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Fracture effects in the propagation of a shock wave 
through a bulk solid 

W. KOSINSKI (WARSZAWA) 

THE APPROACH of nonlinear continuum mechanics is used in formulating three-dimensional 
stress-strain and internal state variable constitutive equations for a class of bulk solids. The 
internal state variable influences the generalized elastic modulus and describes the sensitivity 
of the rheological material to changes of the specific volume. A plane shock wave propagating 
through the material medium is analysed. An effect of fracture characterized by the blow-up 
of the amplitude of the wave in finite lime, is discussed. The conditions for such a behaviour 
of the wave are formulated. 

Wykorzystano koncepcjc; nieliniowej mechaniki kontinuum przy formulowaniu tr6jwymiaro­
wych r6wrian konstytutywnych: napr~ienie-odksztalcenie i wewl'l~trzna zmienna stanu, dla kla­
sy cial sypkich i skalopodobnych. Zmienna wewn~trzna (parametr wewn~trzny), wplywaj~c na 
uog6lniony modul spr~:Zystosci, opisuje czulosc materialu na zmian~ obj~toSci wlaSciwej. 
Analizuje si~ plask~ fal~ uderzeniow~ rozprzestrzeniaj~~ sice w takim osrodku materialnym. 
Rozwai.a sice efekt zniszczenia scharakteryzowany gwaltownym (nieskonczonym) wZr-ostem 
w skonczonym czasie amplitudy fali. Sformulowano warunki takiego za'howania sict fali. 

lfcnoJTh30Ba.H UO,WCO~ HeJII{HeitH:oit MeXamtKH KOHTHHyyM npH cPOPMYJIHPOBKe 'I'peXMepHbiX 
onpe~emnonuvc ypaBHeHHit: HanpiDKeHile - ~ecPoPMilllWI H BHY'I'peHWm nepeMeHHa.R: co­
CTOmntH AJU1 KJiacca Cblll}"lltX H CKaJIOUO,ll;OOHbiX TeJI. BH}'TPeHHHH nepeMeHHa.R: (BHYTPeHHHit 
napaMe'I'p), BJIHHH Ha 00061I(eHHl>m MO~y;n, ynpyroCTH, O~CbiBaeT qyBCTBHTeJII>HOCTb M8-
TepRaJia Ha H3MeHeHHe y~e.m.Horo OO'beMa. AllaJIH3HPYeTCH IIJIOCK&H y~apHaH BOJIHa pacnpo­
CTpaWIIOII(a.JICH B TaKoH: M&TepHa.m.HoH: cpe~e. PaccM&'I'pHB&eTCH 3cl>cl>eKT paapymeBHH oxa­
paKTepH30Bamn.m BHe38IIHI>IM (6ecKOHellHbiM) pOCTOM B KOHeliHOM O'I'pe3Ke BpeMeHH aMilJIH­
TYAf>I BOJIHbl. C<lx>PMYJIHPOBaHbl YCJIOBHH TaKOro noBe~eHHH BOJIHI>I. 

1. Introduction 

DURING the past few years there have been considerable theoretical studies on consti­
tutive equations for non-metallic solids and on. the propagation of waves in viscoelastic 
solids. However, this research has not really taken into account the fact that many non­
metallic solids present in nature ~xhibit a moderate ch~nge of values of elasticity inoduli 
during non-i~ochoric deformations. These properties are known to have a significa:nt 
infiuence on the fiow kinetics of granular media and it has been found that in most of 
the bulk solids the slope and curvature of unloading curves vary depending on the history 
of previous deformation [l-4]. . 

In most of the theoretical studies granular and rockline materials are described under 
the assumptions of the infinitesimal theory of elastic-plastic solids. The fiow rules used 
there appear to be a kind of non-associated elastic-plastic laws with variable elasticity 
represented by a family of matrices parametrized with respect to plastic density change 
(cf. [5]) or· some plastic parameter [6]. 
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In these theoretical studies the framework of nonlinear continuum mechanics has 
not often been used. Moreover the constitutive equations proposed for soils, rocks and 
other granular media have rather been written in stress-free configurations. But it seems 
to be more adeqqate to formulate the equations in prestressed states, i.e. with some non­
vanishing and nonhomogeneous (in general) hydrostatic pressures. Those states are present 
in nature, whereas the stress-free configurations are the experimenter's idealisations. 

In this paper the nonlinear continuum mechanics approach is used in formulating 
threee-dimensional stress-strain and interna_l state variable constitutive equations. The equa­
tions derived take into account the existence of the hydrostatic (nonhomogeneous) pressure 
in the reference configuration. A simple model is considered,· in which one scalar internal 
state variable depends on the history of the specific volume changes. For those relations 
a plane shock wave is analysed . . The amplitude of the wave satisfies a Bernoulli equation. 
Its general solution is discussed. An effect of fracture characterized by the blow-up of 
the amplitude in the finite time is discussed. The conditions for such behaviour of the 
wave are given in terms of the initial amplitude and the material functions. 

2. Bulk medium as a rheological continuum sensitive to specific volume changes 

In such solids like rocks, soils and ceramic grains the history of deformation strongly 
affects the current elastic moduli. Moreover, these media demonstrate large changes 
in the specific volume due to loadings. One· can also ol)serve different time phenomena 
. like aging, relaxation and creep. These effects arise in dynamics as well as in quasi-statics. 
Consequently, our attention will be directed to the constitutive description of those solids 
in the framework of finite deformations used as a suitable rheological model. 

We think that the internal state variable approach is ·more convenient in this respect. 
Taking a general isotropic constitutive equation for the Cauchy stress f in the theory with 
internal (scalar) state variables exu ... , ex, we can write under isothermal conditions 

(2.1) 

where B = F FT is the left Cauchy-Green ·strain tensor and F is the deformation gradient.. 
~he quantities 1p0 , "Pu 1p2 are assumed to be functions of 18 , 118 , 1118 invariants of Band 
internal state variables. 

According to our viewpoint in the reference configuration, i.e. B = 1, the medium 
is in a state of hydrostatic pressure, i.e. i = - pl. In rocklike media the pressure p depends 
in general on the depth, i.e. p = p(X). This effect can be described by the nonhomogeneous 
distribution of the internal state variables ex<o>m' m = ,t, 2, ... , r, in the reference con­
figuration. This nieans that if the pair (B, ex,;) = (1, ex<o>m) determines a state of the medium· 
in the reference configuration, then the· ex<o>m are functions of X, in general. 

Assume for simplicity that 

'Po = 'P2 = 0, 
1 

(2.2) 'P1 = 'P1(IIIB, ~) = (IIIB)-2'P(ct). 
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This means that we confine the number of variables to one as well as the number of 
the material functions. Since 1118 = detB = det F det FT = ( det F)2 and 

(2.3) eo le = detF, 

the assumption (2.2) leads to the following stress constitutive equation 

(2.4) 
- (! T =-'l'(tX)B. 

(!o 

For this form of equation the pressure .in the reference configuration will ,be given by 

(2.5) 

Note that in Eq. (2.4) the function tp(tX) plays the role of the elastic modulus depending 
on time and the history of deformation. In fact, a general evolution equation for the internal 
state variable a can be written in the form 

a = a(ct, IB, nB, IIIB), 

where a denotes the material time derivative of a. The variable a. has to describe the sen­
sitivity of the material to specific volume changes, consequently it seems natural to assume 
that a depends only on (IIIB)112 and tX. Taking the linear form of this dependeqcy 

(2.6) a(tX, (IIIB)112
) = -h0 tX+((IIIB) 112 -l)h1 , 

where h0 > 0 and h1 are constants, we may write the final form of the evolution equation 
as follows 

(2.7) or 
& = -h0 CL+(detF-l)h1 , 

a= -hoCL+(eofe-l)hl. 

For further analysis it is more convenient to use the first Piola-Kirchhoff stress tensor T 
given by 

(2.8) 

With Eq. (2.8) the constitutive equation (2.4) takes the form 

(2.9) 

The dependence of the modulus 1p on a should be determined . experimentally as well 
as t~e sign of the constant h~.. The assumed positive sign of h0 in Eq. (2.7) is motivated 
by the stability requirement of the solution of Eq. (2.7). 

Let us notice that during an isochoric deformation (i.e. with det F = 1) Eqs. (2.7) 
and (2.9) d~scribe a medium with variable elastic modulus in time. 

3 . Compatibility conditions and the speed of propagation of a plane shock wave 

Consider a plane shock wave propagating through the material medium in the X1 -

direction (the Cartesian coordinate system is assumed). This means that a moving singular 
surface {.E(t)}tei (where I is a time interval [0, t1)), across which the first derivatives of 
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the function of motion X suffer jump discontinuities, forms a family of parallel planes 
with the unit normal 

(3.1) N = [I, 0, 0]. 

According to this assumption all functions taking place in the description depend 
on X 1. and t, only. The general kinematical, geometrical and dynamical compatibility con­
ditions (cf. [7, 8]) ·at the shock wave propagating with the positive speed UN are 

UN[F] = -[v]®N, 

(3.2) 2JIUN-:-{J/uN [F]N) = U~[GradF] · (N®N)-[v], 
ut . 

[T]N = -eo UN[v], 

where the b~acket [ ] denotes the jump, i.e. for any /(X, t) the formula 

(3.3) [/](Y, t) = lim /{Y -kN, t)-lim/(Y +kN, t), Ye I(t), 
k-o k-o 
k>O k>O 

gives the jump at E(t), t e I. Note that 

/-(Y, t) = lim/(Y -kN, t) 
k-o 
k>O 

is the limiting value off taken from the region immediately behind the wave. The second 
term on the right side of Eq. (3.3) is the limiting value f+ off immediately ahead of the 
wave. The so-called displacement (or THoMAs' [9]) derivative 

(3.4) ~ = ~+U Grad(·)N 
dt at N 

measures the rate of change of any quantity along the normal trajectories of the wave. 
Here V = oxfot is the particle velocity vector and V is the acceleration vector. 
At the plane wave, these conditions lead to 

UN[F11] = -[v,], [Fki] = 0, i, k = 1, 2, 3, j = 2, 3, 

(3.5) [T11] = ...,.(}~ UN[v1], 

2y'U; :t (yUN[F~t]) = U~[Fu,t] -[v,]. 

Away from {.E(t)} the first equation of motion in the reference configuration 

(3.6) DivT+eob = (}oV 

holds, while across {.E(t)}, with the continuous body force b, 

(3.7) [DivT] = eo[vJ. 

Putting pq. (3. 7) into Eq. (3.2)2 the following general equation ea~ be obtained: 

(3.8) 2}/uN-4-({U;[F]N) = UJ[GradF] · (N®N)--
1 

[DivT]. 
ut eo 
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Because of Eq. (3.1) Eq. (3.8) (compare Eq. (3.5h) reduces to 

(3.9)' .. ;- b (-!- ) . 1 2v UNTt v UN[F11] ·= U~[FI1,1]-eo[Tu,1]. 

The speed ofpropagation UN can be derived from Eq. (3.5h, 2 as follows: 

(3 10) U2 [Tu] 
. eo N = [Fu]. 

_ The following relations [T11]/[F11] = [T21]/[F21l = [T3 1]/F3 1] are the simple cons­
equences of Eq. (3.10); they give the restrictions on the jump of the deformation grad­
ient, indicating that, it cannot be prescribed arbitrarily. 

The constitutive equation (2.9) implies the following condition: 

(3.11) [T,1] = ['f'(~Fu]. 
Now the question arises whether the equality [ 1p(ex)F11] = 1p(ex)[Fu] is true. In fact,. 

it is. It can be shown, using the generalized Rankine-Hugoniot condition (cf. [10]), that 
the internal variable ex satisfying Eq. (2. 7) in the points of differentiability on the wave 
fulfils the relatiorl(l) 

(3.12) UN[ ex] = 0. 

This means that ex is continuous across the wave. Hen~ continuity of the function V' 
implies 

(3.13) 

The relations (3.10)-(3.13) lead to the following.expression for the speed of propagation 

(3.14) eo u~ = 1f'(1X). 

This expression reminds the speed equation for elastic waves. The main difference 
lies in the dependence of the generalized elastic modulus 1p on _the variables ex. This will 
affect the growth of the wave amplitude. 

4. The amplitude equation 

In this section the necessary calculation are performed in order to find an equation 
which govemes the growth and decay of the jump in F on the wave. 

The jump in the derivative [T11,t] appearing in Eq. (3.9) can be calculated using the 
chain rule property 

h - ( ) o!Tu w ere !Tit FkL, IX = 1p(ex)Fu. Hence oFkL = ~lk ~tL 1p(ex) 

and 

(4.1) 

(1) The proof of this result is similar to the one-dimensional case considered in [11]. 
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Putting Eq. (4.1) into Eq. (3.9), after reduction, and with the help ofEq. (3.14), we ·have 

;- <5 (~!-[ .]) tp'((t) 
(4.2) 2} UN Tt v UN F,t = ~---eo-[ ct, 1 Fn]. 

The general kinematical compatibility condition (cf. [7-9]) 

[/] = -UN[Gradf]N 

for any continuous function f on the wave gives for the derivatives of the function a the 
relation 

(4.3) [ct,t] = - ~N [et] 

which can be used in the further manip11lations of Eq. ( 4.2). 
From the definition of the jump discontinuity, the product of two quantities f and · g 

· has the following jump discontinuities: 

. (4.4) '[Jg] = [f][g]+f+[g]+[f]g+ . 

Applying Eqs. (4.3) and (4.4) to the last term in Eq. (4.2) we may write 

(4.5) [ ll,t Fu] = - ~! [ Fn] + (ll,t)+[Fn]- ~! Fi1· 

From the evolution equation · (2. 7) the jump in ~ is 

(4.6) [ & ] = h1[ detF]. 

Hence the full equation for the amplitude A1: = [Fi1] of the wave will be 

~!- <5 (~!- ) tp'(ct) { ht [ ] + ht [ ] +} {4.7) 2 v UN Tt ., UNA, =---eo- UN detF A,-(ct, 1) A1+ UN detF Fu . 

We now make the type of deformation ahead of the wave precise by the following 
:assumption: 

The medium ahead of the wave (i.e. in+ region) is in an equilibrium (general nonho­
.mogeneous) state with" the Cartesian axes X1 , X2 , X 3 being the principal axes. 

The above assumption corresponds to that adopted by BLAN'D [12]. From the latter 
the following relations hold: · 

et+ = -h0 li+{(detF)+ -1)h1 = 0, 

[Fit] = -r~~ ~2 -~ 1, / 0 0 ;.3 
{4.8) 

tp' (li)(li,t)+ J..1 +tp(ct).itt,t +eobt = 0, 

where (detF)+ = A: 1 A: 2 A:3 • The first relation in Eq. (4.8) is the evolution equation for the· 
variable lX in the "+ ~, region. The third is the equilibrium equation which can be used 
:in the determination of (ll,1).+. in terms of A: 1 , .it1, 1 and the body force component b1 • 

In view of Eq. (4.8)1 the jump in det F is given by 

{4.9) · [ detF] =;:: A1 A2 ).3. 
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Let us calculate (~/~t) UN 

dUN d ( -1 ( ))1/2 1 ( -1 '( ·)( ·)+ ...,2 ( ) ) (4.10) -rr = Tt eo 'I' C( = 2 eo 'P ex cx.l -eo 'I' C( eo.l ' 

where we have used the definition of ~/~t together with Eqs. (3.1) and (4.8)1 • From Eq. 
(4.10) we can see that tbe nonhomogeneous distribution of ex in the medium ahead of 
the wave implies the non-constant speed of propaga.tion UN. In a linear elastic solid the 
vanishing of eo.1 _(i.e. the homogeneous mass distribution) has led to constant UN. 

Applying Eqs. (4.9) and (4.10) to· Eq. (4.8) we have, after some lengthy manipulations, 

<5A, 'P'(cx)ht.1.2 .1.3 ( . ( 'P(cx) ~'P'(cx) +) 
(4.11) (ft = 2'P(ex) AtAt+AtAt ~u)+A, 4e5UN l!o.t 4eoUN (ex.t) , 

where UN is given by Eq. (3.14). This is an amplitude equation of the shock wave. (For 
the corresponding equation in the one-dimensional theory with internal state variables 
see [13]; in materials with memory, plane waves were discussed in [14]). 

5. Fracture efl'ect 

The obtained amplitude equation (4.11) is a set of three coupled Bemoulli equations 

d~1 
= fJAi + (fJA.t + y)At, 

(5.1) 

fJ = 'P'(cx)ht-1.2.1.3 
2'J'(CX) ' 

a a a 
di = Tt + uN axl · 

(5.2) 

The symbol dfdt is a derivative with respect to t treated as a parameter of the normal 
trajectory of the wave. The general solutions of Eq. (4.12) with the initial values A 1 ~0) =/: 0 
artd A1(0) are 

t 

(5.3) 

exp(f (fJ( -c) .1.1 ('r)+y{'r})d-r) 

At (t) = . ' o ., ' 

."A,~O) - [ fl('r)expif fl(s).l,(s)+r(s)ds)dr: 

t 

A~:(t) = Ak(O)exp(f (fJ(-c)A1(i-)+y(-c})d-c), k = 2, 3. 
0 

e> Note thaf p and y have the dimension s-1 and A-1 is dimensionless, like thC? strain. 
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It is a known fact that solutions of Bemoulli's equation may have some singularities. 
Especially one observes a solution which becomes unbounded in finite time. 

In studies on growth and decay of acceleration waves in various types of nonlinear 
material media it is found that the amplitudes of these waves obey the Bemoulli equation. 
The analysis above shows that the amplitude of the shock wave in a solid with variable 
elastic properties also satisfies the Ber.Qoulli equation. · 

In.two papers BAILEY and CHEN [15] considered the local and global behaviour of the 
solutions of the Bemoulli equation. BAILEY and CHEN' (see Sect 4 in [15]) showed, in par­
ticular, that when the coefficients p, r, l 1 satisfy some integrability and boundedness 
conditions, and 

(5.4) 

and 

(5.5) 

A1 (0)p(t) > 0, for all t, 

if IA1 (0) I > ro, then ~ IA1 (t) I = <X>, 
t-+too 

w4ere co is the critical initial amplitude given by 

00 t 

(5.6) co = {J IP(t)fexp(f (fl(s)At(s)+r(s))ds) dt}-
1

, 
0 0. 

and too is a finite time defined by 

la) I 

J fJ(t)exp(J (fl(T)At('r)+r(r))ds)dt = Afl(O). 
0 0 1 

(5.7) 

The concept of the critical amplitude was first introduced by CoLEMAN' and GURTIN [16] 
for the case of one-dimensional acceleration waves in materials with memory with constant 
coefficients of the Bemoulli equation. Some extended results of Bailey and Chen can be 
found in the papers BoWEN' and .CHEN' [17] and Kos!NsKI [18]. The latter deals with ac­
celeration waves in materials with · internal state variables. 

The unbounded growth of the amplitudes A1 of the shock wave means that the F,J. 
grow without bound, for 

(5.8) 

and the F11 are finite- while the values ahead of the wave. 
Thi; phenomenon can be . interpreted as a fracture of the material (at this point and 

time, i.e. at Ye E(t00), (cf. Sect. 2). The quantities F11 are~ the gradients of the u1 components 
of the displacement vector u. The unbounded growth, at the same points, of the gradients 
can be viewed as a symptom of the local continuity loss of the niedium. In terms of the 
stress components [T11] (cf. Eq. (3.11)) their unbounded growth in finite time means that 
som~ (and . any) stress fracture criterion of the material can be. reached. 

The inequality (5.4h may be satisfied in two cases. The first case is, in view of Eqs. 
(4.9) and '(5.2h, 

(5.9) 
'(«)h i,( ex) 

1 
[ detF] > 0 and [ detF] < 0. 
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This means that det F- < det F+ and the wave is compressive relative to the "+" 
region. On the other hand the universal inequality 0 < det F applied to Eq. (5.9)2 implies 

-detF+ · < detF- < detF+. 

Since det F+ is finite, the compressive wave cannot lead to · any unbounded growth 

of A~. 
The secons case is the expansive wave with 

(5.10) [detF] > 0 and 
tp'{rJ.)ht 
2tp{a) [ detF] > 0. 

This implies 1p'(a)ht./21p(<X) > 0. Hence either 

(5.11) At< 0 and A.2 ;:3 < 0 if P<O 

or 

{5.12) At> 0 . and A.2A.3 > 0 if p > 0. 

If the relations (5.11) are true, then necessarily A1 < 0 and hence At.P > 0. When 
Eqs. (5.12) are true, then A1 > 0, and A1P > 0, as previously. 

Unfortunately, without knowing the state ahead of the wave we cannot, in general, 
calculate the value of the critical initial amplitude ro. In the case of a homogeneous state 
w = 0 (because (!0 , 1 = 0 and a, 1 = 0) and p = const, PJ.1 = const. Then the value of 
w is zero and we have without detailed calculation the result: 

PROPOSITION 1. If the equilibrium state ahead of the wave is homogeneous, then any 

expansive (with respect to this state) wave leads to fracture. 
For a general case, however, we can formulate 
PROPOSITION' 2. If the equilibrium state ahead of the wave is nonhomogeneous, then an 

expansive wave will lead to fracture provided that the initial value of the amplitude A 1 exceeds 
the critical one, that is, 

IAt(O)I = IFii(O)-Fi'i(O)I > w, 

where w is given by Eq. (5.6) while the time too of fracture is defined by Eq. (5.7). 
It should be interesting to analyse particular forms of the function 1p(a) and the constant . 

h 1 , and to estimate the quantity w in a nonhomogeneous case. The discussion of spherical 
waves would be particularly significant, especially in rocklike media. But these p~oblems 
will be treated elsewhere. 
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