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On numerical treatment of large
elastic-viscoplastic deformations

K. -D. KLEE and J. PAULUN (HANNOVER)

MATERIAL equations for elastic-viscoplastic behaviour are discussed following the papers of
Bingham, Hohenemser, Prager and Perzyna. For the numerical treatment the flow rule of Pe-
rzyna is modified. It can be shown that the given rule leads to the well-known Von Mises flow
rule as a limit case. For moderately large rotations and strains of a solid a special incremental
form of principle of virtual work is given in Lagrangean description. Green’s strain tensor and
the second Piola-Kirchhoff stress tensor are used. The coupled physical and geometrical non-
linearities are described and an incremental form for the elastic-viscoplastic material equation .
is formulated. Some critical remarks on the numerical solution for elastic-plastic deformations
by an elastic-viscoplastic algorithm are given. Plane stress problems, e.g. a perforated strip,
are calculated numerically using triangular finite elements with quadratic displacement functions.

Na podstawie prac Binghama, Hohenemsera, Pragera i Perzyny oméwiono rownania konsty-
tutywne dla cial sprezysto-lepkoplastycznych. Dla zastosowania metod numerycznych zmody-
fikowano prawo plyniecia Perzyny. Mozna wykazaé, ze prawo to prowadzi w przypadku gra-
nicznym do znanego prawa Von Misesa. Dla umiarkowanie duzych obrotéw i odksztalcen ciala
stalego podano w opisie Lagrange’a zasadg prac wirtualnych w specjalnej postaci przyrostowe;.
Zastosowano tensor odksztalcenia Greena i drugi tensor naprezenia Pioliego-Kirchhoffa. Opi-
sano sprzezenie nieliniowosci fizycznych i geometrycznych i sformutowano postaé przyrostowa
roéwnan stanu dla materialow sprezysto-lepkoplastycznych. Podano pewne uwagi krytyczne
dotyczace rozwiazan numerycznych dla cial sprezysto-plastycznych na podstawie algorytmu dla
cial sprezysto-lepkoplastycznych. Przykiad obliczeri numerycznych dotyczy plaskiego stanu na-
prezenia dla perforowanego pasma rozwigzywanego za pomocg trojkatnych elementéw skon-
czonych z kwadratowymi funkcjami przemi
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1. Introduction

THE IDEA of describing plastic material behaviour by a viscoplastic flow rule is of recent
date. It was created in search of new application domains for the method of finite elements.
The first developments in the study of viscoplastic problems were laid by BINGHAM [1]
and HOHENEMSER, PRAGER [2]. Further developments of the idea of Hohenemser, Prager
were given by MALVERN [3] and PErzynA [4). The numerical treatment of viscoplastic
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materials was carried out by ZIENKIEWICZ, CORMEAU [5], CORMEAU [6] and NAGARAJAN,
Porov [7]. They showed that the viscoplastic model is physically reasonable and leads
to a simple numerical algorithm for the finite element solution of plastic deformations.
A theoretical proof. of the plastic solution as a viscoplastic limit case for a modified Perzyna
flow-rule is given in our paper. Till now the numerical applications were restricted to
problems with small deformation gradients, i.e. only geometrical linear cases were cal-
culated. Recently the influence of nonlinear effects has been investigated by KANCHI
et al. [8]. In our paper the geometrical nonlinearity is treated by using Lagrangean descrip-
tion. For this purpose a special principle of incremental virtual work is formulated, in
which all nonlinear terms due to Green’s strain tensor are included. The application of
the displacement approach in the finite element method leads to a system of nonlinear
equations which can be solved by an implicite iteration algorithm.

The external load-time-function can be approximated by a combination of load-time
increments up to any desired degree of accuracy. For plastic deformations as a limit case
the time iteration at each load step is carried out until no further inealastic deformations
take place. In connection with this a critical remark on the so-called “one shot solution”
introduced by ZiENKIEWICZ, CORMEAU [5] is given.

2. Constitutive equations

The first flow rules in the developments of viscoplastic stress-strain relations were
given by BINGHAM [1] and HOHENEMSER, PRAGER [2]. In 1922 Bingham postulated a flow
rule for an ideal fluid:

9ij

@.1) ap = 7;—( VT —t0) =

In this rule the components & of the viscoplastic strain rate tensor depend on a fluid
constant 5, a measure of overstress given by the second invariant J, of the stress deviator
components oj; and a constant static yield stress 7,. Later HOHENEMSER, PRAGER [2]
formulated an extended stress strain relation including elastic strains and hardening effects,
here given for deviatoric strain rates

= 1 1 F gt T U;J'
2.2 & =-— 0+ ——(yYJ2—10—20) 1 L
(2.2) =5y 27}“’2 o I/z)l/fz
The hardening is described by the second invariant I, of the strain tensor and u denotes
the shear modulus. PERZYNA [4] generalized this rule
% 1 ., oF
&y = 2u o1+ y (P(F)) g
" |0 for F<0,
(@) = |\®(F) for F>0,

by introducing the flow function

@3)

VT
@4) F=t_,
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given for a isotropic hardening material with a hardening parameter ». With a function @
and a viscosity parameter ¥ it is possible to adapt this rule to experimental results. This
rule can be treated as a generalized form of the rule by MALVERN [3], which was given
for rate sensitive materials.

In the following we focus our attention on materials with isotropic hardening, where
the influence of hydrostatic stresses on the inelastic behaviour can be neglected. For F we
introduce the Huber-Mises flow condition. This leads to

@) 87 = FCD(/T—x)) '/‘TJL ,

from which we derive the invariant form

(2.6) " = 1/— Efeyf = ?(¢(VJ2 —x)).

According to HOHENEMSER, PRAGER [2], we introduce a more generalized linear relation
for the rate of hardening

@7 % =aVip.
With Eq. (2.6) this leads to
(2.8) o= KOY %), B:=ay.

With a constant 8 and }/J, as a time-dependent control value, which can be evaluated
as a polynomial time function of finite degree, we get for Eq. (2.8) in the case of a linear
function P a linear differential equation. For this the solution can be given in the follow-
ing form:

@ 0 = cexp(~p0+ VT Vi /T

It can be shown that theory of plasticity for isotropic hardening is achieved as a limit
case of viscoplasticity. In this limit case « in Eq. (2.7) is finite, and ¥ (and so f) in Eq. (2.8)
tends to infinity and we derive

(2.10) a<w, fow=x=yLh x=V7T, _

which for the linear case is an obvious result of Eq. (2.9). With Eq. (2.6) into Eq. (2.5)

and Eq. (2.7) it follows that

@.11) | = Vip S _ % %
i 2 A

Using the limit case (2.10) the viscoplastic flow rule can be compared with the wellknown
plastic flow rule for isotropic hardening material:

jz 0',
@.12) @ 2J; , a=.§_c.

i 3 -y
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As a result the two flow rules are identical and the parameter o is proportional to the
plastic tangent modulus ¢ derived from the static yield curve. For a nonlinear function @
the derivation of the limit case is more complicated but leads to the same results.

For large deformations we introduce a linear and isotropic relation between stress-
and elastic strain-rates in Lagrangean description

(2.13) Sie.w G b5,

with the Green strain tensor E, and the second Piola-Kirchhoff stress tensor Sg;. In
the elasticity tensor

¢

T+ (51:,\: 51.N‘|‘ an. 6nm) s

(2:14) Cxiun =
¥ denotes the Poisson ratio and with the assumption » = const, the Young’s modulus ¢
can be determined by the given transformation formula (see Fig. 1), where the first Piola-
Kirchhoff comparative stress o, and the comparative displacement gradient e, are used.

6’ SV
a_— S, (£,) from test
a.s,(E,)
;o
A
arc!an C
\ar"fan .arctan C(E,)
a4 =% &,
0 bb E,

FiG. 1. Transformation of stress-strain curve and Young’s modulus (:‘

The modulus (!," can be assumed as constant or variable with E,, (see Fig. 1). For our
flow rule we also choose Lagrangean description

EZ = (VT %)) 1/_ ;
219 s o
J, = 'ES;fNS;(N; !EP = 'E'E}:NE:;N'

In this case the hardening parameter is to be determined by the transformed static stress-
strain curve.
3. Principle of incremental virtual work for large displacements

For a material and spatial description Cartesian coordinates with coinciding base
vectors are used.
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Conf. at time t

_ Conf. at time
=x+dx t=tear

Fi1c. 2. Configurations of a body.

u denotes the displacement vector and Au its (finite) increment. For the current con-
figuration at time ¢ the principle of virtual work is stated as

@) [ Sxr8Exedv— [ txdugdd = 0.
(Vo) (4p)

In this equation the interior body forces and the inertia body forces are neglected. #x is
the vector of the given surface tractions on A4, and with 8Eg, we denote the virtual Green
strain tensor derived from the virtual displacement field dug. The same principle holds

= +
at time ¢
- s
(32) [ SewdEiadv— [ te8licda = o.
(Fo) (4p)

Time ¢ corresponds to a neighbouring configuration which was reached after a finite
time and deformation step from the current configuration. The increments of the displace-

ments, stresses, strains and surface tractions are defined as follows:
+ +

+ + *
Aug = ug—uyg, ASgy = Sxr—Sge, Atx = tx—Ix,
1
(3.3) AdEg . := 75 (Aug 1+ Aup g+ Auiyg gting, 1+ tipg, x Athpg 1+ Athpg g Athg 1)

The virtual displacement field 8iix in Eq. (3.2) can be reduced to a virtual field d4ug of
displacement increments:

(3.9 Stigy, = (8(ugx+Auy)),. = ddug .,
because the neighbouring configuration is reached by the known current configuration.
+
Then it can be shown that the variation of Eg, is equal to the variation of the incremental
+
strain tensor. Therefore the principle at time ¢ is simplified to
(3.5) [ (Sxe+ASk)84EgdV— [ (ix+Aix)8dugdd = 0.
(Fa) (Ap)

In order to avoid small differences of large numbers in the above expression, we replace
in the principle at time ¢, Eq. (3.1), dux by 84ug and so 8Eg, by

(3.6) SAEYS : — 7‘ (B, + Oty g+ OMiye, xtine 1+ b x 3 03e )3
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(see PAULUN [9]). Taking this into account and by subtracting Eq. (3.1) from Eq. (3.5),
a simplified principle of incremental virtual work

(3.7) [ ASxid4Eg dv+ [ Sgwduyxddup dV— [ Atgddugdd =0
Vo) ] (4p)
1s achieved.
In the following the proof of the substitution of dux by 4ug in the principle at time ¢
is given.

Fie. 3. du, 63, d4u as the ‘admissible virtual displacement field in all configurations.

In Fig. 3 the configurations at time ¢ with an admissible virtual displacement field du
and time ?with 8% are defined.

With the mappings
p(x) =%, ¢eC!, ¢!
p(x) = du, P = o,
the following theorem is given:

The set of all mappings V’ constructed by admissible y is equal to the set of all ad-

missible ﬁ,
(3.9) {¥lpadm.} = {ypadm.}.
That means 'y delivers an admissible virtual displacement field at time ‘.
Proof:
0) ++(;E) small:

’P(x) v(p~'(X)) = p(x) small (presumption),
(i) % satisfies homogeneous boundary conditions:

3

ex.
¢9) i .
Y i=9eQ@

j,,' = @(4,) (presumption)
treE + —1 A +
Y (Wi, = v~ ' ™)) = (X4 =0,
(i) ¥ eCl:
v, ¢~ e C! (presumption)
T -1 1
=y :=ypop leC.
In the proof (ii) the additional presumption was used which claims that the set of material
points with geometrical boundary conditions does not change in time.
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As a conclusion du and 8ul are admissible virtual displacement fields at any time. Thus
it follows that the difference 8/u is also an admissible virtual displacement field at any
time,

4. Finite element formulation and solution algorithm
4.1. Finite element description

For the finite element formulation an incremental form of the constitutive equations has
to be evaluated:

1+4t

(4.1) EKL = f Em.d'r = E-'KLA:-

]

In Lagrangean representation the additive decomposition of elastic and viscoplastic
parts of strain increments are used. With these assumptions the incremental stress-strain
relation becomes

ASg; = Crrun(4Eyy—ASyy),
*, — 1
'."(P/Jz—"> =

VJ2

Introducing this equation into the principle of incremental virtual work, Eq. (3.7), we
get the basic equation for the numerical process:

4.2)

@3) [ 04Ex, CxomnAEwndV At [ n0AEx, CrrpnSiund?

(Vo) (Fo)
+ [ Skedluy xlu dV— [ AtxdAugdd = 0.
(Vo) (4p)

In the finite element formulation the displacements u are described by a shape function
matrix & and by the vector V of nodal displacements

(4.4) u=QV.

By additive splitting of the column matrix AE of incremental strains, evaluated from
Eqgs. (3.3), and (4.4),

(4.5) AE = [H+U(V)N+L(4V)N]AV,

it is possible to calculate geometrically linear or nonlinear cases. In the linear case only
the product HAV remains. The matrices H and N contain derivation terms of the shape
function matrix Q, the matrices U and L depend on the nodal displacement vector V

and, respectively, its increment AV. Introducing Eqgs. (4.4) and (4.5) into Eq. (4.3), a system
of algebraic equations for the incremental displacements is achieved:

(46)  [K+Keu(V)+Kes(S)+Kee(S, 41, 7)]4V
= RGI+RD(S’ Af, 7])+RGP(V; ss At! '?)"'RG(V, AV)
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4.2. Numerical iteration process

In Eq. (4.6) the matrix of coefficients is decomposed — due to Eq. (4.5) — into an
elastic-geometric linear part K,; and additional parts including geometrical nonlinearities
(subscript G) and inelastic nonlinearities (subscript P). The same notation is used on
the right side of Eq. (4.6). The coefficients depend on the values of the beginning and
the end of a time-load step and on the chosen value of a time-load increment.

In order to get a good convergence the nonlinear terms of AV are integrated into Rg
on the right side of Eq. (4.6). This system of nonlinear equations can be solved by a nu-
merical iteration process. Such a process can base on the Euler extrapolation rule as an
explicit time integration rule. For this rule and in the case of geometrical linearity
CorMEAU [6] has developed a condition of stability for the time step

@7 b el
V3icy
By using such a rule, the coefficient matrices in the algebraic equation (4.6), which depend
on the current stresses and strains, are constant during a time step interval. This leads
to errors in the iteration process. Therefore we introduce the following implicit iteration
scheme:
AE = [EP(1-0)+Ex¥ 64,

4.8) . )
j= I:E:?I-l =E:P! 66[03 l]$

n denotes the number of time increments and j the iteration index. For & = 0 the explicit
iteration scheme follows. The first iteration step (j = 1) is carried out explicitly according
to the predictor-corrector method. In the case of geometrical nonlinearity and the explicit
iteration scheme, stability is only reached for the half value of Cormeau’s time step in
Eq. (4.7). The numerical results show us that the implicit scheme is more stable.

In the numerical process the important case of elastic-plastic material is realized by
an iteration process with constant load until a state with » = ]/f (see Eq. (2.10)) is re-
ached. The external load can be applied immediately — a so-called “one shot solution™
— or in a finite number of load increments as shown in Fig. 4.

24t "one shot solution**
o e
3 4

2] 3
1 o g
1 steady states (with F=0)

statical elastic viscoplastic solution

~
by !

external load

= —

E) visopplastic effective strain E,

r

FiG. 4. Iteration processes for elastic-viscoplastic and elastic-plastic deformations.
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4.3. Critical remarks on “one shot solution

In plasticity the final strains depend on the load history. In the “one shot solution”
the production of inelastic strains takes place when the external load has been fully applied
and so the influence of loading history is excluded. As shown in the example (Fig. 5), the

- plane

initial yield surface

1
60!'

FiG. 5. Different inelastic strain tensor for plastic and “one shot” viscoplastic solution,

final viscoplastic strain tensor has the same direction as the final stress tensor. For the
given stress history the final plastic strains which are calculated as the sums of plastic strain
increments normal to the current yield surface differ from the viscoplastic strains of “one
shot solution”. If the affinity in load history is not given, the external load has to be applied
in a finite number of increments.

5. Example

A perforated strip under uniaxial tension is investigated using triangular elements
with quadratic displacement shape functions (Fig. 6).

The strip consists of an aluminium alloy with strain hardening, idealized by a linear
hardening function. For the calculation of the stress distribution a “one shot solution”
was used. In Fig. 7 the distribution of nominal stress o, in the minimum section B-A4
in dependence of time is given. The steady state can be compared with the measured
values of THEOCARIS, MARKETOs [10]. A good agreement of the numerical results with
the experimental one can be seen (Fig. 8). In Fig. 9 the final plastic zones for the loads
IV (t = 0.4Y,) and VI (f = 0.53Y,) achieved by the finite element process are compared
with the experimental ones.

In the upper part the curves differ more than in the lower one. The reason for that is
the relatively rough element subdivision in this region. In Fig. 10 the development of
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Fig. 10. Measured and calculated maximum displacement gradients &, for different loads.

the maximum displacement gradient &, given as a function of the applied external load,
measured by THEOCARIS, MARKETOS [10], is compared with the given finite element cal-
culations based on an implicit and explicit integration rule, respectively. The latter one
‘was achieved by ZiENKIEwICZ, CORMEAU [5] using a geometrically linear calculation.

6. Conclusion

In the given example the influence of geometrical nonlinearity is not remarkable
because the displacement gradients are comparatively small. The influence of a geometrical
nonlinear calculation increases with growing displacements. The proof that the results
of the nonlinear theory are more accurate than those of the linear theory is given by KLEB
[11] by using equilibrium conditions.

An advantage of the presented numerical viscoplastic solution algorithm is the flexibility
in material description. It is possible to calculate viscoplastic, plastic or creep behaviour
with one program. By using this algorithm for plastic material it is not necessary as in
the method of initial stress, for example, to fulfill the flow condition after each incremental
step. Hence the simulation of an elastic-plastic deformation process by an elastic-viscoplastic
solution algorithm is logically simple and numerically most effective.
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