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Analysis of necking in cylindrical bar of hardening materials
L. DIETRICH (WARSZAWA)

THE PROBLEM of necking in an axisymmetric tension specimen made of a strain-hardening ma-
terial is investigated by means of a numerical procedure. The developed condition of necking
depends on the hardening rate of a material and length to the diameter ratio of a specimen.
The results of the experiments are in good agreement with the theoretical predictions.

W pracy przedstawiono numeryczna analize procesu tworzenia si¢ szyjki w rozcigganej, osiowo-
symetrycznej probce wykonanej z materialu ze wzmocnieniem. W otrzymanym warunku po-
wstanie szyjki zalezy od modutu umocnienia materiatu i stosunku dlugoéci do Srednicy probki.
Przeprowadzone do$wiadczenia potwierdzaja wyniki teoretyczne.

B pafore mpefcraBieH YWCIEHHbIA aHANH3 Npolecca obpasoBaHMA TOPJIOBHHBI B PACTATH-
BAEMOM, OCECHUMMETPHYHOM o0paslie, H3TOTOBJIEHHOM M3 MaTePHANa C ynpouHeHHem. B momy-
YEHHOM YCJIOBHM BOSHMKHOBEHHE TODJIOBHHBI 3aBHCHT OT MO/AYJIA YINPOYHEHHA MaTepHaia
H OT OTHOLIEHHSA JUIHHEI K JiHameTpy oOpasna. ITpoBe/ieHHEIe SKCTIEPHMEHTEI IOATBEPHIAIOT
TEOPEeTHYECKHE Pe3ynbTaThl.

1. Introduction

THis PAPER deals with the phenomenon of necking in a circular cylindrical bar pulled in
tension. The condition of neck formation and the influence of the hardening rate and
dimensions of a specimen on the onset of necking is considered.

The range of uniform strain under uniaxial tension can be under some circumstances
much greater than the value of strain at which load reaches maximum. In 1955 KEeLLER [1]
(see also [2]) observed that for a specimen made of zirconium and subject to tensile stresses
at elevated temperature (200-370°C), the necking initiated at the strain ten times greater
than the strain at maximum load. A similar effect was also observed for specimen made
of zinc and tensile at room temperature [3].

General conditions of necking for an elastic-plastic material with ‘hardening were
considered by MILEs [4], CHENG, ARIARATNAM and DUBEY [5] making use of the mathema-
tical theory of bifurcation. They established that the onset of necking depends on the
dimensions of a bar. Bifurcation occurs nearer to the maximum-load point for slender
bars than for stubby ones.

Also the results of numerical analysis [6, 7] showed that necking appears beyond the
maximum-load point and that the onset of necking is affected by the initial length to the
diameter ratio. CHEN [6] used a generalized plastic flow theory for large deformation and
assumed an imperfection to initiate necking. For a given power of the hardening law and
initial length to the diameter ratio of a specimen equal to 2 stresses and deformations
were calculated by a step-by-step method. Unloading, which appeared at some instant
at the ends of the bar, was treated as the onset of necking.



390 L. DiewRICH

The finite element method was used in the analysis of necking by NEEDLEMAN [7].
The onset of necking was determined as a bifurcation from a state of uniform.tensile stress
based on Hill’s theory of bifurcation. Assuming a power hardening law, numerical cal-
culations were performed for two values of initial length to the diameter ratio (equal to
4 and 2) and two different types of end conditions (cemented ends to rigid grips and shear
stress free ends).

The effect of specimen dimensions on the onset of necking was also pointed out in the
analysis of necking of tensilé specimen under plane strain conditions by Cowper and
ONAT [8] as well in the analysis of stability of an elastic cylinder under uniaxial stress by
WEesoLowsk! [9].

In this paper the instant at which necking occurs is determined from a comparison
of increments of load for the uniform deformation mode and the localized, in a central
region of the specimen, deformation mode. The load for the localized deformation mode
as a function of the hardening rate of a material and the ratio of length to the diameter
of the specimen is calculated by means of a numerical procedure in which the plastic flow
problem for the hardening material is formulated as a succession of incremental problems,

2. Basic equations

The method of solving axially-symmetric plastic flow problems with hardening of
a material taken into account which will be used in this analysis of necking was described
in details in [10]. In this section only the basic equation and method of the numerical
calculations used in the analysis are presented.

For the axially-symmetric case we have two equations of equilibrium

@1 ds, 0t,, O,—0p

art e T T 0,
0t,, 0o, T,
N e Ly is
The Tresca yield condition for materials with isotropic hardening takes the form
22) (0,—0,)* +47%. = 4k?,

where the yield point in shear is dependent on the path of plastic strains &; defined as

]
@3) & = ]/ . nf Ve de,.

If we assumed the Haar-Kérmén criterion in the form
(2,4) 0y =03 = o'g,

the set of equations for stresses becomes statically determinate (i.e. the equations for
stresses may be solved independently of the velocity equations) under the condition
that the distribution of the yield point in shear k(r, z) is known over the plastic region.
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One can point out that the set of equations (2.1), (2.2), (2.4) is hyperbolic [11; 12] and
can be solved by means of the characteristics method. The equations of the characteristics.
are '

.‘."% = tan(p—45°) called as @,
(2.5)

%:— = tan(p+45°) called as B,

where g is the angle between the ¢, and r-directions. For a varying yield-stress *k, the
relationships along the characteristics’ directions are

ok ok k .
dp —2kdyp = o T dz — T dr+ i (dz—dr) along a-lines,
26) ok ok k
dp+2kd¢ = E dr— —67 dz — T (dz+ dr) along ﬂ-llnes,

where p = 0.5 (o, +03).
The velocity components v,, v, along the r and z-directions are determined by the
incompressibility condition

ov, dv, v,

@7 at @
and the isotropy condition

v, Ov, dv, Ov, _
(28) oz 4 W i (—'67 -_— E-) tan2:p = 0.

The system of Eqgs. (2.7) and (2.8)'is also hyperbolic. The relationships along the char-
acteristics’ lines are the same as for a homogeneous, perfectly-plastig material [13]:

dv,+dv tan(p —45°) = &i along w«-lines,
r cos2¢
2.9

v, dz

dv,+dv,tan(p+45°) = — Fieosde

along B-lines.

3. Numerical method

In the present paper the numerical procedure for the axially-symmetric necking problem,
with hardening of a material taken into account, consists in dividing the deformation
process into a number of stages. In each of the stages we calculate:

stresses from Egs. (2.5) and (2.6),

flow velocities from Egs. (2.9),

components of the strain rate tensor by means of numerical differentiation of the flow
velocity components,

displacement for each particle of the plastic zone assuming that in a sufficiently small
time increment the flow velocities are constant,
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the value of the hardening parameter from Eq. (2.3) for each particle of the plastic
Zone,

the distribution of the yield point non-homogeneity based on the assumed stress-
strain relationship of a material.

In this procedure the problem of plastic flow at the instant when necking appears
under the tension of an axially-symmetric rod made of a hardening material is formulated
as a succession of incremental problems for a perfectly plastic, non-homogeneous ma-
terial. On the basis of a comparison of loads for two stages of deformation, we are able
to calculate the increment of load which produces a definite elongation of the bar for
the local deformation mode. As a starting point the velocity field proposed by EAsoN and

z/Rol *vofz
zL 5
-
! 2R,
‘Va,‘lz A
-
FA Y E s F1G. 1. The slip-line field for circilar cylinder pulled
0 r/R, in tension.

SHIELD [14] has been assumed. The plastic flow is confined to the material below 40
(Fig. 1) and the velocity components in r and z-directions are given in the form

i) ey
v, = — % Y/ 1—tan?yp,
@3.1)
1
9, =Dy [0.5 o arccos(tan tp)] 5
where y denotes the inclination of ‘the radius vector of a particular point to the r-axis
and v, denotes the relative velocity of the rigid parts of the bar.

In the first stage of calculations the rod is under uniaxial and uniform stress state.
The velocity field is given by Eq. (3.1). The components of the strain rate tensor are given by

. v, tan’yp
&= —— ——
ar /1 —tan’p

. D, |

By = L —mm————,
(3.2) ar J/1—tan’p

Lo Y8 e

. Y1—tanyp,
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Further steps of calculations take a course according to the numerical procedure
described above. The calculated distribution of the yield point non-homogeneity and
the shape of the free surface AE (Fig. 2) constitutes the boundary conditions of a second
stage of calculations. Basing on the slip-line solution of the stage shown in Fig. 2, one can

z/R, |
f""/z AL /Ry=0.005
10 - A
08
06
04 |-
02}
. Ex
0 02 04 06 08 10 r/R,
S |2 s = © o
30}
Gz/ko |

FiG. 2. The slip-line field and distribution of the axial stresses at the neck for second stage of calculations,

calculate the total axial load P* by means of numerical integration of the axial stress
acting at the minimum cross-section of the neck. The total elongation AL of a rod is defined
by the velocity field and the assumed value of the time increment between stages. From
a comparison of loads in the first and second stage of calculations, one can determine,
for the local deformation mode, the increment of load AP* which produces a definite
value of a total elongation AL of a rod. Since we are interested in the value of AP* at the
instant when necking begins, our calculations are limited to the first and second stage.
The value of AP* is calculated under the assumption of a linear stress-strain relationship

5 Arch. Mech. Stos. nr 3/80
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of a material beyond the range of uniform strain (Fig. 3). The form of the stress-strain
curve-in a range of smaller strains can be arbitrary. Sfates of stresses and strains are
uniform up to the onset of necking (point B, Fig. 3). The assumption of a hardening law

cl
8 _____._—'.“_'::
Gp > c
A
0 04 _'.;-h' FIo. 3. Schematic diagram of the stress-strain curve,

in a linear form enables us to represent the load increment 4P* for the local deformation
mode as a function of the hardening rate defined by the relationship

1
(3.3) h=—-—.

A linear stress-strain relationship at the end of the uniform strain range is frequently
observed for real materials. On the other hand the approximation of a real characteristic
of a material by the tangent line has small influence on the value of the load increment
calculated for very small elongation of a rod.

4. Results of numerical calculations

Numerical calculations of the load increment for the local deformation mode of an
axially-symmetric rod pulled in tension have been performed according to the procedure
described above assuming the stress-strain relationship of a material in the linear form:

4.1) klkg = 1+h- g,

where kjy denotes the value of the yield point in shear of a material at the instant of the
onset of necking (see Fig. 3), &; is the hardening parameter defined by Eq. (2.3), & is the
hardening rate defined by Eq. (3.3).

For different values of 4 in the range of 0 to 5 the load P* in the second stage of de-
formation was calculated assuming different values of the total elongation AL of a rod.
The results of those calculations in the case of 4 = 2 are shown by open circles in Fig. 4.
In the considered range of the value / the dimensionless load P*/Pj; has a linear course
with respect to the dimensionless total elongation 4L/Ry, where 2Rg and Pj = 2k ®R3
denotes the diameter of a rod and the load at the onset of necking respectively. On the
basis of those calculations the ratio of AP* over AL/R, as a function of A has been de-
termined. The results are shown in Fig. 5 in the range of # = 0 to 5 and in Fig. 6 for
a narrow range up to the value of 4 equal to 1. The results of calculations obtained by
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FiG. 4. The ratio of loads at the second and first stages of calculation as a function of the elongation in-
crement between stages.

-1 |-

FIG. 5. The ratio of dimensionless increment of load to the dimensionless elongation versus the hardening
rate & for the local deformation mode.

means of two numerical algorithms are shown by open circles and crosses. In each of
these algorithms the method of interpolation of the ¢; value at nodal points was different.
The calculated points are located along the straight line which intersects the h-axis at
the value of # = 0.35. The scatter which is seen in Fig. 6 results from the numerical technique

of computations.
Basing on these results, the increnmient of load for the local deformation mode can be

expressed in such a simple form:

(4.2) (dP*)g = -;—"— (h—0.35)dL.
B

§u
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F1G. 6. The relationship from Fig. 5 for small values of A. Calculated points are shown by circles and
crosses.

It is worth stressing that the relationship (4.2) was found without specification of the
stress-strain curve of a material over the uniform strain range. The increment of load
dP* for the local deformation mode depends on the value of the hardening parameter A
of a material at the instant when necking begins.

5. Condition of necking

We assume that necking begins at the instant when the increment of load dP* for the
local deformation mode which produces a definite elongation AL of a rod is not greater
than the increment of load dP for the uniform deformation mode which gives the same
value of the elongation of a rod. It can be written as

dp* _ dpP
G- aL S’
The increment of load dP for the uniform deformation mode can be easily calculated

assuming that the stress-strain curve of a material is known.
Let us assume that the stress-strain relationship is given by

(5.2) o= Cs",

where C and n are material constants, o is the true stress and & the natural strain.
The axial tensile load defined as

(5.3 P=g-A,

where A denotes the current cross-sectional area of a rod, can be written in the form
Lo

(5.4) P = C[In(L/Lo)l"do —

L
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assuming the constant volume condition. A, is the initial cross-sectional area and L,
the initial length of a specimen. The increment of load dP for the uniform deformation
mode can be found by means of the differentiation of Eq. (5.4) with respect to L and
is given by

Py
(5.5 (dP)s = 3> (h—1)dL,
‘B
where for the assumed stress-strain relationship (5.2) the hardening rate is equal to
n
(5.6) h= Ao

On substituting Eqs. (4.2) and (5.5) into Eq. (5.1), the condition of necking for materials
described by the power hardening law in the form (5.2) can be written as

Ln > k""l
Ry h—035"

where 2R, is the diameter and Ly the length of a rod at the onset of necking.

(5.7

Lg/Rsl
20 |-
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FIG. 7. The ratio of length to half the diameter of a specimen at the onset of necking as a function of the
hardening rate of a material.

The Lg/Rj ratio as a function of the hardening parameter k is shown in Fig 7. The
slip-line solution (Fig. 1) used in this analysis is valid for the Lg/Rp > 2, thus only the
upper curve in Fig. 7 has a physical meaning.
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Taking into consideration the definition of strain (¢ = In(L/L,)) and the relationship
(5.6), one can express the value of strain e at the onset of necking as a function of the
initial dimensions Ly/R, ratio. The condition of necking (5.7) takes the form

Lo n—Egg «-%s,
G-8) K, ™ “7=basiy ©

49
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FiG. 8. The value of the maximum uniform strain versus the initial length to half the diameter ratio for
different values of the exponent of the assumed power hardening law of a material.

Plots of &5 = f(Lo/R,) are shown in Fig. 8 for different values of the hardening exponent .
The initial length to the diameter ratio has small influence on the value of strain &5 for
L,/Ry > 10. But even for infinitely long specimens, the values of 5 shown in Fig. 8 by
broken lines are much greater than the values of strain e, = n at which load reaches
the maximum.

Let us assume that specimens are made of two materials which can be described by
the relationship (5.2) with the constant C equal to 500 MN/m? and the hardening exponent
n equal to 0.25 and 0.5, respectively. The stress-strain relationships for both considered
materials are shown in Fig. 9a. Plots of a tensile load referred to the initial cross-sectional
area A, versus the natural strain are shown in Fig. 9b by a solid and broken line for n =
= 0.25 and n = 0.5 respectively. The curves were calculated assuming uniform deformation
and a constant volume of the specimen. The load reaches the maximum value at the strain
& = n. The onset of necking calculated according to the condition (5.8) is shown by small
circles for specimens with different initial length to the diameter ratio. The course of the
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Fi1G. 9. The assumed two stress-strain curves (a) and calculated plots of the axial load versus strains for
specimens with different values of the length to the diameter ratio (b).

load versus strain diagrams beyond the range of uniform strains is schematically shown
by the fine broken lines. The onset of necking occurs nearer to the point of maximum load
for longer rods than for shorter ones. The range of uniform strain is much greater than
the value of strain at which load reaches maximum.

6. Results of experiments

In the case of real materials the stress-strain relationships are more complicated than
the power hardening law in the form (5.2). In order to check if essential differences between
strains at the maximum load and at the onset of necking shown in Fig. 9 will also be ob-
served for real materials, tensile tests for specimens made of mild steel (denoted as 15
according to the Polish Standards) have been performed. The essential dimensions of the
specimen are given in Fig..10, The specimen was pulled in tension with a constant cross-
head speed equal to 0.5 mm/min using the INSTRON hydraulic testing maschine. The
tensional load P, elongation Al on the base of 10 mm and reduction of the specimen dia-
meter 24r were measured during the test. The results for such a selected specimen in
which necking occurred beyond the place where gauges were attached are shown as a func-
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FiG. 10. Load, elongation and reduction of a diameter as a function of time during the tensile test of the
specimen made of mild steel.

tion of time in Fig. 10. The identification points are shown by fine vertical lines. The
arrow with the symbol P,,,, indicates the instant at which the load reaches the maximum
value. At the instant marked by an arrow with the symbol S, strain localization can be
observed as fogging of the initially polished surface of the specimen. The instant when
necking occurs according to the criterion described is shown by an arrow with the symbol P,.
Since it was very difficult to find a sufficiently exact approximation of the real stress-
strain curve in an analytical form, the dimensionless hardening rate and the increment
of load for uniform deformation was found by means of graphical differentiation. Using
the experimental results concerning the true stress-strain curve and the plot of the load
versus the total elongation of the specimen can be determined in the following relationships:

file) = +2£,
6.1
6D 1 dP
_fz(€)=??zT,

where L' = L[R,.

According to the inequality (5.1) and the relationship (4.2), the value of strain &5 at
the onset of necking is determined by the relationship
6.2) f1(8)—0.35 = %%, (¢).
In the considered example it was found that ez = 0.25 in comparison with the value of
ep = 0.21 at which load reached the maximum. The ratio of £5/ep is equal to 1.19.

It can be seen from Fig. 10 that the course of both A/ = f(¢) and Ar = f{(t) plots changes
its character beyond the point 16. It is in agreement with the theoretical prediction.

The true stress — the natural strain curve — is plotted in Fig. 11 in the logarithmic
scale. The change of the course of that curve also indicated that the onset of necking
takes place beyond the point 16.
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Fig. 11. The stress-strain curve in the logarithmic scale for mild steel.
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FIG. 12. The true stress- the natural strain curve for mild steel. Arrows indicate the maximum load point
and the onsét of necking.

The plot of true stresses as a function of natural strains in the plastic range is shown
in Fig. 12, The range of uniform deformation in the simple tension test of the considered
mild steel is about 209 greater than the value of strain at the maximum load point.



402 L. DIETRICH

7. Conélndjng remarks

The strain at the onset of necking is found on the basis of a comparison of increments
of loads for the uniform and local deformation modes. Calculations of the load increment
in the case of local deformation have been based on the assumed flow velocity field.
It follows that the strain at the onset of necking is greater than that at the maximum load
point and depends on the hardening rate of a material and the length to the diameter
ratio of a specimen. The results of experiments performed on specimens made of mild
steel are in good agreement with the theoretical predictions.

Considering present analysis, the onset of necking in a tension test can be easily de-
termined from known relationships of both the hardening rate versus strains and load
versus elongation of a specimen.

It is generally accepted that the onset of necking is influenced by two phenomena which
are the hardening of a material and the decreasing of the cross-sectional area of a specimen.
The results of this paper show that the geometrical changes associated with necking,
which cause strengthening of the specimen at the minimum cross-section, have also an
essential influence on the onset of necking.
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