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Analysis of necking in cylindrical bar of hardening materials 

L. DIETRICH (WARSZAWA) 

THE PROBLEM of necking in an axisymmetric tension specimen made of a strain-hardening ma­
terial is investigated by means of a numerical procedure. The developed condition of necking 
depends on the hardening rate of a material and length to the diameter ratio of a specimen. 
The results of the experiments are in good agreement with the theoretical predictions. 

W pracy przedstawiono numeryczn~ analizct procesu tworzenia sic; szyjki w rozci~ganej, osiowo­
symetrycznej pr6bce wykonanej z materialu ze wzmocnieniem. W otrzymanym warunku po­
wstanie szyjki zalezy od modulu· umocnienia materialu i stosunku dlugosci do srednicy pr6bki. 
Przeprowadzone doswiadczenia potwierdzaj~ wyniki teoretyczne. 

B pa6oTe npe,~:tCTaBJieH ~CJieHHbtit aHamt3 npo~ecca o6paaoBilHWI . ropJIOBWibi B paCTHrH~ 
BaeMoM, ocecHMMeTplf'IHOM o6paa~e, H:3rc;:>ToBJieHHoM M3 MaTepH:ana c ynpoqsem{eM. B nony­
'tleHHoM yCJIOBHH B03HHKHOBeHHe i:'opJIOBWibl 3aBHCH:T OT MO,J:tyJVI ynpoqseHHH MaTePHaJia 
H oT ornoweHH.R ,J:tJIWibi K ,J:tBaMeTpy o6paa~a. IlpoBe,~:teHHbie 3KcnepHMeHTbi no,J:tTBeJ?>«,J:taiOT 
TeopeTH'tlecKHe pe3ym.TaTbi. 

l. Introduction 

THIS PAPER deals with the phenomenon of necking in a circular cylindrical bar pulled in 
tension. The condition of neck formation and the influence of the hardening rate and 
dimensions of a specimen on the onset of necking is considered. 

The range of uniform strain under uniaxial tension can be under some circumstances 
much greater than the value of strain at which load reaches maximum. In 1955 KELLER [I] 
(see also [2]) observed that for a specimen made of zirconium and subject to tensile s~tresses 

at elevated temperature (200-370°C), the necking initiated at the strain ten times greater 
than the strain at maxim_um load. A similar effect was also observed for specimen made 
of zinc and tensile at room temperature [3]. 

General conditions of necking for an elastic-plastic material with 'hardening were 
considered by MILES [4], CHENG, ARIARATNAM and DUBEY [5] making use of the mathema­
tical theory of bifurcation. They established that the onset of necking depends on the 
dimensions of a bar. Bifurcation occurs nearer to the maximum-load point for slender 
bars than for stubby ones. 

Also the results of numerical analysis [6, 7] showed that necking appears beyond the 
maximum-load point and that the onset of necking is affected by the initial length to the 
diameter ratio. CHEN [6] used a generalized plastic flow theory for large deformation and 
assumed an imperfection to initil\te necking. For a given power of the hardening law and 
initial length to the diameter ratio of a specimen egual to 2 stresses and deformations 
were calculated by a step-by-step method. Unloading, which appeared at some instant 
at the ends of the bar, was treated as the onset of necking. 
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390 L. DIE'IRICH 

The finite element method was used in the analysis of necking by NEEDLEMAN [7]. 
The onset of necking ·was determined as a bifurcation from a state of uniform. tensile stress 
based on Hill's theory of bifurcation. Assuming a power hardening law, numerical cal­
culations were performed for two values of initial length to the diameter ratio (equal to 
4 and 2) and two different types of end conditions (cemented ends to rigid grips and shear 
stress free ends). 

The effect of specimen dimensions on the onset of necking was also pointed out in the 
analysis of necking of tensile specimen under plane strain conditions by CowPER and 
ON'AT [8] as well in the analysis of stability of an elastic cylinder under uniaxial stress by 
WESOLOWSKl [9]. 

In this paper the instant at which necking occurs is determined from a comparison 
of increments of load for · the uniform deformation mode and the localized, in a central 
region of the ,~pecimen, deformation mode. The load for the localized deforptation mode 
as a function of the hardening rate of a material and the ratio of length to the diameter 
of the specimen is calculated by means of a numerical procedure in which the plastic flow 
problem for the hardening material is formulated as a succession of incrementa] problems. 

2. Basic equations 

The method of solving axially-symmetric plastic fiow problems with hardening of 
a material taken into account which will be used in this analysis .of necking was described 
in details in [10]. In this section only the basic equation and method of the numerical 
calculations used in the analysis are presented. 

For the axially-symmetric case we have two equations of equilibrium 

(2~1) 

fJ-c~% O(J% T~% 0 
ar+ az +-,- = · 

The Tresca yield condition for materials with isotropic hardening takes the form 

(2.2) 

where the yield point in shear is dependent on the path of plastic strains e1 defined as 

(2.3) 

If we assumed the Haar-Karman criterion in the form 

(2.4) 

the set of equations for stresses becomes statically determinate (i.e. the equations for 
.stresses may be solved independently of the velocity equations) under the condition 
that the distribution of the yield point in shear k(r, z) is known over the plastic region. 
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One can point out that the, set of equations (2.1), (2.2), (2.4) is hyperbolic [11; 12] and 
can be solved by means of the characteristics method. The equations of the characteristics. 
are 

!!~ = tan(qJ -45°) 
dr 

called as Cl, 

(2.5) 
dz 
dr = tan( qJ + 45°) called as {J, 

where qJ is the angle betw~en the 0'1 and r-directions. For a varyjng yield .. stress -k, the 
relationships along the characteristics' diractions are 

ok ak k 
dp-2kdrp = Tr dz- Tz dr+ -,.- (dz -dr) along C(-lines, 

(2.6) 
ak ok k 

dp+2kdrp = Tz dr- Tr dz- r (dz+dr) along {1-lines, 

where p = 0.5 (a1 +a2). 
The veloCity components v, Vz along the r and z-directions are determined by the 

incompressibility condition 

(2.7) 

and the isotropy condition 

(2 8) OV,. OVz ( OV,. OVz) 2 . O 
· oz + Tr - Tr - oz tan rp = · 

The system of Eqs. (2. 7) and (2.8) ·is also hyperbolic. The relationships along the char­
acteristics' lines are the same as for ~ homogeneous, perfectly-plastiq material [13]: 

(2.9) 

d ( 
v,. dz 

dv,.+ Vztan rp-45°) =---
2
-

r cos qJ 

3. Numerical method 

along C(-lines, 

In the present paper the numerical procedure for the axially-symmetric necking problem,. 
with hardening of a material taken into account, consists in dividing the deformation 
process into a number of stages. In each of the stages we calculate: . 

stresses from Eqs. (2.5) and (2.6), 
flow velocities from Eqs. (2.9), 
components of the strai~ rate tensor by means of numerical differentiation of the flow 

velocity c()mponents, 
displacement for each particle of the plastic zone assuming that in a sufficiently small 

time increment the flow velocities are constan~, 
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the value of the hardening parameter from Eq. (2.3) for each particle of the plastic 
zone, 

the 4istribution of the yield point non-homogeneity based on the assumed stress­
~train relationship of a material. 

In this procedure the problem of plastic flow at the instant when necking appears 
u~der the tension of an axially-symmetric rod made of a hardening material is formulated 
.as a succession of incremental problems for a perfectly plastic~ non-homogeneous ma­
terial. On the basis of a comparison of loads for two stages of deformation, we are able 
to calculate the increment of load which produces a definite elongation of the bar for 
the local deformation mode. As a starting point the velocity field proposed by· EASON' and 

z/R0 

~~~:::....~-JL¥.-_....l~~E;;....__~ FIG. 1. The slip-line field for circilar cylinder pulled 
r/R0 in tension. 

SHIELD [14] has been assumed. The plastic flow is confined to the material below A 0 

(Fig. 1) and the velocity components in r and z-directions are given in the form 

{3.1) 

"• = v.; [ 0.5- ~ arc cos(tan 'I')] , 
where tp denotes the inclination of ·the radius vector of a particular point to the r-axis 
and v0 denotes the relative velocity of the rigid parts of the bar. 

In the first stage of calculations the rod is under uniaxial and uniform stress 'state. 
The velocity field is given by Eq. (3.1). The components of the strain rate tensor are given by 

v0 tan2'1' 
Er= --;;: y'l-tan2tp' 

{3.2) 
• - Vo 1 
Ez - --;u: yl-tan2tp ' 

• Vo Y 2 Eo = -- I -tan 'P, 1tr . 
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Further steps of calculations take a course according to the numerical procedure 
described above. The calculated distribution of the yield point non-homogeneity and 
the shape of the free surface AE (Fig. 2) constitutes the boundary conditions of a second 
stage of calculations. Basing on the slip-line solution of the stage ·shoWn in Fig. 2, one can 

z/R0 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

2.0 

3.0 

C5z/ko 

0.2 0.4 0.6 0.8 1.0 r/R0 

FIG. 2. The slip-line field and distribution of the axial stresses at the neck for second stage of calculations. 

calculate the total axial load P* by means of numerical integration of the axial stress 
acting at the minimum cross-section of the neck. The total elongation AL of a rod is defined 
by the · velocity field and the assumed value of the · time increment between stages. From 
a comparison of loads in the first and second stage of calculations, one can determine, 
for the local deformation mode, the increment of load AP* which produces a definite 
value of a total elongation AL of a rod. Since we are interested in the value of AP* at the 
instant when necking begins, our calculations are limited to the first and second stage. 
The value of L1P* is calculated under the assumption of a linear stress-strain relationship 

S Arch. Mech. Stos. nr 3/80 
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194 L. DIETRICH 

of a material beyond the range of uniform strain (Fig. 3). The form of the stress-strain 
curve ·in a range of smaller strains can be arbitrary. Slates of stresses and s~rains are 
uniform up to the onset of necking (point B, Fig. 3) .. The assumption of a hardening law 

-- ----c 

A 

0 01 FJo. 3. Schematic diagram of the stress-strain cwve. 

in a linear form enables us to represent the load increment LlP* for the local deformation 
mode as a function of the hardening rate defined by the relationship 

I da 
h=-·-

(J de · 
(3.3) 

A linear stress-strain relationship at the end of the uniform strain range is frequently 
observed for real materials. On the other hand the approximation of a real characteristic 
of a material by the tangent line has small infiuence on the value of the load increment 
calculated for very small elongation of a rod. 

4. ResuiCs of numerical calculations 

;Numerical calcubitions of the load increment for the local deformation mode of an 
axially-symmetric rod pulled in tension have been performed according to the procedure 
described above assuming the stress-strain relationship Qf a material in the linear form: 

(4.1) k/ks = I +h · e, 

where k8 denotes the value of the yield point in shear of a material at the instant of the 
onset of necking (see Fig. 3), ei is the hardening parameter defined by Eq. (2.3), h is the 
hardening rate defined by Eq. (3.3). 

For different values of h in the range of 0 to 5 the load P* in the second stage of de­
formation was calculated assuming different values of the total elongation LJL of a rod. 
The results of those calculations in the case of h = 2 are shown by open circles in Fig. 4. 
In the considered range of the value h the dimensionless load P* I P s has a linear course 
with respect to the dimensionless total elongation L1L/R8 , where 2R8 and Ps = 2k8 • rt.Ri 
denotes the diameter of a rod and the load at the onset of necking respectively. On the 
basis of those calculations the ratio of L1P* over L1Lf.B8 as a function of h has been de­
termined. The results are shown in Fig. 5 in the range of h = 0 to 5 and in Fig. 6 for 
a narrow range up to the value of h equal to I. The results of calculations obtained by 
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Fio. 4. The ratio of loads at the second and first stages of calculation as a function of the elongation in­
crement between stages. 
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FIG. 5. The ratio of dimensionless increment of load to the dimensionless elongation versus the hardening 
rate h for the local deformation mode. 

means of two numerical algorithms are shown by open circles and crosses. In each of 
these algorithms the method of interpolation of the ei value at nodal points was different. 
The calculated points are located along the straight line which intersects · the h-axis at 
the value of h = 0.35. The scatter which is seen in Fig. 6 results from the numerical technique 
of computations. 

Basing on these results, the increment of load for the local deformation mode can be 
expressed in such a simple form: 

(4.2) (dP*)8 = ~: (h -0.35)dL. 

5* 
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1.0 h 

PIG. 6. The relationship from Fig. 5 for small values of h. Calculated points are shown by circles and 
crosses. 

It is worth stressing that the relationship ( 4.2) was found without specification of the 
stress-strain curve of a material over the uniform strain range. The increment of load 
dP* for the local deformation mode depends on the value of the hardening parameter h 
of a material at the instant when necking begins. 

5. Condition of necking 

We ~ssume that necking begins at the instant when the increment of load dP* for the 
local deformation mode which produces a definite elongation L1L of a rod is not greater 
than the increment c1f load · dP for the uniform deformation mode which gives the same 
value of the elongation of a rod. It can be written as 

(5.1) 
dP* dP 
dL~dL. 

The increment ofload dP for the uniform deformation mode can be eaiily calculated 
assuming that the stress-strain curve of a material is known. 

Let us assume that the stress-strain relationship is given by 

(5.2) 

where C and n are material constants, u is the true stress and e the natural strain. 
The axial tensile load defined as 

(5.3) P= u·A, 

where A denotes the current cross-sectional area of a rod, can be written in the form 

(5.4) 
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assuming the constant volume condition. A 0 is the initial cross-sectional area and L 0 

the initial length of a specimen. The increment of load dP for the uniform deformation 
mode can be found by means of the differentiation of Eq. (5.4) with respect to L and 
is given by 

(5.5) 
Pa . 

(dP) 8 = La (h-I)dL, 

where for the assumed stress-strain relationship (5.2) the hardening rate is equal to 

h = !!__. 
e (5.6) 

On substituting Eqs. (4.2) and (5.5) into Eq. (5.1), the condition of necking for materials 
described by the power hardening law in the form (5.2) can be written as 

(5.7) 
L 8 h-I 
R8 ~ h-0.35 ' 

where 2R8 is the diameter and L8 the length of a rod at the onset of necking. 

La/Ra 
20 
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I 
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I 
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--~-------------------
2 h 

FIG. 7. The ratio of length to half the diameter of a specimen at the onset of necking as a function of the 
hardening rate of a material. 

The L 8 /R8 ratio as a function of the hardening parameter h is shown in Fig 7. The 
slip-line solution (Fig. I) used in this analysis is valid for the L 8 /R8 ~ 2, thus only the 
upper curve in Fig. 7 has a physical meaning. 
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Taking into consideration the definition of strain (s = ln(L/L0}) and the relationship 
(5.6), one can express ihe value of strain s8 at the onset of necking as a fun.ction of the 
initial dimensions L0 /Ro ratio. The condition of necking (5.7) takes the form 

(5.8) 

£s 
2.0 

1.5 

1.0 

0.5 

0 

L 0 n-e8 -~~~ 
-~----e2s 
R 0 n-0.35e8 

n=O.S 

Material: CJ=C·E.n 

n=0.1 

10 20 30 Lo/Ro 

FIG. 8. The value of the maximum uniform strain versus the initial length to half the diameter ratio for 
different values of the exponent of the assumed power hardening law of a material. 

Plots of e8 = f(L0 /R0 ) are shown in' Fig. 8 for different values of the hardening exponent n. 
The initial length to the diameter ratio has small influence on the value of strain s8 for 
L 0 /R0 > 10. But even for infinitely long specimens, the values of e8 shown in Fig. 8 by 
broken lines are much greater than the Values Of Strain Ep = n at which load reaches 
the maximum. 

Let us assume th~t specimens are made of two materials which can be described by 
the relationship (5.2) with the constant C equal to 500 MN/m2 and the hardening exponent 
n equal to 0.25 and 0.5, respectively. The stress-strain relationship~ for both considered 
materials are shown in Fig. 9a. Plots of a tensiJe lqad referred to the initial cross-sectional 
area A 0 versus the natural strain are ~hown in Fig. 9b by a solid and broken· line for n = 

,;, 0.25 and n = 0.5 respectively. The curves were calculated assuming uniform deformation 
and a constant volume of the specimen. The load reaches the maximum value at the strain 
s = n. The onset of necking calculated according to the condition (5.8) is shown by small 
circles for specimens with different initial length to the diameter ratio. The course of the 
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Fxo. 9. The assumed two stress-strain curves (a) and calculated plots of the axial load versus strains for 
specimens with different values of the length to the diameter ratio (b). 

load v~rsus strain diagrams beyond the range of uniform strains is schematically shown 
by the fine broken lines. The onset of necking occurs nearer to the point of maximum load 
for longer rods than for shorter ones. The range of uniform strain is much greater than 
the value of strain at which load reaches maximum. 

6. Results of experiments 

In the case of real materials the stress-strain relationships are more complicated than 
the power hardening law in: the form (5.2). In ordt:r to check if essential differences between 
strains at the maximum load and at the onset of necking shown in Fig. 9 will also be ob­
served for real materials, tensile tests for specimens made of mild steel (denoted as 15 
according to the Polish Standards) have been performed. The essential dimensions ofthe 
specimen are given in Fig .. I 0. The specimen was pulled in tension with a constant cross­
head speed equal to 0.5 mm/min using the INSTRON hydraulic testing maschine. The 
tensional load P, elongation L1/ on the base of 10 mm and reduction of the specimen dia­
meter 2Lir were measured during the test. The results for such a selected specimen in 
which necking occurred beyond the place where gauges were attached are shown as a func-
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FIG. 10. Load, elongation and reduction of a diameter as a function of time during the tensile test of the 
specimen made of mild steel. 

tion of time in Fig. 10. The_ identification points are shown by fine vertical lines. The 
arrow with the symbol P max indicates the instant at which the load reaches the maximum 
value. At the instant marked by an arrow with the symbol S, strain localization can be 
observed as fogging of the ~nitially polished s~rface of the specimen. The instant when 
neeking occurs according to the criterion described is shown by an arrow with the symbol P8 • 

Since it was very difficult to find a sufficiently exact approximation of the real stress­
strain curve in an analytical form, the dimensionless hardening rate and the increment 
of load for uniform deformation was found by means of graphical differentiation. Using 
the' experimental results concerning the true stress-strain curve and the plot of the load 
versus the total elongation of the specimen can be determined in the following relationships: 

(6.1) 

where L' = L/R0 • 

I da 
ft(e) =a de, 

According to the inequality (5.1) and the relationship (4.2), the value of strain es at 
the onset of necking is determined by the relationship 

(6.2) / 1 (e)-0.35 = e0
•
5Bj2(e). 

In the considered example. it was found that es = 0.25 in comparison with the value of 
e,. = 0.21 at which load reached the maximum. The ratio of esfep is equal to 1.19. 

It can be seen from Fig. 10 that the course of both Lll = f( t) and L1 r = f(t) plots changes 
its character beyond the point 16. It is in agreement with the theoretical prediction. 

The true stress - the natural strain curve - is plotted in Fig. 11 in the logarithmic 
scale. The change of the course of that curve also indicated that the onset of necking 
takes place beyond the point 16. 
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FIG. 11. The stress-strain curve in the logarithmic scale for mild steel. 
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FIG. 12. The true stress- the natural strain curve for mild steel. Arrows indicate the maximum load point 
and the onset of necking. 

The plot of true stresses as a function of natural strains in the plastic range is shown 
in Fig. 12. The range of uniform deformation in the simple tension test of the considered 
mild steel is about 20% greater than the value of strain at the maximum load point. 
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1. Concluding remarks 

The strain at the onset of necking is found on the basis of a comparison of increments 
ofloads for the uniform and local deformation modes. Calculations of the load increment 
in the case of local deformation have been based on the assumed flow velocity field. 
It follows that the strain at the bnset of necking is greater than that at the maximum load 
point and depends on the hardening rate of a material and the length to the diameter 
ratio of a specimen. The results of experiments performed on specimens made of mild 
steel are in good agreement with the theoretical predictions. 

Considering present analysis, the onset of necking in a tension test can be easily de­
termined from known relationships of both the hardening rate versus strains and load 
versus elongation of a specimen. 

It is generally accepted that the onset of necking is influenced by two phenomena which 
are the hardening of a material and the decreasing of the cross-sectional area of a specimen. 
The results of this paper show that the geometrical changes associated with necking, 
which cause strengthening of the specimen at the minimum cross-section, have also an 
essential influence on the onset of necking. 
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