into 3-dimensional space, for example:

W =R-V = (R*5G G;) (VpG®) = R®V;G, = WAG,,
w =T V= (TG, (VsG®) = TV, g = w'g,.
The elements from 2®r or r®% are two point tensors. The order of dyads is essential.
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“*” denotes the conjugation: R* = R4®G;G,, T* = T'4G,g;. The unit elements (or
identity tensors) of @2 and r@r are

«
I= GABG‘Gz = 6:GAG3 = ey

» 2
I=g,8' = djgg,=..,
whereas the unit elements of 2®r and r@ ®

){ = giG"g, = guG'' = ...,
I =g'g'G,=g"giG, = ...
are the so-called shifters. With the aid of shifters we can transform a two-point tensor

into a usual one, and vice versa. Replacing the tensor product between the dyadic basis
vectors by a dot product, we obtain the trace of the tensor

trR £ R®G,- G, = R*,,
trSE S4G, g = g4 S4.
The trace of a tensor is a scalar and the double dot product of two tensors also
R:SZ tr(R*- S).
The absolute differentials of the tensor fields R and U are
dR = (RV)-dX,

dU = (UV)-dx,
where
RV = R®C,G;G.G*,
UV = Utige'
are the absolute derivatives. ( ),, and ( ); denote the covariant differentiation in #

and in r, respectively. In the case of double tensor fields, the absolute derivatives must be
understood as total absolute derivatives.

RV = R? GG - G* = R*{ Gy,
RxV = RBC;AGBGCXG‘

are the divergence and curl of R, respectively. The absolute derivatives of the unit tensor
and shifter are zero. In the further discussion we assume that all quantities have been

«
reduced in advance with the help of the shifter to one-point tensors and I will denote L

3. Strain and stress

Denote the displacement vector of the particle X in the deformation (2.1) by
@3.1) u(X) = x(X)-X.
The deformation gradient
3.2) F = xV = I+uV
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has a unique polar decomposition
(3.3) F=R-U,

in which U is the (right) stretch tensor and R is the rotation tensor (proper orthogonal
R*-R = R R* = I). Uis positive-definite, for which the following relation is valid:

34 U*=F*-F=£C.

C is the so-called right Cauchy-Green tensor. Further, the Almansi strain tensor wil'l:
also be used:

(3.5 E= % (C-D = % [uV + Va+ (Va) - @V)],

where
Vu = (uV)*.

The Cauchy stress tensor t has a direct physical interpretation in describing the stress
state. When it acts on the unit vector n in the configuration r, it gives the contact force
of the unit area element with the normal vector n:

(3.6) t'n=t,.

t satisfies the Cauchy (force) equilibrium equation (body forces being absent in order to
save the space):

(EN)) t-V=0

and the moment equilibrium condition

(3.8) t=t*,

Equation (3.8) means that ¢ is symmetric. For the purpose of the Lagrangian formulation,
the Piola stress 7 and the Kirchhoff stress tensor T have been introduced

3.9 T -N=F:(T'N) = gty = Tn,

in which N is the unit normal vector in the configuration & and o, is the area ratio of the
surface element after and before deformation. These stress tensors are interrelated with
each other by

-1
3.10) t=Jt-F* = F.T,
(

-1 -1 -1
@3.11) T=F-t=JF tF*,
(3.12) t =jF-T-F* = ju-F*,

where the superposed (—1) denotes inverse, j is the volume ratio of a volume element
before and after deformation and J = 1/j. The Piola tensor t satisfies the Boussinesq
(force) equilibrium equation

(3.13) T V=0
and the Kirchhoff tensor T satisfies the Kirchhoff (force) equilibrium equation:
(.19 (F-T)-V =0.
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It is evident that a symmetric tensor T satisfies identically the moment equilibrium condi-
tion, whereas this condition for = is

(3.15) T F*=F 1%

The symmetry of t and T is always assumed in the subsequent considerations. Moreover,
from the viewpoint of work the Jaumann tensor S has been introduced, which plays an
important role in the formulation of complementary principles:

1
(3.16) S=—~2—(T-U+U'T).
Substitution of
-1 -1 -1
T=Fvr=U'R¥t=71*-R-U

into Eq. (3.16) leads to another form of the Jaumann tensor

G.17) S = %(‘r‘-R-E-R"-'r).

4. Conjugate variables and Legendre transformation

The mathematical statement of elasticity is the one to one stress-strain correspondence.
The hyperelastic material possesses a stored-energy function 2’ (per unit volume in the
reference configuration), which may be regarded as a function either of any strain measure,
for example E, U etc. or of the deformation gradient F. But 2 depends on F only through
a strain measure. For the sake of brevity, the symbol d will be frequently replaced by
a superposed dot. In any virtual displacement @ = du the virtual work absorbed by the
body, i.e. the increment of the stored-energy function, is given by the formula

(4.1) 2 = Jt:@av).
The consecutive substitution of Eq. (3.12),,, into Eq. (4.1) leads to
42) X = (v-F*):(aV) = 7:[@V)- F] = ©: [@V) - (xV)]
= 7:(4V) = 7: [(x+@)V-—xV] = :F,
and
@43) = (F DF = T:(fF) = Tiy 06 F) = TiE,

In extending the notion of generalized coordinates and generalized forces from analytic
mechanics to mechanics of deformable bodies, any strain measure may be regarded as
a generalized coordinate and the generalized stress obtained from the expression for
2, [18, 19]. Taking the stretch tensor U and substituting Eqs. (3.5) and (3.4) into Eq. (4.3),
we obtain

4.9 2= T:%(U-l'l-r-fl'U)=%(T*U+U°T):ﬁ=5:ik

S being just the Jaumann stress tensor as remarked above.
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In the given four expressions for virtual work, only E and U are the increments of
strain measures. Hence, also only the associated T and S are consistent with the requirement
of the above-mentioned notion of generalized stress. In regarding E and U as the argument
of Z, from Egs. (4.3) and (4.4) we have

@5 6) = 2.
and
4.6) su) = 9%,

respectively. In view of one to one stress-strain correspondence, T(E) and S(U) are in-

vertible in the global sense. The pairing of variables like those are called conjugate stress-

strain variables [19]. For every pair of conjugate variables, through Legendre transforma-
-tion, a corresponding complementary energy density may be defined:

@7 Z(T) = T:E(T)-Z[E(T)],
4.8 Ze(S) = S:U(S)-Z[U(9)].
We also have

dze
4.9 E(T) = —+
(4.10) ue) = -
The identity

S:U=(T-U):U = T:U? = 2T:E+trT

yields
(4.11) e = Z 4 T:E+trT.

For commodity Z¢and 2* will conventionally be referred to as the first and second com-
plementary energy, respectively. It will be seen that the transformation (4.7) leads to
Reissner’s principle.

Regarding 2 as a composed function of F, Eq. (4.2) yields

dx

4.12) (F) = -
The deformation gradient F involves not only strain, but also rotation. Hence the Piola
tensor T associated with F in Eq. (4.2) does not meet wholely the notion requirement
of a generalized stress. But due to the form (4.2), to a certain extent, ¥ and F may also
be called conjugate variables [19]. The rotational part of F does not contribute to z.
This may be seen from the following expression:

(413) ©F=7:®R-U+R-U) = (+*-R:U+7:(R-R*-F)

1
2

(v* R+R*- 1):U+ (v- F*):(R- R*) = S:U+Jt:(R* R¥).
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The first term corresponds to the increment of pure strain while the last to the rotation.
As a result of the antisymmetry of R - R* and the symmetry of t, the last term equals zero.
In comparing with Eq. (4.4) this conclusion is quite obvious. F determines uniquely the
strain and then the stress state, but a stress state may correspond to the same strain state
under various rotations. The multivalued inverse of ©(F) is entirely apprehensible. When
«(F) is invertible, in view of

(4.14) S:U = (+*-R):U = v: (R- U) = ©:F,
the transformation (4.8) can be rewritten as
(4.15) Fe(t) = v:F(v) - Z[F(7)]
and then we have
dxec
(4*16) F(’? = -3?—.

It should be remarked that Z°(%) can be a composed function of = only through some
stress measure independent of rotation, such as ©*- 7. The transformation (4.15) leads
to Levinson’s principle.

In case of the lack of invertibility of =(F), in conformity with Eq. (3.17) and the in-
vertibility of S(U), the right-hand side of Eq. (4.8) depends on 7 and R, regarded simul-
taneously as independent variables. The second complementary energy may then be written
as

@4.17) Ze[S(x, B)] = =:[R: U(S)]-Z[UG)],
which will lead to Fraeijs de Veubeke’s principle.

5. Principle of virtual work

Let the body # be in equilibrium and occupy in the configuration # a domain ¥ with
a regular boundary 4. Upon a portion A4, of A the surface displacements are prescribed:
u|,, = @ while upon the remainder 4, the surface tractions per unit area in the configura-
tion & are assigned: Tnl,, = Ty, where N is the exterior unit normal vector to the bound-
ary in #. We shall confine ourselves to the dead loading.

Let the solution to the elasticity problem be called the real displacement field u and
the real Piola stress field 7. The nomenclature “real” is used in order to be distinguished
from the following notions:

1) Kinematically admissible displacement fields #i: which are those that are sufficiently
smooth and satisfy the geometric boundary conditions

.1) i, = .

2) Statically admissible stress fields T which are those that satisfy the force equilibrium
equation

(52) TV =0
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and the prescribed traction boundary conditions
3 T N, =T,

For any independent admissible displacement field  and admissible stress field T, the
following integral relation is valid

64 [ pNda+ [i-tvaa= {8z Naa= [@-p-vav= [z:dv)av,
" As A A v v

in which Egs. (5.1)~(5.3) have been taken into account. The relation (5.4) has been supplied
first by Vorobyev, and then repeated by Novozhilov in his treatise [20].

Consecutive substitution of u+1 and u for @ in Eq. (5.4) and subtraction of the re-
sulting equations from each other lead, for the real stress, to the virtual displacement
principle

(5.5) [a-inda = [w@vyav.
A | 4

In a similar manner, from Eq. (5.4) we can obtain the virtual stress principle
(5.6) Ji % Naa = [ #:@v)av.
Ay Vv

The virtual displacement principle is the starting point for derivation of the total potential
energy theorem while the various complementary energy theorems can be derived from
the virtual stress principle. Both principles originating from Eq. (5.4) may be conven-
tionally called the principles of virtual work.

6. Classical variational principles
Inserting Eq. (4.2) into the virtual displacement principle (5.5), we obtain
©.1) [ Zav- [i-tnaa=o0
| 4 A
and, consequently,

62) 8( [ zav- [u-inda) =o,
| 4

Ay

since Ty is a dead loading. The functional
(6.3) I = [ Z@®av— [ u-Tndd
V A

defined for the class of admissible displacements is called the total potential energy. The
formula (6.2) states that the real displacement makes the total potential energy stationary.
Conversely, it will be shown that an admissible stress field © which satisfies the moment
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equilibrium condition corresponds, through the constitutive relation (4.12), to the admissible
displacement field u which makes IT stationary. To this end, using

(6.4) S= %:i?=r:(ﬁ‘?)= (@-7)-V—-i-(x-V)
and uj,, = 0, we compute the variation of /7(u):

65 M= [[@ ) V-i-(c-V))dv— [ Tydd
Vv Ar

= [ (- N-Twad- [i- (v V)av.
A V

From IT = 0 and the arbitrariness of @ in ¥ and on A, it follows that

(6.6) V=0 in V,

6.7) ©N=Ty on A4,

Supposing Z(F) is a composed function of F through C = F*- F, we have
(6.8) 1=—§,§=2F-% and t*=23—g-‘F*,

the symmetry of dZ/dC having been used. From Eq. (6.8) it follows that
(6.9) ©F*=F-t* in V.

This stress field = is real because it not only corresponds to an admissible displacement
field u, but also satisfies the conditions (6.6), (6.7) and (6.9). The variational principle

associated with the functional (6.3) is called the stationary principle of total potential
energy.

Finally, for the real displacement and real stress field, with the aid of the divergence
theorem, Eq. (6.3) can be rewritten as

II= [2av-fu-v-NdA+ [ 4 = Ndd = [ [E—v:@V)dA+ [ d- 7 NdA.
v A Ay ¥ Ay
By taking the following expression
T:(uV) = (F: T):(uV) = (uV):T+ [(Vu)- @V)]: T
= %- [Vu+Vu+(Vu) - V)]: T+ :f!— [(Vu)- @V)]:T =E:T+ % [(Va)- aV)]: T

into account, the total potential energy in the real state can be expressed in terms of
real displacement and real stress:

(6.10) ITI'(a,T) = f{Z‘(E)—T:E—%[(Vu)-(uV)]:T}a'V+ fl'i-F-T-NdA.
v Au

The meaning of II' will be explained later.
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‘We proceed now to derive the stationary principle of complementary energy, i.e. Reis-
ner’s principle, from the virtual stress principle (5.6). Using the first complementary
energy defined in Eq. (4.7) and taking account of Egs. (4.9) and (3.5), we have

6.11)  %:(uV) = 6(F T): (@V) = (F- T): (@V)+(F- T): V)
= [(@V) - F]: T+ [(Vu) - FI: T = [(Vu) - (@V)]: T+ [Va+(Va) - (@V)]: T

= % S[(Va)- (aV)]: T+ % [aV 4 Va+2(Va) - @@V)]:T

=E:T+ —;—v 0{[(Va): mV)]: T} = 6{2‘+ % [(Va) - (uV)]:T}.
Substituting Eq. (6.11) into Eq. (5.6), we obtain
(6.12) 6{f[2‘+%((Vn)-'(nV)):T]dV— f“- F-T- Na‘A} = 0.
v Au

Here the displacement u and stress T occur simultaneously. The functional

613  IIT,u) = J' {zf(’r)+ % [(Va)- (nV)]:T}dV— f & F-T-NdA
17 Ay

defined for admissible displacement fields(*) and admissible stress fields(®) is called the
total complementary energy. The formula (6.12) states that the real displacement and
real stress make the total complementary energy stationary. The converse is also true:
the admissible stress T and admissible displacement u which make II°(T, u) stationary
correspond to each other and u satisfies the boundary condition (5.1). Thus they con-
stitute the solution to the problem. In order to prove the converse, it is necessary to rele-
ase the variable T from constraints (the force equilibrium equation in V). Incorporating
also the surface traction condition into the functional, T becomes completely free
of any restrictions. The introduction of the Lagrangian muitipliers n and § (vector
fields defined in ¥ and on A,, respectively) furnishes a functional without subsidiary
conditions:

6.14) II° = J' {L“(T)+%[(Vn)-(u?)]:T+n-[(F-T)-V]}dV
1 4

—-fi’u-F-T-NdA-!— fﬁ-ﬁN—F-T-N)dA,

Au

(*) The presence of the prescribed boundary value & in the surface integral on 4, makes it possible
to omit the condition (5.1) required for the admissible displacements, because this condition will appear
as the natural boundary condition of the variational problem.

(*) The definition of admissible stresses T undergoes also some modification: T are those stresses
which are symmetric and satisfy the equilibrium equation

F-T)-V=0
and the boundary condition
L
F-T- Nl = Tn.
It must be remarked that T is always considered simultaneously with some i
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in which T, u, v and E are independent free variables. Now temporarily keeping T, i and
E unchanged, we calculate the variation of f{ L

* " .
6.15) olI°= [ {[(Va): GV)]:T+n- [(E-T)- V]}aV
| 4
~ [&-F-T-Nd4— [€-F-T-NdA
| Ay
= [ (@-nV:4dv+ [ (q—b)-%-NdA+ [ (n—E)- #- NdA,
1 4 Ay Ay
where © = F- T is the increment of the Piola tensor field = caused by 4. = may be regarded

as entirely arbitrary. From 31’3‘ = 0 follows the interpretation of the Lagrangian multi-
pliers  and E:

(6.16) (u-mnV=0 in V,
(6.17) n=1 on A,
(6.18) E=1n on A

According to Eq. (6.16), the vector field n can differ from the displacement field at the
most by a constant field. By virtue of Eq. (6.17) and continuity it follows thaty = min V.
Furthermore, Eq. (6.18) implies £ = u on A4,. Elimination of n and E from Eq. (6.14)
yields

(6.19) IT(T, u) = [ {z‘('n;r—% [(Vo)- @V):T+u- [(F- T)- V]}dV

Vv

quTNdA J' - (F-T-N-Tn)dA.

Au

This is a functional with two free variables T and u. Now with the aid of ﬁ‘(’l’, u), we
*
proceed to prove the converse statement. Rewriting I7°(T, u) as

(6.20) IT°(T, ) = f {z=m+—;~[(v:;)- (uV)]:T—(uV):(F-T)}dV
+ [(@-8)-F-T-NdA+ [ u-Tnd4
/ /

and calculating its variation

621) olfc = H——_ T+l > (V) @V + (V) - @V)):T
—(ﬁV):(F-T)_(uV):(F'-T)—(uv):(i'-n}dv

fu F-T-NdA+ f(u &) 8(F- T)- NdA+ fu TndA

Au
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- J‘ { ;‘f_fr_‘ - %(uV+Vu+(Vll) - (uV))] T+ [ T)- V]-ﬁ} av
14

+f(u—a)-am-n-NdA—f&-(F-T-N—i'N)dA,
Ay Ar

we finally arrive at

(6.22) F TV =0 in V,
(6.23) F-T-N=Tx on 4,
(6.24) u=i on A,
(6.25) %7: = % [aV+Vao+(Va)- (V)] in V.

Equation (6.25) confirms that T and m which make i “(T,u) (and then IT5(T, u)) stationary
correspond to each other through the constitutive relation (4.9). Thus T and u solve the
problem.

Making. use of Eq. (4.7) and comparing Egs. (6.10) and (6.13), we find J7T¢ = —IT’,
i.e. for the real displacement and real stress there exists a complementary relation between
the total potential energy and total complementary energy;

(6.26) IT+11° =0.
Here r denotes the equality which holds only by the real state. It should be observed that

II(u) and IT(T, u) are two distinct functionals and Eq. (6.26) states merely that they
have an equal value at the stationary point.

7. Generalized variational principles

Both classical principles are variational problems with subsidiary conditions and
would be inconvenient in application. Consequently, the idea of generalized variation
has been developed. The Lagrangian multipliers incorporate directly the constraints into
the original functional to furnish an associated functional without subsidiary conditions.
In fact, we have already done something of this kind in proving Reissner’s principle.

Let us now derive the generalized functional from the total potential energy JI(u),
Eq. (6.3). u is the independent variable in I7(u), but the stored-energy function Zinvolved
depends on u only through some strain measure, say E in Eq. (3.5). Incorporating Eq.
(3.5) and the displacement boundary condition (5.1) into I7, the Lagrangian multipliers o
(the tensor field defined in V) and § (the vector field defined on 4,) furnish

a1 L= J SE)dv+ ,,f % [uV+vu+(Vn)-(uV)]—-E}:odV

- fu-'f‘NdA-r-j[(n-u)-gdA,

A
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in which E, u, o and § are independent variables. Temporarily keeping ¢ and E unchanged
and using Eq. (4.3), we calculate the variation of 15' :

(12) 81 = [ {(T—0):E+(iV):0+(aV): [@V)- o]}V — [ i-Tndd— [ i-Ed4.
vV Ag An
Using

J’ {(@V):0+ (aV):[@V) - 6]}V = J’ @v):(F- o)dv
=fﬁ-F-c-NdA—!ﬁ-{(F-u)-V]dV
as a result of the application of the divergence theorem, Eq. (7.2) becomes
(1.3) aﬁ=J{cr—c):i:-{(p-c)-vl-&}dV+Af (F-o-N-Ty)- 4d4
+Af(F-a-N-§)-ﬁdA.

From the first term in the volume integral and the last surface integral, the interpretation
of Lagrangian multipliers follows:

(14 =T in V,
(7.5 E=F'T-N on A,.

As a result, we arrive at the following expression:

(16) @, T) = f {E(E)— E—%(nV+Vu+(Vn)-(nV))]:T}a'V
1 4

- fa-deA-f(u—ﬁ)-F-T-NdA.
A Ay

Here E is not an independent variable because it depends on T through the.constitutive
*

relation (4.5). The functional II(m, T) with the two free variables u and T may be called

the generalized total potential energy. Computing the variation of ﬁ(u, T

(1.7) oIl = f {[%-(nV+Vu+(Vu)- (uV))—E]:'i‘—[(F-T)-V]-i:}dV
| 4
+ f(F-T—N—'iN)-ﬁdA+ f(ﬁ-u)-a(F-I)-NdA,
A A

*
we can assert thatu, T and E (E depends on T through T = %), which make I1(u, T)

stationary, satisfy

10 Arch. Mech. Stos. 4/80
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(7.8) a=1u on A,
(7.9 F-T-N=Tx on A4,
(7.10) (F-T):V=0 in V,
(7.11) E= % [aV+Va+(Va)-(@V)] in V.

Equation (7.11) confirms that T through the constitutive relation (4.5) corresponds to
u while Egs. (7.8)-(7.10) assert that the corresponding pair u and T are simultaneously
the admissible displacement and stress and then provide a solution to our problem. The

variational problem associated with the free functional I*I(n, T) may be called the station-
ary principle of generalized potential energy.
Making use of

(7.12) % [uV+Va+ (Vo) @V)]: T = (@V): (F- T)— —;— [(Va) - (aV)]:T

= @ F-T):V-u: [(F-T)" V]~ o [(V0)- @V)}:T,

the divergence theorem and Eq. (4.7) and changing the sign, the genetalized total potential
energy reduces to an equivalent form:

(113) M@, T) = f{zc(TH -;—[(Vll)‘ @V)]:T+u- [(F"U'V]} av
v

= fu-(F-T-N—i"N)dA—fﬁ-F-T-NdA.
Ay

A

This is just the free functional (6.19), which appeared in proving Reissner’s principle.
If Eq. (6.19) were called analogically the generalized total complementary energy, then
*

we would have a stationary principle of generalized complementary energy. Between 17
and I7* there also exists a complementary relation:
(1.14) 41 = 0.

Equation (7.12) (and then Eq. (7.14)) holds for arbitrary u and T. Therefore, the generalized
potential energy theorem and the generalized complementary energy theorem in essence
are stationary principles of the same functional (with a different sign) and may be gener-
ally referred to as the generalized variational principle.

8. Levinson’s principle

Assume now that =(F) is invertible. Using the second complementary energy defined
in Eq. (4.15), we have

(8.1) 5= F:t = %:(aV) +tr#.
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Substitution of Eq. (8.1) into the virtual stress principle (5.6) yields

(8.2) 8{ [ (E)~treldv — [ - v Naa} =o.
y AH
For the functional
(8.3) 5 = [ [E()—treldv— [ - = Nda
V A.

defined for the class of admissible stresses, Eq. (8.2) states that the real stress field T makes
the functional stationary. In the following the converse will be proved: the admissible
stress field © which makes II{ stationary satisfies the moment equilibrium condition and
has an associated displacement field satisfying the geometric boundary condition. Sup-

posing 2(t) is a composed function of T through K = ©*- 7, we have

dze dze
(8.4 F = e 27 7K
d&e s o .
From the symmetry of 2K the moment equilibrium condition immediately follows:
(8.5) ©F*=F-%* in V.

In order to be able to calculate the displacement from
X
(8.6) uX) = [ (F-1)-dX+i(X,)),
X

the quantity F obtained from Eq. (8.4) must satisfy the integrability condition:
®.7 FxV=0 in V.

Instead of Lagrangian multipliers for the purpose of release from constraints, this time
we introduce the stress tensor function &

(8.8) T=®%xV,

which satisfies identically the force equilibrium equation (3.13). Thus the variation of
ITS is

(8.9) g = [(F-D:@xV)av— [ &- - Nd4.
V AI
By making use of the identity
(8.10) (F—=D):(DxV) = (FxV):®+tr {[(F*—T)- ®]xV}

and the divergence theorem

(8.11) [ te[(F*- @) xVIav = § F:(@xNyd4,
v A
Eq. (8.9) reduces to

(8.12) I = [ FxV):@av+ § ®F-D:@xN)dA— [ &+ Ndd.
v A Au

10+
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From the volume integral the integrability condition (8.7) follows. Thus a vector field
u(X) is determined from Eq. (8.6). This vector field becomes the displacement field provided
it satisfies the geometric boundary condition. To this end, substituting the vector field
u(X) into the first surface integral of Eq. (8.12), the integrand function assumes the form

8.13) (F-D:(®xN) = @V):(®xN) = u- ($xV)-N-[(u- $)xV]-N.

On the basis of the Stokes theorem which states that the flux of the curl of any vector
field through a closed surface equals zero, the two surface integrals reduce to

(8.14) fu @xV)-Nad— [ 6% Ndd = [ (u—i)- & Nda
A Ay Ay

and, consequently,
(8.15) ul,, =,

where |4, = 0 has been used. Thus the proof of Levinson’s principle is completed.
With the help of Lagrangian multipliers, the functional without subsidiary conditions
may be similarly arrived at:

@.16) II5(x,0) = [ [Ex)—tretu- (v- V)]V
1 4

— [ -7 NdA- [u- (x-N-Tydd,
Au Ay
the variation of which is

@®17)  815(x,u) = [ [(F-T—uV):+ (x- V) ildV
V
+ [ @-®)- % Nda— [ (z-N-Tyd4.
Aw Ay

From &fIf = 0, follow
t- V=0 in V,
aV=F-1 in V,
(8.18) T N= 'i’N on A,
o= on A,.

Equations (8.18), (8.5) and (8.7) assert that = and u are real stress and displacement fields.
The variational principle associated with the functional (8.16) may be referred to as the
generalized Levinson’s principle.

For the real state, the following identity holds:

(8.19) Fe_tre = ey —; [(Vo) - @V)]:T
and, consequently, the complementary relations:

(8.20) O+IE20, I+ =o0.
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9. Fraeijs de Veubeke’s principle

In case of the lack of invertibility of =(F), Levinson’s principle is invalid. By making
use of the second complementaty energy defined by Eq. (4.17)

©.1) Z¢[S(x, B)] = w:[R- U(S)]-Z[U(S)],

the virtual stress principle leads to Fraeijs de Veubeke’s principle based on the polar de-
composition. For this case Eq. (8.1) remains valid. Substituting it into the virtual stress
principle (5.6), we have

©.2) a{ [ Be®)-trmiav- [ . 'r-NdA} - 0.
14 Au
For the functional
9.3) (v, R) = [ {E[S(x, R)]—tr}dV — [ &%~ NdA
V Au

with the Piola stress tensor T and the rotation tensor R as an independent variables, Eq.
(9.2) states that the real stress field T and the real rotation field R make I75 stationary.
The converse is true: the admissible stress field = and the rotation field R which make I75
stationary satisfy the moment equilibrium condition and possess a unique associated dis-
placement field u consistent with geometric boundary conditions. Thus these © and R are
the solution to the problem. It should be noted that the moment equilibrium condition
is now not guaranteed by the structure of the function 2 as in Levinson’s principle. The
associated displacement means the displacement calculated in the following way: starting
from x and R, by virtye of Eq. (3.17) and the invertibility of S(U) compute R - U, and
then on the basis of Eqgs. (3.2) and (3.3) perform the integration

X
9.4) uX) = [ R-U-T) dX+i(X,).
Xo
The integrability condition is
9.5) R-UxV=0 in V.
Making use of Egs. (4.10) and (3.17), bearing the symmetry of the stretch tensor U in

mind and introducing the stress tensor function @ as in Eq. (8.8), the integrand function
in the volume integral of the variation of /75 assumes the form

9:6) % :S—trt = U:(+*-R+7* R) —trt = ©:(R- U-D+7:(R- V)
= (R-U—-I):(d'xV)-{-%('r-U-R*-—R-U-t‘):(l'l-k*).

Using the identity (8.10) and the divergence theorem (8.11), we obtain the variation of
s:
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9.7 I = f{[R~U)xV]:‘i'+%(1:-U-R*—R-U-r‘):(ﬁ»k‘)}dV
1 4
+ ¢ R-U=D:(PxN)dA— | G -t-NdA.
} /

From the volume integrai we arrive at the integrability condition (9.5) and the moment
equilibrium condition:

(9.8) - U.R*=R.U.v* in V.

If we replace F by R+ U, the further procedure to obtain the displacement field u(X) sat-
isfying the geometric boundary condition is precisely the same as for the case of Levinson’s
principle. Thus Fraeijs de Veubeke’s principle is entirely proved. Similarly, the correspond-
ing generalized functional is

©9 II5(x,R,0) = [ {E<IS(r, R))—tre+u- (x- V)}dV
- [a-%-NdA- [ u- (x-N-Tn)d4
Ay Az
and, consequetnly, its variation

©.10) 8IT% = f[(R-U-—I—uV):-i.--r-—:lz—(-t-U-R*—R-U-r‘):(il-k*)-!—(r-?)dn]dlf
1 4

+ | (a—i)-©-NdA— | a- (v- N-Tyn)dA.
/ J

From 81T¢ = 0, it follows that

V=0 in V,

- U-R*=R-U-t* in V,

(9.11) aV=R-U-1 in V,
':-N='I°‘N on A,
a=1u on A,.

In addition to Eq. (9.11) the constitutive relation
©0.12) U=U®) = U[% (x*- R+R*-1:)]

and the orthogonality of the rotation tensor

9.13) R-R*=1

constitute the complete set of relations for our problem. The variational problem associated

with the functional ﬁ’ £ may be referred to as the generalized Fraeijs de Veubeke’s principle.
Similarly, the following complementary relations can be obtained:

©.14) m+s=0, I+I5=o.
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1. Flow diagramm

The following diagramm (Fig. 1) gives a clear picture illustrating the interconnexion of
the diverse variational principles derived from the virtual work principle in unifying manner.

Vir. work prin.
(4, 71)
i
vir. disp. prin. Vir: sfress prin.
(t,a) (u,7)
O[5z ® O-Ferteis
Pot.ener. prin. Com. ener. prin. Levinsgn prin. - | “veubeke prin.
&N=0 on’=g. ., 6n§=0 8N5=0
Pol. ener: Com.ener. T ry
nw) [FOr0 "y | OQ-{Rmiof nge) | @00 ngie)
Logrange mulfi Lagrange multi.

Gen.pot.ener Gen.com.ener.
[ o 0
it E1)

Generalized var. prin.
8f=0-~61°

trw) | @ fié (7, R.u)
! 1y

Gen. L-prin. Gen. F de V-prin.
sfi¢=0 81ig=0

B

FiG.
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