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The unified · theory of variational ·principles in nonlinear elasticity 

GUQ ZHONG-HENG (BOCHUM .and PEKING) 

THE PRESENT paper deals wi~h the most important variational principles in nonlinear elasticity -
the cla~sical potential energy theorem, the complementary energy theorem and two other com­
plementary theorems much di~ssed in the literature recently (Levinson's principle and Fraeijs 
de Veubeke's principle). It is shown that all these principles and their generalized versions can 
be derived from the virtual work principle in a unifying manner. The various principles joined 
then in a common frame constitute an organic complex. The flow diagram will convey the reader 
a picture of the interconnexion between the various principles. 

W pracy rozwaia SiC( najwainiejsze Zasady warianeyjne nieliniowej teorii SpfC(ZystoSci _... klasycz­
ne twier<izenie o energii potencjalnej, twierdzenie o energii uzupelni~.hlcej i dwa inne twierdzenia 
uzupelniaj~ce. sZeroko dyskutowane'we wsp61czesnej literaturze: twierdzenie Levinsona i Fraeijsa 
de Veubekc. Wykazujesic;;:i.e wszystkie~ wymi~ilione zasady i ich uogolnione wersje wyprowadzic 
mo:ina w sposob jednolity z zasady prac wirtualnych. Zasady te, po. \tj~u we wsp(>lne ramy, 
stanowiq organicznq calosc. Zamieszczony . w pracy schemat blokoW)' · pozwoli czytelnikowi 
w spos6b jasny uzmyslowic sobie wzajemne zaleino5ci mic;dzy poszczeg61nymi zasadami. 

B pa6oTe paCCMBTpHBaJOTCH CllMble Ba>f<Hbie BaPHaiUIO:iUibie npiUU.UUibl HeJIHHeiiHOft TeopBH 
ynpyrocm ~ J<JiaccH'teclfclH TeopeMa o nOTeHI,UI~Hoit 3Hepnm, TeopeMa o ~onoJJHHTeJIWlO• 
:mepi'HK H : ABe ,npyme ~ono.JtHHTe.ni.Hble reopeMLI nmpoKo o~aeMble B coBpeMeHHoA 
JIHTepazype: TeopeMhi JleBHHcoua · H <l>peit3a JI.e Bey6eKa. IloKa3biB&eTCH, qoro Bee nepe11Bc­
JieHHbie fiPHHlUUibl H roe o6o6meHlible BapHaHTbi MO>KHo B&meCTH eJI.HHbiM o6pasoM B3 
npmnuma BHpTYIJil,HbiX . pa6oT. 3TH npHHIUfiibi, IIOCJie noMeiUeHWI HX B OOillHe p8.MJQI, 
cocTaBJVIIOT e.l(HHyl<) ~- OoMeiUeliH&JI B pa60Te crpYJ<T'YPHaH cxe.Ma fi03BOJIHT llllft'reJDO 
OCMbiCJIHTL B38HMHbiC saBHCIQIOCI'If. Me:RQY OTAeJILHbiMH fiPHHIUUI8MH· 

1. Introduction 

THE PROBLEM of whether there exists in. the nonlinear elasticity theory a complementary 
energy theorem involving only the stress variable as in the linearized theory, has been 
widely discussed in recent years. The complementary principles hitherto prop()Sed can 
be divided into three groups. The representative of the first group is Reissner's principle 
based on the Kirchhoff stress tensor [1-5]. It has been regarded, however, as a theorem 
not in its truly complementary form because it also involves\ the displacement vector as an 
independent variable besides the Kirchhoff tensor. The next group is Levinson's principle 
[6-15] which is based only on the Piola stress tensor"' and once passed for the truly com­
plementary principle. Unfortunately, this principle is not always valid because the Piola 
stress-deformation gradient relation can be inverted provided, even in the simplest case 
of isotropy, -r* · -r(l) have at every point of the body distinct eigenvalues (however, it is 

( 1) "*" denotes the conjugation · of a tensor. 
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difficult in advance to know whether this requirement is fulfilled). OGDBN [14] has given 
a criterion to choose the suitable branch, nevertheless, the multi-valued inversion involved 
(for isotropy at least four distinct branches) would raise difficulties in application. Fraeijs 
de Veubeke's principle based on the polar decomposition is always valid [10-15]. But 
here, besides the Piola stress tensor, the rotation tensor is also involved as an independent 
argument. Again, it does not come up to the expectation for a truly complementary form. 
It seems that the appropriate formulation of the complementary theorem requires a further 
study. 

The aim of this paper is to show that all these variational principles can be derived 
from the virtual work principle in a unifying manner, the interconnection of the particular 
principles being given. 

2. Mathematical formalism 

In this paper the two-point tensor field method will be used [16, 17]. Let the reference 
configuration dl and the actual configuration r of the body EM be referted to two indepen­
dent curvilinear coordinate systems {X"'} and {x'}, respectively. Their corresponding 
basis vectors and matric tensors are 

The deformation of the body dl from at to r can be presented in the form 

(2.1) x = x(X) or x' = x'(X"'), . 

i.e. the. generic particle X of the body assumes the position x in the configuration r. 
All vectors with X as the application point" form a Euclidean space of 3 dimensions, 

denoted also by at, causing no confusion. Any element of space dl can be expressed in 
a linear combination of G"' or G"', for example, V== V"'G"' = V..tG"'. We have, for in­
stance, v = v1g1 = v1g1 similarly for space r. Consider now four tensor product spaces: 
dl®dl, 9t®r, r®rJl, r®r, the elements of which can be presented in a linear combination. 
of G..t®Gs, G..t®g, g1®G..t, g1®g1 (the covariant basis vectors can be replaced by the 
contravariant one. To avoid having to write numerous tensor product symbols, we adopt 
the convenient Gibbs dyadic notation), for example: 

R = R"'8 GAGB, s = S"''G..tg;, 

T = T;"'.g,G"', U = U1ig1gi. 

By introducing the dot product operation the elements of the tensor product space (of 
9 dimensions) become the linear transformations (or the tensors) from 3-dimensional 
space into 3-dimensional space, for example: 

W = R ·V= (R"'8 G..tG8 ) • (VDGD) = RA8 V8 GA = W"'G..t, 

w = T · V = (T1"'g, G A) · (Vs G8) = T1
"' VAgi = w1g1• 

The elements from dl®r or r®Bt are two point tensors. The order of dyads is essential. 
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THE UNlFIED THEORY OF VARIATIONAL PRINCIPLES IN NONLINEAR ELASTICITY 579 

"*" denotes the conjugation: R* .= RA8G8 G_., T* = Ti..tG ... g1• The unit elements (or 
identity tensors) of fJt®fJt and r®r are 

« 
I= G_.8G"'G~ = ~~G ... G8 = ... , 
» 
I - g g'gi - ~•g gi -- I} - UJ l ..1 - • • • t 

whereas the unit. elements of fJt®r and r®fJt 
<> 
I = KA.'G"'g, = g AI GAg' = ... ' 

>< 
I = giAg1GA. = g1_.g, G..t = ... 

. are the so-called shifters. With the aid of shifters we can transform a two-point tensor 
into a usual one, and vice versa. Replacing the tensor product between the dyadic basis 
vectors by a dot product, we obtain the trace of the tensor 

trR 4
' RABG"' ·GB= R~ ... , 

trS 4
' S~1 G..t · g1 = g~S~1 • 

The trace of a tensor is a scalar and the double dot product of two tensors also 

R:S 4
' tr(R* · S). 

The absolute differentials of the tensor fields R and U are 

where 

dR = (RV)· dX, 

dU = (UV) ··dx, 

RV= R8~AGBGcG.4, 
0 

jk i uv = u ;igJ~g . 

are the absolute derivatives. ( );..t and ( );1 denote the covariant differentiation in 91 
and in r, respectively. In the case of double tensor fields, the absolute derivatives must be 
understood as total absolute derivatives. 

R ·V = R8~A. G8 Gc · G..t = R8~A.GB, 

RxV = R8~..tG8 GcxG_. 

are the divergence and curl of R, respectively. The absolute derivatives of the unit tensor 
and shifter are zero. In the further discussion we assume that all quantities have been 

~ 

reduced in advance with the help of the shifter to one-point tensors and I will denote I. 

3. Strain and stress 

Denote the displacement vector of the particle X in the deformation (2.1) by 

(3.1) 

The deformation gradient 

(3.2) 

u(X) = x(X)-X. 

F = xV = l+uV 
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has a unique polar decomposition 

(3.3) F=R·U, 

in which U is the (right) stretch tensor and R is the t:otation tensor (proper orthogonal 
R* · R = R · R* = 1). U is positive-definite, for which the following relation is valid: 

(3.4) 
C is the so-called right Cauchy-Green tensor. Further, the Almansi strain tensor wili 
also be used: 

(3.5) 
1 I . 

E = 2 (C -I) = 2 [uV +Vu+ (Va) · (uV)], 

where 

Va = (aV)*. 

The Cauchy stress tensor t has a direct physical interpretation in describing the stress 
state. When it acts on the unit vector n in the configuration r, it gives the contact force 
of the unit area element with the normal vector n: 

(3.6) t·n=t.. 
t satisfies the Cauchy {force) equilibrium equation (body forces being absent in order to 
save the space): · 

(3.7) 

and the moment equilibrium condition 

(3.8) 

Equation (3.8) means that t is symmetric. For the purpose of the Lagrangian formulation, 
the Piola stress~ and the Kirchhoff stress tensor T have been introduced 

(3.9) """ N = F· (T· N) = a.t. = TN, 

in which N is the unit normal vector in the configuration at and O'a is the area ratio of the 
surfaee element after and before deformation. These stress tensors are interrelated with 
each other by 

(3.10) 

(3.11) 
(3.12) 

-1 

"" = Jt · F* = F · T, 
-1 -1 -1 

T = F·'f = JF ·t·F*, 

t = jF · T · F* = j"" • F*, 

where the superposed ( -1) denotes inverse, j is the vo!ume ratio of a volume ele~ent 
before and after deformation and J = 1/j. The Piola tensor "" satisfies the Boussinesq 
(force) equilibrium _equation 

(3.13) 

and the Kirchhoff tensor T satisfies the Kirchhoff {force) equilibrium equation: 

(3.14) (F· T) ·V= 0. 
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It is evident that a symmetric tensor T satisfies identically the moment eqQilibrium condi­
tion, whereas this condition for T is 

{3.15) 

The symmetry oft and 'T is always assumed in the subsequent considerations. Moreover, 
from the viewpoint of work the Jaumann tensorS has been introduced, which plays an 
important role in the formulation of complementary principles: 

(3.16) 

Substitution of 

1 
S = -.-(T·U+U·T). 

2 

-1 -1 -1 
T = F · -f = U · R* · -r = -t* · R · U 

into Eq. (3.16) leads to another form of the Jaumann tensor 

(3.17) 
1 

S = 2" (-r* · R+R* · -r). 

4. Conjugate variables and Legendre transformation 

The mathematical statement of elasticity is the one to one stress-strain correspondence. 
The hyperelastic material possesses a stored-energy function I (per unit volume in the 
reference configuration), which may be regarded as a function either of any strain measure, 
for example E, U etc. or of the deformation gradient F. But I depend~ on F only through 
a strain measure. For the sake of brevity, the symbol ~ will be frequently replaced by 
a superposed dot. In any virtual displacement u e &I the virtual work absorbed by the 
body, i.e. the increment of the stored-energy function, is given by the formula 

(4.1) t = Jt:(iv). 

The consecutive substitution of Eq. (3.12)2 , 1 into Eq. (4.1) leads to 

(4;2) t = (-r · F*):(iaV) = -r: [(liV) · F] = -r: [(oV) · (xV)] 

and 

(4.3) 

= -r:(oV) = -r: [(x+ii)V -xV] = -r:F, 

. • • 1 . 
E = (F· T):F = T:(F*·F) = T:- 6(F*·F) = T:E. 

2 

In extending the notion of generalized coordinates and generalized forces from analytic 
mechanics to mechanics of deformable bodies, any strain measure may be regarded as 
a generalized coordinate and the generalized stress obtained from the expression for 
E, [18, 19]. Taking the stretch tensor U-and substituting Eqs. (3.5) and (3.4) into Eq. (4.3), 
we obtain 

(4.4) 

S being just the Jaumann stress tensor as remarked above. 
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In the given four expressions for virtual work, only E and U are the increments of 
strain measures. Hence, also only the associated T and S are consistent with the requirement 
of the above-mentioned notion of generalized stress. In regarding E and U as the argument 
of 1:, from Bqs. (4.3) and (4.4) we have 

( 4.5) T(E) = dl: 
dE 

and 

(4.6) 
dl: 

S(U) = dU' 

respectively. In view of one to one stress-strain correspondence, T(E) and S(U) are in­
vertible in the global sense. The pairing of variables like those are called conjugate stress­
strain variables [19]. For every pair of conjugate variables, through Legendre transforma-

. tion, a corresponding complementary energy density may be defined: 

(4.7) 

(4.8) 

We also have 

(4.9) 

(4.10) 

The identity 

yields 

(4.1 I) 

l:c(T) = T:E(T) -l:[E(T)], 

fc(S) = S:U(S)-E[U(S)]. 

E(T)= ~' 
die 

U(S) = dS . 

S:U = (T· U):U = T:U2 = 2T:E+trT 

For commodity l:c and fc will conventionally be referred to as the first and second com­
plementary energy, respectively. It will be seen that the transformation (4.7) leads to 
Reissner's principle. 

Regarding 1: as a composed function ofF, Eq. (4.2) yields 

(4.12) dl: 
-r(F) = dF . 

The deformation gradient F involves not only strain, but also rotation. Hence the Piola 
tensor -r associated with F in Eq. (4.2) does not meet wholely the notion requirement 
of a generalized stress. But due to the form (4.2), to a certain extent, -rand F may also 
be called conjugate variables [19]. The rotational part ofF does not contribute to i. 
This may be seen from the following expression: 

(4.13) -r:F = -r:(R 0 U+R. U) = (-r* 0 R):U+-r:(R 0 R* 0 F) 

1 . . . . 
= T (or*· R+R* · -r):U + (-r · F*):(R · R*) = S:U +Jt:(R · R*). 
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The first term corresponds to the increment of pure strain while the last to the rotation. 
As a result of the antisymmetry of R · R* and the symmetry oft, the last term equals zero. 
In comparing with Eq. (4.4) this conclusion is quite obvious. F determines uniquely the 
strain and then the stress state, but a stress state may correspond to the same strain state 
under various rotations. The multivalued inverse of 'f(F) is entirely apprehensible. When 
'f(F) is invertible, in view of 

(4.14) S:Q = {'f*·R):U = 'f: (R· U) = 'f:F, 

the transformation (4.8) can be rewritten as 

(4.15) 

and then we have 

(4.16) 

It should: be remarked that fc('f) can be a composed function of 'f only through some 
stress measure independent of rotation, such as 'f* ·'f. The transformation (4.15) le~ds 
to Levinson's principle. 

In case of the lack of invertibility of 'f(F), in conformity with Eq. (3.17) and the in­
vertibility of S(U), the right-hand side of Eq. (4.8) depends on 'f and R, regarded simul­
taneously as independent variables. The second complementary energy may then be written 
as 

(4.17) £c[S('f, R)] = 'f:[R'· U(S)]-E[U(S)], 

which will lead to Fraeijs de Veubeke's principle. 

5. Principle of Yirtual work 

Let the body ~ be in equilibrium and occupy in the configuration fJt a domain V with 
a regular boundary A. Upon a portion Au of A the surface displacements are prescribed: 
nl..t., = 6 while upon the remainder A, the surface tractions per unit area in the configura­
tion 91 are assigned: TNIA, = TN, where N is the exterior unit normal vector to the bound­
ary in ut. We shall confine ourselves to the dead loading. 

Let the solution to the elasticity problem be called the real displacement field u and 
the real Piola stress field 'f. The nomenclature "ieal" is used in order to be distinguished 
from the following notions: 

1) K.inematically admissible displacement fields ;: which are those that are sufficiently 
smooth and satisfy the geometric boundary conditions 

(5.1) *I 0 U A.,= U. 

2). Statically admissible stress fi~lds 1: which are those that satisfy the force equilibrium 
equatiOn 

(5.2) 
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and the prescribed traction boundary conditions 

(5.3) I. NI.(, = i'N. 
For any independent admissible displacement field & and admissible stress field "'", the 

* following integral relation is valid 

(5.4) f ii·1·NdA+ f!·TNdA = fi· .1·NdA = f (;::)·VdV= f l:(&V)dV, 
. ..48 Ar · A Y . Y 

in which Eqs. (5.1)-(5.3) have been taken into account. The relation (5.4) has been supplied 
first by Vorobyev, and then repeated by Novozhilov in his treatise [20]. 

Consecutive substitution of u+ai and u for & in Eq. (5.4) and subtraction of the re­
sulting equations from each other lead, for the real stress, to the virtual displacement 
principle 

(5.5) J u. TNdA = J 'r:(iiV)d.V. 
Ar Y 

In a similar manner, from Eq. (5.4) we can obtain the virtual stress principle 

(5.6) f u ·. -r · NdA = f i-: (uV)dV~ 
Aa Y 

The virtual displacement principle is the starting point for derivation of the total potential 
energy theorem while the various complementary energy theorems can be derived from 
the virtual stress principle. Both principles originating from Eq. (5.4) may be conven­
tionally called the principles of virtual work. 

6. t1usical variational principles. 

Inserting Eq. ( 4.2) into the virtual displacement prinCiple· (5.5)~ . we obtain 

(6.1) J tav- fa· tNdA = o 
Y Ar 

and, consequently, 

(6.2) <5( J EdV- J u~ TNdA) = 0, 
Y Ar 

since T N is a dead loading. The functional 

(6.3) ll(u) = f E(F)dV -. f u · TNdA 
Y Ar 

defined for the class of admissible displacements is called the total potential energy. The 
formula (6.2) states that the real displacement makes the total potential energy stationary. 
Conversely, it will be shown that an admissible stress field "'" which satisfies the moment 
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equilibrium condition corresponds, through the constitutive relation (4.12), to the admissible 
displacement field u which makes 11 stationary. To this end, using 

(6.4) 
.. dl: . 

1: =- :F = -r:(av) = (u· -r)· v-u· (-r·V) 
dF 

and ill_.., = 0, we compute the variation of JI(a): 

(6.5) ii = J [(ti · -r) · v -a· (-r · V)]dV- J u · tNdA 
Y Ar 

= f il· (-r· N-TN)dA- f u· (-r· V)dV. 
Ar Y 

Fromfi = 0 and the arbitrariness of u in V and on A, it-follows that 

(6.6) -r·V = 0 in V, 

(6.7) -r· N = TN on Ar. 

Supposing .E(F) is a composed function ofF through C = F* · F, we have 

(6.8) 
dl: dE 

-r = dF = 2F · dC and 
dl: 

-r*=2-·F* 
dC ' 

the symmetry of dEfdC having been used.- From Eq. (6.8) it follows that · 

(6.9) -r·F* = F · -r* in V. 

This stress field -r is real because it not only corresponds to an admissible displace.ment 
field a, but .also satisfies the conditions (6.6), (6.7) and (6.9). The variational principle 
associated with the functional (6.3) is called the stationary principle of total potential 
energy. 

Finally, for the real displacement and real stress field, with the aid of the divergence 
theorem, Eq. (6.3) can be rewritten as 

Il= jEdV- fa·-r·NdA+ f u·-r·NdA = j[E--r:(uV)]dA+ f u·-r·NdA. 
V A A 11 Y A, 

By taking the following expression 

-r:(uV) = (F · T):(uV) = (uV):T+ [(Vu)· (uV)]:T 

1 1 . 1 = -2 [Vu+Vu+(Vu) · (uV)]:T+ 2 [(Vu)· (uV)]:T =E:T+ 2 [(Vu)· (uV)]:T 

into account, the total potential energy in the real state can be expressed in terms of 
real displacement and real stress: 

(6.10) Il'(u, T) = f{.E(E)-T:E- ~ [(Vu)· (uV)]:T}dV+ f 0 · F· T· NdA. 
Y Aa 

The meaning of Il' will be explained later. 
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We proceed now to derive the stationary principle of complementary energy, i.e. Reis­
ner's principle, from the virtual stress principle (5.6). Using the first complementary 
energy defined in Eq. (4.7) and taking account of Eqs. (4.9) and (3.5), we have 

(6.11) i-:(uV) = <5(F· T):(uV) = (F· T):(uV)+(F· T):(uV) 

= [(uV) · FJ:T+ [(Vu)· F]:T =[(Vu)· (uV)]:T+ [Vu+(Vu) · (uV)]:T 

1 1 . 
= Td[(Vu)-· (uV)]:T+ 2 [uV+Vn+2(Vu)· (uV)]:T 

= E: T + ~ tl {[(Vu) · (uV)]: T} = <~{r + ~ [(Vu) · (uV)]: T}. 

Substituting Eq. (6.11) into Eq. (5.6), we obtain 

(6.12) <~{J [r+ ~ ((Vu>={aV)):T]dv- Ju . F · T· NdA} = o. 
y Ag 

Here the displacement u and stress T occur simultaneously. The functional 

(6.13) Il'(f, a) = f { L"'(T) + ~ [(Vu) · (uV)]: T }dv- f i · F · T · NdA 
y A., 

defined for admissible displacement fields(l) and admissible stress fields(3) is called the 
total complementary energy. The formula (6.12) states that the real displacement and 
real stress make the total complementary energy stationary. The converse is also true: 
the admissible stress T and admissible displacement D which make nc(f, a) stationary 
correspond to each other and u satisfies the boundary condition (5.1). Thus they con­
stitute the solution to the problem. In order to prove the converse, it is necessary to rele­
ase the variable T from constraints (the force equilibrium equation in V). Incorporating 
also the surface traction condition into the functional, T becomes completely free 
of any restrictions. The introduction of the Lagrangian multipliers YJ and ~ (vector 
fields defined-in V and on A, respectively) furnishes a functional without subsidiary 
conditions: 

(6.14) IJc = J {l:'(T)+ ~ [(Vu)· (uV)]:T +YJ ' [(F · T) ·V]}dv 
Jl 

- fu·F·T·NdA+ J;· (TN-F·T· N)dA, 
A., Ar 

(2) The presence of the prescribed boundary value u in the surface integral on A., makes it possible 
to omit the condition (5.1) required for the admissible displacements, because this condition will appear 
as the natural boundary condition of the variational problem. 

(3) The definition of admissible stresses T undergoes also some modification: T are those stresses . - . 
-which ar~ symmetric and satisfy the equilibrium equation 

• 
and the boundary condition 

(F · T)·V = 0 

• 0 

F· f· Nj,., = TN . 

It must be remarked that T is always considered simultaneously with some ~ . .. 
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in which T, u, Y) and~ are independent free variables. Now temporarily keeping T, Y) and 

* ~unchanged, we calculate the variation of n~: 

(6.15) fJll~ = j {[(Vu)· (uV)]:T:+YJ · [(F · T) · Vl}dV 
V 

- f u. F. T. NdA- J ~. F ·l'. NdA 
A.l At 

= -f [(u-YJ)V]:i'dV+ j (YJ-i) · i' · NdA+ f (YJ-~) · i- · NdA, 
V A. Ar 

where i' = F · T is the increment of the Piola tensor field -r caused by li. -r may be regarded 
* as entirely arbitrary. From fJilc = 0 follows the interpretation of the Lagrangian multi-

pliers Y) and ~: 

(6.16) 

(6.17) 

(6.18) 

(u-YJ)V = 0 in V, 

on A.,, 

on A,. 

According to Eq. (6.16), the vector field Y) can differ from the displacement field at the 
most by a constant field. By virtue of Eq. (6.17) and continuity it follows that Y) = u in V. 
Furthermore, Eq. (6.18) implies ~ = u on A,. Elimination of YJ and ~from Eq. (6.14) 
yields 

(6.19) Ji•(T, a) = f {l.''(T) + ~ [(Vu) · (a V)): T +a· [(F · T) · V)} d V 
V 

- Ju·F·T·NdA- Ju·(F·T·N-TN)dA. 
A. Ar 

* This is a functional with two free variables T and u. Now with the aid of nc(f, u), we 
* proceed to prove the converse statement. Rewriting nc(f, a) as 

(6.20) .ll•(T, a) = J { l.''(T) + ~ [(Vu) · (a V)): T- (a V): (F · T)}dv 
V 

+ J (a-i)· F· T· NdA+ J u· TNdA 
A. Ar 

and calculating its variation 

* f{ d.Ec • 1 . (6.21) fJilc = dT :T+T [(Vu)· (uV)]:T+[(Vu)· (uV)]:T 
V 

-(liV): (F ·T) -(uV): (F · T) -(uV):(F· T)} dV 

+ Ju·F·T·NdA+ J (u-u)· fJ(F·T)·NdA+ f u·TNdA 
Au Aw Ar 
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f {[ dEc ·1 . ] • } = dT -2(aV+Va+(Va)·(aV)) :T+[(F·T)·V]·ia dV 

we finally arrive at 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

y . 

+ f<a-u)·6(F·T)·NdA- fa·(F·T·N-TN)dA, 
A• Ar 

(F· T)·V =0 in V, 

F·T·N = TN on A,, 

U=U on A.,, 

* Equation (6.25) confirms that T and a which make fic(T, a) (and then Ilc(T, a)) stationary 
correspond to each other through the constitutive relation (4.9). Thus T and a solve the 
problem. 

Making. use of Eq. (4.7) and comparing Eqs. (6.10) and (6.13), we find ne= -Il', 
i.e. for the real displacement and real stress there elists a ~omplementary relation between 
the total potential energy and total complementary energy: 

(6.26) 

Here r denotes the equality which holds only by the real state. It should be observed that 
II(a) and Ilc(f, a) are two· distinct functional& and Eq. (6.26) states merely that they 
have an equal value at the stationary point. 

7. Generalized variational principles 

Both classical principles are variational problems with subsidiary conditions and 
would be inconvenient in application. Consequently, the idea of generalized variation 
has been developed. The Lagrangian multipliers incorporate directly the constraints into 
the original functional to furnish an associated functional without subsidiary conditions. 
In fact, we have already done something of this kind in proving Reissner's principle. 

Let us now· derive the generalized functional from the total potential energy II(a), 
Eq. (6.3). a is the independent variable in II(a), but the stored-energy function X involved 
depends on a only through some strain measure, say E in Eq. (3.5). Incorporating Eq. 
(3.5) and the displacement boundary condition (5.1) into I!, the Lagrangianmultipliersa 
(the tensor field defined in V) and~ (the vector field defined on A.,) furnish 

(7.1) J} = f E(E)dV+ f g [aV+Va+(Va) · (aV)]-E}:crdV 
y y 

-J a· TNdA+ J (a-u) · ~dA, 
At A. 
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in which E, a, a and ~are independent variables. Temporarily keeping a and ~ unchanged 
• and using Eq. (4.3), we calculate the variation of ll: 

(7.2) lJll= f {(T-a):E+(IiV):a+(liV):[(aV)·a]}dV- f ii·TNdA- j ia·~dA. 
Y Ar A. 

Using 

J {(nV):a+ (uV):[(uV) · a]}dV = f (uV):(F · a)dV 
y y 

= f ai · F · o · NdA- f u · [(F · o) · V]dV 
A y 

as a result of the application of the divergence theorem, Eq. (7.2) becomes 

(7.3) lJll = f {(T -o):E- [(F · o) ·V]· ai}dV + f (F ·a· N -TN) · iadA 
Y Ar 

+ f (F· a· N-~· ildA. 
A. 

From the first term in the volume integral and the last surface integral, the interpretation 
of Lagi-angian multipliers follows: 

(7 .4) a = T in V, 

(7.5) ~=F·T·N on A ... 

As a result, we arrive at the following expression: 

(7.6) fl{u, T) = f{.E(E)-[E- ~ (uV+Vu+(Vu) · (uV))]:T}dv 
y 

- f u·TNdA- f (u-i)·F·T·NdA. 
Ar Au 

Here E is not an independent variable because it depends on T through the.constitutive 
• relation (4.5). The functional ll(a, T) with the two free variables u and T may be called 

• the generalized total potential energy. Computing the variation of ll(u, T) 

(7.7) ~!J = J {[ ~ (uV+Vu+(Vu) · (uV))-E] :T- [(F· T) ·V]· o}dv 
y 

+ f (F · T · N -TN) · udA+ f (u-u) · lJ(F · T)· NdA, 
Ar A• 

( dE) · * we can assert that u, T and E E depends on T through T = dE , which make ll(u, T) 

stationary, satisfy 

10 Arch. Mech. Stos. 4/80 
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(7.8) 

(7.9) 

(7.10) 

(7.11) 

U=U 

F·T·N = TN 
(F·T)·V=O 

on A,, 

on A,, 
in V, 

I 
E = T [uV+Vu+(Vu) · (uV)] in V. 

Guo ZaONo-HENo 

Equation (7.11) confirms that T through the constitutive relation (4.5) corresponds to 
u while Eqs. (7.8)-(7.10) assert that the corresponding pair u and Tare simultaneously 
the admissible displacement and stress and then provide a solution to our problem. The 

* variational problem associated with the free functional II(u, T) may be called the station-
ary principle of generalized potential energy. 

Making use of 

{7.12) 
1 1 

2 [uV+Vu+(Vu)· (uV)]:T = (uV):(F· T)- 2 [(Vu)· (uV)]:T 

. 1 
= (u · F · T) ·V-u· [(F · T) ·V]- 2 [(Vu)·(uV)]:T, 

the divergence theorem and Eq. (4.7) and changing the sign, the generalized total potential 
energy reduces to an equivalent form: 

(7o13) Jhu, T) = J {L'c(T) + ~ [(Vu) o (uV)]: T+ u o [(F o T) o V]} dV 
y 

- J u· (F·T·N-TN)dA- J ii·F·T·NdA. 
At A11 

This is just the free functional (6.19), which appeared in proving Reissner's principle. 
If Eq. (6.19) were called analogically the generalized total complementary energy, then 

* we would have a stationary principle of generalized complementary energy. Between II 

* and ne there also exists a complementary relation: 

* * (7.14) Il+IJC = 0. 

Equation (7.12) (and then Eq. (7.14)) holds for arbitrary u and T. Therefore, the generalized 
potential energy theorem and the generalized complementary energy theorem in essence 
are stationary principle~ of the same functional (with a different sign) and may be gener­
ally referred to as the generalized variational principle. 

8. Levinson's principle 

Assume now that 't'(F) is invertible. Using the second complementary energy defined 
in Eq. ( 4.15), we have 

{8.1) E = F:i- = i-:(uV)-ttri-. 
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Substitution of Eq. (8.1) into the virtual stress principle (5.6) yields 

(8.2) 6{f [Ec(-r)-tr-r]dV- f u · -r · NdA} = 0. 
Y Au 

For the functional 

(8.3) IIH-r) = f [Ec(-r) -tr-r]dV- f i · -r · NdA 
Y Au 

defined for the chiss of admissible stresses, Eq. (8.2) states that the real stress field -r makes 
the functional stationary. In the following the converse will be proved: the admissible 
stress field -r which makes Ilf stationary satisfies the moment equilibrium condition and 
has an associated displacement field satisfying the geometric boundary condition. Sup-

posing fc(-r) is a composed function of -r through K = -r* · -r, we have 

(8.4) 
arc a.tc 

F = ~ = 2-r. _dK . 

From the symmetry of a;; , the moment equilibrium condition immediately follows: 

(8.5) -r · F* = F · -r* in V. 

In order to be able to calculate the displacement from 

X 

(8.6) u(X) = J (F-1) · dX+tl(X0)), 

Xo 

the quantity F obtained from Eq. (8.4) must satisfy the integrability condition: 

(8.7) FxV = 0 in V. 

Instead of Lagrangian multipliers for the purpose of release from constraints, this time 
we introduce the stress tensor function 4-

(8.8) 'f = 4- X V' 

which satisfies identically the force equilibrium equation (3.13). Thus the variation of 
Ilf is 

(8.9) llf = f (F-1):(4-xV)dV- j u· ~· NdA. 
Y Au 

By making use of the identity 

(8.10) (F ~I): ( 4- x V) = (F x V): 4- + tr {[ (F* -I) · 4-] x V} 

and the divergence theorem 

(8.11) f tr[(F* · <i-) x V]dV = f F: (i) .x N)dA, 
y A 

Eq. (8.9) reduces to 

(8.12) llf = j (FxV):ibdV+ f (F-1):(4txN)dA- j u· ~·NdA. 
Y A Au 

10* 
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From the volume integral the integrability condition (8. 7) follows. Thus a vector 'field 
u(X) is determined from Eq. (8.6). This vector field becomes the displacement field provided 
it satisfies the geometric boundary condition. To this end, substituting the vector field 
u(X) into the first surface integral of Eq. (8.12), the integrand function assumes the form 

(8.13) (F-I):(.xN) = (uV):(titxN) = u· (.txV)·N-[(u··)xV]·N. 

On the basis of the Stokes theorem which states that the flux of the curl of any vector 
field through a closed surface equals zero, the two surface integrals reduce to 

(8.14) f u · (.x V)·NdA- j u · ~ · NdA = j (u-u) · ~ · NdA 
A A., A 11 

and, consequently, 

(8.15) 

where i-l..t, = 0 has been used. Thus the proof of Levinson's principle is completed. 
With the help of Lagrangian multipliers, the functional without subsidiary conditions 

may be similarly arrived at: 

(8.16) llf(-r, u) = j [i'c(-r)~tr-r+u· (-r· V)]dV 
y 

- j u·-r·NdA- j u·(-r·N-TN)dA, 
Au Ar 

the variation of which is 

(8.17) bllH-r, u) = j [(F-1-uV):-f+ (-r· V)· il]dV 
y 

+ j (u-u)· t· NdA- j u· (-r·N-TN)dA. 
A., Ar 

* From t511~ = 0, follow 

-r·V = 0 in V, 

uV = F-1 in V, 
(8.18) 0 

-r·N =TN on A,, 

U=U on A,. 

Equations (8.-18), (8.5) and (8.7) assert that-rand u are real stress and displacement fields. 
The variational principle associated with the functional (8.16) may be referred to as the 
generalized Levinson's principle. 

For the real state, the following identity holds: 

(8.19) 

and, consequently, the complementary relations: 

(8.20) * * 11 +11f r 0, 11 +/1f r 0. 
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9. Fraeijs de Veubeke's principle 

In case of the lack of invertibility of -r(F), Levinson's principle is invalid. By making 
use of the second complementaty energy defined by Eq. (4.17) 

(9.1) £c[S(-r, R)] = -r:[J. · U(S)]-E[U(S)], 

the virtual stress principle leads to Fraeijs de Veubeke's principle based on the polar de­
composition. For this case Eq. (8.1) remains valid. Substituting it into the virtual stress 
principle (5.6), we have 

(9.2) t){ f [ic(S)- tr-r]dV- f fa· -r · NdA} = 0. 
V A. 

For the functional 

(9.3) llH-r,R) = f {Ec[S(~,R)]-tr-r}dV- f d·-r·NdA 
V A. 

with the Piola stress tensor -r and the rotation tensor R as an independent variables, Eq. 
(9.2) states that the real stress field T and the real rotation field R make ll~ stationary. 
The converse is true: the admissible stress field T and the rotation field R which make ll~ 
stationary satisfy the moment equilibrium condition and possess a unique associated dis­
placement field u consistent with geometric boundary conditions. Thus these -r and R are 
the solution to the problem. It should be noted that the moment equilibrium condition 
is now not guaranteed by . the structure of the function £c as in Levinson's principle. The 
associated displacement means the displacement calculated in the following way: starting 
from -r and R, by virttJC of Eq. (3.17) and the invertibility of S(U) compute R · U, and 
then on the basis of Eqs. (3.2) and (3.3) perform the integration 

X 

(9.4) u(X) = J (R · U -1) · dX+u(X0). 

Xo 

The integrability condition is 

(9.5) (R · U) x V = 0 in V. 

Making use of Eqs. (4.10) and (3.17), bearing the symmetry of the stretch tensor U in 
mind and introducing the stress tensor function 4- as in Eq. (8.8), the integrand function 
in the volume integral of the variation of ll~ assumes the form 

(9.6) disc :S-tr'i' = U:('i'*·R+T* ·R)-tr'i' = i-:(R · U -I)+T:(R · U) 

• 1 • 
= (R · U -1):(4-x V)+ T (T· U ·R*-R ·U · -r*):(R · R*). 

Using the identity (8.10) and the divergence theorem (8.11), we obtain the variation of 
[le, 

2. 

http://rcin.org.pl



594 Guo Zuo~HENG 

(9.7) JiJ= f{[R·U)xV]:.+ ~ (-r·U·R*-R·U·T*):(R·R*)}dv 
V . 

+ f (R·U-1):(4-xN)dA- f o·"i-·NdA. 
A A• 

From the volume integral we arrive at the integrability condition (9.5) and the moment 
equilibrium condition: 

(9.8) -r·U·R* = R·U·-r* m V. 

If we replace F by R · U, the fu~ther procedure to obtain the displacement field u(X) sat­
isfying the geometric boundary condition is precisely the same as for the case of Levinson's 
prin~iple. Thus Fraeijs de Veubeke's principle is entirely proved. Similarly, the correspond­
ing generalized functional is 

(9.9) ll~(-r, R, u) = j {fc[S(-r, R)]-trT+u· (-r· V)}dV 
y 

- j u· -r· NdA- j u· (-r· N-TN)dA 
A 8 Ar 

and, consequetnly, its variation 

(9.10) 6ll~ = f [(R · U -1-uV):-i'+ ~ ('t · U · R* -R · U · 'r*):(it · R*)+ (-r ·V)· li]dV 
V 

+ f (a-u)·'i'·NdA- f il· ('r·N-TN)dA . 
..4. Ar 

* From lJII~ = 0, it follows that 

'f·V = 0 . in V, 

-r · U · R* = R · U · 't'* in V, 

(9.11) aV = R·U-1 in V, 

on A,, 

on Au. 

In addition to Eq. (9.11) the constitutive relation 

(9.12) U = U(S) = u[ ~ (T* · R+R* · -r)] 

and the orthogonality of the rotation tensor 

(9.13) R·R* =1. 

constitute the complete set of relations for our problem. The variational problem associated 

* with the functional II~ may be referred to as the generalizedFraeijs de Veubeke's principle. 
Similarly, the following complementary relations can be obtained: 

(9.14) * * II +Il~ ' 0, II +Il~ ' 0. 
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10. Flow diagramm 

The following diagramm (Fig. 1) gives a clear picture illustrating the interconnexion of 
the diverse variational principles derived from the virtual work principle in unifying manner. 

Generalized var. prin. 
ori .. o-o~c · 
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