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Fracture effects in the propagation of a shock wave
through a bulk solid

W. KOSINSKI (WARSZAWA)

THe APPROACH of nonlinear continuum mechanics is used in formulating three-dimensional
stress-strain and internal state variable constitutive equations for a class of bulk solids. The
internal state variable influences the generalized elastic modulus and describes the sensitivity
of the rheological material to changes of the specific volume. A plane shock wave propagating
through the material medium is analysed. An effect of fracture characterized by the blow-up
of the amplitude of the wave in finite time, is discussed. The conditions for such a behaviour
of the wave are formulated.

Wykorzystano koncepcj¢ nieliniowej mechaniki kontinuum przy formulowaniu tréjwymiaro-
wych réwnar konstytutywnych: naprezenie-odksztalcenie i wewngtrzna zmienna stanu, dla kla-
sy cial sypkich i skalopodobnych. Zmienna wewnetrzna (parametr wewngtrzny), wplywajac na
uogdlniony modul sprezystosci, opisuje czulo$¢ materialu na zmiang objetosci wlasciwej.
Analizuje si¢ plaska fal¢ uderzeniowa rozprzestrzeniajaca si¢ w takim oSrodku materialnym.
Rozwaza si¢ efekt zniszczenia scharakteryzowany gwaltownym (nieskoficzonym) wzrostem
w skoficzonym czasie amplitudy fali. Sformutowano warunki takiego zachowania sig fali.

HMcnoms3oBan nogxon HeMMHeHHON MeXaHWKH KOHTHHYYM PR (QOPMYJIMPOBKE TPEeXMEPHBIX
Onpe/le/TOLMX YpaBHEHHUi: HANpsKeHHe — Aedopmalua ¥ BHYTPECHHAA IEPEMEHHAA CO-
CTOSHHA [JIA KIIACCA CHITYYHX M CKANONoAoGHBIX Ten. BHyTpenuss nepemennas (BHyTpeHHmMIl
napamerp), BauAsa Ha o0OOLIEHHBIE MOAY/Ib YIPYTOCTH, ONMCHIBAET UYBCTBHTENHLHOCTH Ma-
TepHaJia HA H3MEHEHHe YHeNbHOro obbema. AHAMUSHPYETCHA IUIOCKAas YAapHas BOJIHA Pacmpo-
CTpaHAIOMIAACA B Taxkoil martepuansHOM cpene. Paccmarpusaerca addext paspymeHHsa oxa-
PaKTePH30BAHHEL BHe3amHbIM (GeCKOHEUHBIM) POCTOM B KOHEYHOM OTPE3KEe BPEMEHH AMILTH-
Tyael BoHbl. ChopmynHpoBaHbl YCIOBHA TAKOrO MOBEAEHHS BOJIHbLI.

1. Introduction

DURING the past few years there have been considerable theoretical studies on consti-
tutive equations for non-metallic solids and on the propagation of waves in viscoelastic
solids. However, this research ha§ not really taken into account the fact that many non-
metallic solids present in nature exhibit a moderate change of values of elasticity moduli
during non-isochoric deformations. These properties are known to have a significant
influence on the flow kinetics of granular media and it has been found that in most of
the bulk solids the slope and curvature of unloading curves vary depending on the history
of previous deformation [1—4]. _

In most of the theoretical studies granular and rockline materials are described under
the assumptions of the infinitesimal theory of elastic-plastic solids. The flow rules used
there appear to be a kind of non-associated elastic-plastic laws with variable elasticity
represented by a family of matrices parametrized with respect to plastic density change
(cf. [5]) or some plastic parameter [6].
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In these theoretical studies the framework of nonlinear continuum mechanics has
not often been used. Moreover the constitutive eciuations proposed for soils, rocks and
other granular media have rather been written in stress-free configurations. But it seems
to be more adequate to formulate the equations in prestressed states, i.e. with some non-
vanishing and nonhomogeneous (in general) hydrostatic pressures. Those states are present
in nature, whereas the stress-free configurations are the experimenter’s idealisations.

In this paper the nonlinear continuum mechanics approach is used in formulating
threee-dimensional stress-strain and internal state variable constitutive equations. The equa-
tions derived take into account the existence of the hydrostatic (nonhomogeneous) pressure
in the reference configuration. A simple model is considered, in which one scalar internal
state variable depends on the history of the specific volume changes. For those relations
a plane shock wave is analysed. The amplitude of the wave satisfies a Bernoulli equation.
Its general solution is discussed. An effect of fracture characterized by the blow-up of
the amplitude in the finite time is discussed. The conditions for such behaviour of the
wave are given in terms of the initial amplitude and the material functions.

2. Bulk medium as a rheological confinuum sensitive to specific volume changes

In such solids like rocks, soils and ceramic grains the history of deformation strongly
affects the current elastic moduli. Moreover, these media demonstrate large changes
in the specific volume due to loadings. One can also observe different time phenomena
like aging, relaxation and creep. These effects arise in dynamics as well as in quasi-statics.
Consequently, our attention will be directed to the constitutive description of those solids
in the framework of finite deformations used as a suitable rheological model.

We think that the internal state variable approach is more convenient in this respect.
Taking a general isotropic constitutive equation for the Cauchy stress T in the theory with
internal (scalar) state variables «,, ..., o,, we can write under isothermal conditions

2.1 T = yol+9,B+y,B?,

where B = F F7 is the left Cauchy-Green strain tensor and F is the deformation gradient.
The quantities y,, ¥y, ¥, are assumed to be functions of Ig, Ilg, 1Ilg invariants of B and
internal state variables.

According to our viewpoint in the reference configuration, i.e. B = 1, the medium
is in a state of hydrostatic pressure, i.e. T = —pl. In rocklike media the pressure p depends
in general on the depth, i.e. p = p(X). This effect can be described by the nonhomogeneous
distribution of the internal state variables oaym, m =1, 2, ..., r, in the reference con-
figuration. This means that if the pair (B, &) = (1, ¢(0)m) determines a state of the medium’
in the reference configuration, then the o), are functions of X, in general.

Assume for simplicity that

Yo =v,=0,

@2) | v = 9.(llTs, @) = (ITT) 2(a).
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This means that we confine the number of variables to one as well as the number of
the material functions. Since IlIz = detB = det Fdet F™ = (det F)? and

(2.3) golo = detF,
the assumption (2.2) leads to the following stress constitutive equation

(2.4) T =2 po)B.
Qo

For this form of equation the pressure in the reference configuration will be given by
(2.5 p = —y(a).

Note that in Eq. (2.4) the function y(x) plays the role of thé elastic modulus depending
on time and the history of deformation. In fact, a general evolution equation for the internal
state variable o can be written in the form

& = a(a, Tp, 1p, 111g),

where & denotes the material time derivative of . The variable « has to describe the sen-
sitivity of the material to specific volume changes, consequently it seems natural to assume
that a depends only on (IlIg)'/? and «. Taking the linear form of this dependency

(2.6) a(a, (Mp)*/?) = —hoa+((Ig)'/*—1)A,,

where 4, > 0 and h, are constants, we may write the final form of the evolution equation
as follows
& = —hoa+(detF—1)h,,

27 or .
& = —hoa+(0o/o—1)h;.

For further analysis it is more convenient to use the first Piola-Kirchhoff stress tensor T
given by

(2.8) T = det(F)T(ET)~*.
With Eq. (2.8) the constitutive equation (2.4) takes the form
2.9) T = p()F.

The dependence of the modulus ¢ on « should be determined experimentally as well
as the sign of the constant 4. The assumed positive sign of 4, in Eq. (2.7) is motivated
by the stability requirement of the solution of Eq. (2.7).

Let us notice that during an isochoric deformation (i.e. with det F = 1) Egs. (2.7)
and (2.9) describe a medium with variable elastic modulus in time.

3. Compatibility conditions and the speed of propagation of a plane shock wave

Consider a plane shock wave propagating through the material medium in the X;-
direction (the Cartesian coordinate system is assumed). This means that a moving singular
surface {Z(t)}c; (Where I is a time interval [0, #)), across which the first derivatives of
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the function of motion ¥ suffer jump discontinuities, forms a family of parallel planes
with the unit normal

(3.1 N = [1, 0, 0].

According to this assumption all functions taking place in the description depend
on X, and ¢, only. The general kinematical, geometrical and dynamical compatibility con-
ditions (cf. [7, 8]) at the shock wave propagating with the positive speed Uy are

Us[F] = —[v]®N,
(VT [FIN) = U3GradF]- (N@N) [,
[TIN = —oo Un[¥],

where the bracket [ | denotes the jump, i.e. for any f(X, f) the formula
(3.3) /1Y, ) = lim f(Y kN, )~lim f(Y+kN, 1), Y € Z(),

k=0 k>0

(3.2) 2y Uy

gives the jump at X(¢), ¢t €I. Note that
S (Y, 1) = limf(Y—kKN, 1)
k-0
k>0

is the limiting value of f taken from the region immediately behind the wave. The second
term on the right side of Eq. (3.3) is the limiting value f*+ of f immediately ahead of the
wave. The so-called displacement (or THOMAS’ [9]) derivative

(3.4) —‘E%t—) a( +UyGrad(- )N

measures the rate of change of any quantity along the normal trajectories of the wave.
Here v = dy/dt is the particle velocity vector and v is the acceleration vector.
At the plane wave, these conditions lead to

UN[EL]]= —[vl]’ [Flj:"=0| i’k= 1;2) 3) j=23 3:
(3.5 [Tu]] = —@o UNH:UI]!
2y UN (P Uy [EJ,]) Uf[Fir.:] —E"h] .

Away from {Z(¢)} the first equation of motion in the reference configuration
(3.6) DivT+gob = 0o¥
holds, while across {Z(¢)}, with the continuous body force b,
G [DivT] = eofs]-

Putting Eq. (3.7) into Eq. (3.2), the following general equation can be obtained:

(3.8) 2y Uy -:T (VU5 [F]N) = UF[GradF]- (N®@N) — -91? [DivT].
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Because of Eq. (3.1) Eq. (3.8) (compare Eq. (3.5),) reduces to
; T |
(39) 2V Ty (VO [Fud) = Vi)~ [Tui)

The speed of propagation Uy can be derived from Eq. (3.5),,, as follows:

2 _ [TH]
(3.10) e Ui = "—EF“]

. The following relations [Ty,]/[Fi,] = [T21]/[F21] = [T3.]/Fs.] are the simple cons-
equences of Eq. (3.10); they give the restrictions on the jump of the deformation grad-
ient, indicating that it cannot be prescribed arbitrarily.

The constltutwe equation (2.9) implies the following condition:

3.11) [7.] = [y Ful.

Now the question arises whether the equality [y(2)Fi,] = p(«)[F;,] is true. In fact,
it is. It can be shown, using the generalized Rankine-Hugoniot condition (cf. [10]), that
the internal variable « satisfying Eq. (2.7) in the points of differentiability on the wave
fulfils the relatiori(*)

(3.12) Un[«] = 0.

This means that o is continuous across the wave. Hence continuity of the function ¢

implies

(3.13) [¥(@] = 0.
The relations (3.10)-(3.13) lead to the following.expression for the speed of propagation
(3.149) 2o Uf = v(a).

This expression reminds the speed equation for elastic waves. The main difference
lies in the dependence of the generalized elastic modulus y on the variables a. This will
affect the growth of the wave amplitude.

4. The amplitude equation

In this section the necessary calculation are performed in order to find an equation
which governes the growth and decay of the jump in F on the wave.

The jump in the derivative [T}, ] appearing in Eq. (3.9) can be calculated using the
chain rule property

|l e .1
[Tu.x]] = | 6F:: Fu. 1 ’ !

b4

) 0T
wheré 7, (Fir, ®) = 9(a)F;;. Hence ———~ = 8,8,,v(a)

OFy,
and _
(4.1) [Ti.1] = $@[Fur.1 ]+ ¥ @[22 Fu]-

(*) The proof of this result is similar to the one-dimensional case considered in [11].
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Putting Eq. (4.1) into Eq. (3.9), after reduction, and with the help of Eq. (3.14), we have

42) ZVU_N%(I/FN[[&J) == "’f [o.1 Fu].

The general kinematical compatibility condition (cf. [7-9])
[f] = —U\[Gradf]N

for any continuous function f on the wave gives for the derivatives of the function a the
relation '

“3) [.] = —%NI[&]I

which can be used in the further manipylations of Eq. (4.2).
From the definition of the jump discontinuity, the product of two quantities f and g
has the following jump discontinuities:

(4.4 /2] = [/1[e]+/ *Tel+[ 1+
Applying Eqs. (4.3) and (4.4) to the last term in Eq. (4.2) we may write

(4.5 [“.1&1]] &= —[—;}[Fn]'i' (a.l)+[}?ll:ﬂ"‘ '%"!]—]'Fff-
From the evolution equation (2.7) the jump in & is
{4.6) [&] = h,[detF].
Hence the full equation for the amplitude 4;: = [F;, ]| of the wave will be

{3—: [detF] A4, —(a, )" A+ 3; |[detF]]ﬁ}*f}.
We now make the type of deformation ahead of the wave precise by the following
assumption: :
The medium ahead of the wave (i.e. in + region) is in an equilibrium (general nonho-
mogeneous) state with the Cartesian axes X, X,, X, being the principal axes. '
The above assumption corresponds to that adopted by BLAND [12]. From the latter
the following relations hold: '

&* = —hoa+((detF)* —1)h, =0,

i @ g i i)
@n 2/Ty 5 VTa) =2

40 07
(4.8) [Fil=]0 4, 0 |,
0 0 4
P ()(e,)* 2 F9(0) 4y, 1+ 000y = 0,

where (det F)* = A, 4, ;. The first relation in Eq. (4.8) is the evolution equation for the
variable « in the “+” region. The third is the equilibrium equation which can be used
in the determination of («,,)*. in terms of 1,, 4, ; and the body force component b, .

In view of Eq. (4.8), the jump in det F is given by

49) [detF] = A, A, 4;.
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Let us calculate (8/8¢) Uy

% = _(_;E‘_ (o5 v(@) = “;‘ (e5™¥' (@) (.)* — 05 p(0) 0o.1),

where we have used the definition of d/d¢ together with Egs. (3.1) and (4.8),. From Eq.
(4.10) we can see that the nonhomogeneous distribution of « in the medium ahead of
the wave implies the non-constant speed of propagation Uy. In a linear elastic solid the
vanishing of go,; (i.e. the homogeneous mass distribution) has led to constant Uy,
Applying Egs. (4.9) and (4.10) to Eq. (4.8) we have, after some lengthy manipulations,
04, — v ()h 4,
ot 2y(a)
where Uy is given by Eq. (3.14). This is an amplitude equation of the shock wave. (For

the corresponding equation in the one-dimensional theory with internal state variables
see [13]; in materials with memory, plane waves were discussed in [14]).

(4.10)

(4.11)

As VAG)) V"(“)
(A A+ AL A 5:1)4‘1‘11( 402Uy o,1 ( 1)+)

5. Fracture effect

" The obtained amplitude equation (4.11) is a set of three coupled Bernoulli equations

W~ pa1+ Bl DA,
(5.1)
d;,:" k=23,
where(?)
_ y(a)h A4 _ 9 3w («) .
52) B=""2p@ * 7™ 930y % lgely “"
' d a U ]
at - NoX,

The symbol d/dt is a derivative with respect to ¢ treated as a parameter of the normal
trajectory of the wave. The general solutions of Eq. (4.12) with the initial values 4,0 #0
and A,(0) are

exp( [ (B(0) 44 (0) +7())ds)
A, (’ ) = L

1 : H ’
(5.3) . A4,00) “! A7) °KP( of B(s) 41 (s)+7(s) a‘s) dv

A1) = 4, O)exp| J’ (B@A@+y@)d7), k=2,3.

(?) Note that § and y have the dimension s~ and 1, is dimensionless, like the strain.
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It is a known fact that solutions of Bernoulli’s equation may have some singularities.
Especially one observes a solution which becomes unbounded in finite time,

In studies on growth and decay of acceleration waves in various types of nonlinear
material media it is found that the amplitudes of these waves obey the Bernoulli equation.
The analysis above shows that the amplitude of the shock wave in a sohd with variable
elastic properties also satisfies the Bernoulli equation.

In.two papers BAILEY and CHEN [15] considered the local and global behaviour of the
solutions of the Bernoulli equation. BAILEY and CHEN (see Sect. 4 in [15]) showed, in par-
ticular, that when the coefficients f, , A, satisfy some integrability and boundedness
conditions, and '

(5.4) A,(0)B(r) >0, for all ¢,
and '
6.5 if 14,0)]>0, then limld,(0)| =,
where o is the critical initial amplitude given by
I t '
(6) o =| .,f 1B()lexp( 6[ (B 1) +7(5))ds) ar|
and £, is a finite time defined by
) [ syess([ G110+ r0)s)dt =
[\] [}]

The concept of the critical amplitude was first introduced by CoLEMAN and GURTIN [16]
for the case of one-dimensional acceleration waves in materials with memory with constant
coefficients of the Bernoulli equation. Some extended results of Bailey and Chen can be
found in the papers BoweN and CHEN [17] and Kosniski [18]. The latter deals with ac-
celeration waves in materials with internal state variables,

The unbounded growth of the amplitudes A4, of the shock wave means that the Fj
grow without bound, for

(5.8) A, := [Fu] = Fa—Fi

and the Fii are finite while the values ahead of the wave.

This phenomenon can be interpreted as a fracture of the material (at this point and
time, i.c. at Y € Z(t,), (cf. Sect. 2). The quantities F;; are'the gradients of the »; components
of the displacement vector u. The unbounded growth, at the same points, of the gradients
can be viewed as a symptom of the local continuity loss of the medium. In terms of the
stress components [7;,] (cf. Eq. (3.11)) their unbounded growth in finite time means that
some (and any) stress fracture criterion of the material can be reached.

The inequality (5.4), may be satisfied in two cases. The first case is, in view of Egs.
(4.9) and '(5.2),,

v'()h -
(5.9) W‘—[detr] >0 and [detF] < 0.
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This means that det F~ < det F* and the wave is compressive relative to the “4”
region. On the other hand the universal inequality 0 < det F applied to Eq. (5.9), implies

—detF* < detF~ < detFt.

Since det F* is finite, the compressive wave cannot lead to any unbounded growth
of 4;. '
The second case is the expansive wave with

(5.10) . [detF] >0 and %-’f-’%;'—‘— [detF] > 0.
This implies ¢’(e) 2y /2y(x) > 0. Hence either

(5.11) A, <0 and 2,4;<0 if g<0

or .

(5.12) Ay >0 and 1,4;>0 if Bg>0.

If the relations (5.11) are true, then necessarily 4, < 0 and hence 4,8 > 0. When
Eqgs. (5.12) are true, then 4, > 0, and 4,8 > 0, as previously.

Unfortunately, without knowing the state ahead of the wave we cannot, in general,
calculate the value of the critical initial amplitude w. In the case of a homogeneous state
o = 0 (because go,; =0 and «,; = 0) and f# = const, 1, = const. Then the value of
w is zero and we have without detailed calculation the result:

PrOPOSITION 1. If the equilibrium state ahead of the wave is homogeneous, then any
expansive (with respect to this state) wave leads to fracture,

For a general case, however, we can formulate

ProrosiTiON 2. If the equilibrium state ahead of the wave is nonhomogeneous, then an

expansive wave will lead to fracture provided that the initial value of the amplitude A, exceeds
the critical one, that is,

14:(0)| = |F51(0)—Fi(0)] > o,

where w is given by Eq. (5.6) while the time t., of fracture is defined by Eq. (5.7).

It should be interesting to analyse particular forms of the function y(e) and the constant
hy, and to estimate the quantity w in a nonhomogeneous case. The discussion of spherical
waves would be particularly significant, especially in rocklike media. But these problems
will be treated elsewhere.
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