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Shock waves in two-dimensional gas 

M. BRATOS and R. HERCZYNSKI rwARSZAWA) 

THE T AMM variational method used to determine the shock wave structure is generalized to 
take into account different kinds of the intermolecular potential. A comparison of the results 
with available theoretical studies is presented. 

Zastosowano wariacyjn~ metodct Tamma do badania wplywu potencjalu oddzialywania mi~­
dzymolekularnego na strukturct fali uderzeniowej. Uzyskane wyniki numeryczne por6wnano 
z innymi teoretycznymi wynikami. 

TipllMeHeH BapHaiUIOHHDIH MeTO~ TaMMa Wut llCCJie~oBaHWI BJIH.RHWI nOTe~IJI8 Me>KMoJie­
RYJUIPHOro B381lMo~eHCTBM Ha crpyJ<Typy y~apHoH BOJIHbi. TioJIY'IeHIIble liHCJieHHDie pesy.Jlh­
TaTbl cpaBHeHbl c ~Yl"llMH reopeTJNeCKilMa pe3ym.TaTaMH. 

1. Introduction 

THE INFLUENCE of the intermolecular potential on the structure and width of the shock 
wave has been investigated by several authors [1-3]. All of them used some approximate 
methods, because it is not possible to solve the full Boltzmann equation even for the 
case of the plane shock wave. 

In this paper the analysis of intermolecular potential is based on approximate solu­
tions obtained using Tamm's variational method [4]. Originally Tamm proposed this 
method assuming the hard spheres model of molecules. 

In the more general case, when one allows the potential to be in the form u(r) = k/r', 
where k is constant, or in the form of the Lenard-Jones potential, the calculations of 
the collision integral are much more complicated than in the case of hard spheres. Thus 
as a starting point for further calculations and to check the method we assume that the 
gas is two-dimensional, i.e. that it has only two translational degrees of freedom, one 
parallel, and the second perpendicular to the direction of the gas flow. 

Such a two-dimensional gas model has already been exploited by CHAHINE [5]; he 
used it for the analysis of a particular iteration scheme of solving the Boltzmann equation. 
E. G. D. Cohen analysing the generalized Boltzmann equation for the dense gas also 
considered the two-dimensional gas model [14, 15]. 

Tamm's variational method demands minimalization of the functional: 

(1.1) S = J J dvdx[vgradf-x(f,/)]2
, 

where f is the distribution function, v- the velocity vector, x(f,f)- the nonlinear 
collision term; v = [vx, v.vl· 

Other variational methods were proposed by RoSEN [6], 0BERAI [7], NARASIMHA [8], 
but Tamm's method seems to be the most straightforward one. 
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Tamm assumed that the distribution function has the form: 

(1.2) 

(a similar form has been assumed by MoTT-SMITH [9]). 
Here, for two-dimensional gas, 

(1.3) f,(v) = n, { 21<:~. )exp{- 2:~, [(v,-u1} 2 +v~]}, i = I, 2 

are Maxwellian functions in minus and plus infinity, respectively (i.e. in front and behind 
the shock wave); T; is the temperature, ni the number density of molecules, ui = [uh 0] 
are the flow velocity vectors whose only non-vanishing component is in the x-direction. 

The function h(x) minimizes the functional (1.1) and has the following properties: 

(1.4) lim h(x) = 1, lim h(x) = -1. 
X-+C/0 X-+-00 

Assuming the form of the distribution function (1.2), an appropriate Euler equation 
can be explicitly solved: 

(1.5) 

where A is constant for the chosen shock wave (definition- (2.13)), and where C 
depends on the collision term (hence also on an intermolecular potential) and will be 
defined later - (2.15). 

It should be noted that the form (1.5) coincides with the structure of the weak shock 
wave found in 1910 by TAYLOR [10]. 

Our aim is to calculate A and C for two-dimensional gas with different intermolecular 
forces. 

Clearly, one cannot expect to obtain results coinciding with three-dimensional theories 
or with the experimental data. However, the qualitative behaviour should be (and is 
proved to be) the same as in the three-dimensional case. 

The proposed method can be extended in two directions. First, by introducing the 
three-dimensional gas model, second, by using the two-dimensional model for the in­
vestigation of more general cases, say the shock wave in a gas mixture. Work in this 
second direction is now in progress. 

2. The collision integral 

To evaluate the collision integral x(f,f) entering the functional (1.1), one needs to 
know the mechanics of an individual collision. This is equivalent to the motion of a single 
particle with the reduced mass p = (m1 • m2 )/(m1 +m2 ) (m1 , m2 are the masses of collid­
ing particles) moving in a spherically symmetric field with the potential U(r). 
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...... 
K 

---- X 

FIG. 1. One-body problem. 

The resulting one-body problem is shown in Fig. I. Using the conservation laws for 
energy and angular momentum, one gets the following expression: 

00 

(2.1) tp = gbl' J dr 

'••• r. V 2pr2 [ ~ pg2- U(r)] -g2b2p2 

Here b is the impact parameter, i.e. the distance of closest approach of particles in 
the absence of the U(r) potential; g is the initial (i.e. at time t = - oo) relative velocity 
vector of the colliding molecules. 

From the conservation laws of momentum and energy for the colliding molecules, 
the relations between the velocity vectors of molecules before (v, v1) and after collision 
(v', v~) are as follows: 

(2.2) 

(2.3) 

where 

(2.4) 

(2.5) 

and 

Clearly, 

(2.6) 

3* 

v' = v-klglcos'P, 

v~ = g+v+k/glcos'P, 

g' = v~ -v', 

g = Vt-V, 

k = [cos('P+~-n), sin('P+~-n)]. 

lgl = lg'l =g. 
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In the two-dimensional case the collision integral has the form 

(2.7) xif,f) = 2 J {f,f}gdbdvt, 

where 

(2.8) {/,/} = f(v')/(v~) -/(v)f(vt)· 

The use of (1.2) leads to the expression 

(2.9) 
1-h2 

{/,/} = -
4

-G(ft,fz), 

where 

(2.10) G(h ,fz) = h (v')/z(v~) -h. (v)/l(vt)+ft (v~)/z(v') -h. (vt)fl(v). 

The integral 

(2.11) 

plays an important role in the theory because the functional S can be rewritten in the 
form 

(2.12) 

with the constants A, B, C determined as follows: 

(2.13) 

(2.14) 

(2.15) 

The variation of S, i.e. 

f vz 
A= 4(f2-!t)dv, 

B = {- f fJzif2 -fr)H(v)dv, 

C = 1~ J H 2(v)dv. 

(2.16) lJS = j dx{2«5h'[Ah' -(1-h2)B]+46h[hh'B-C(1-h2)h]}, 

where h' = h." leads to the solution (1 .5) mentioned above. 

Two-dimensional gas 

In the two-dimensional case one can obtain all gas characteristics exactly in the 
same way as one does in the three-dimensional case. 

The mean velocity is 
2n CXl 

(3.1) V2 = J dvivlf(v, t) = ~T J J exp {- ;:; ) "· vd'l!dp 
0 0 
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(where, in equilibrium f(v, t) = /(v) and is the Maxwellian distribution function) instead 

of, jSkT what one gets for three-dimensional gas. 1/ mn 
For further use we must introduce the mean free path /. The mean free path has an 

exact meaning only for hard spheres and thus we introduce it for this case (again in full 
accordance with the three-dimensional case) 

(3.2) /(2) = v<2> = f dvlvlf(v' t) 

v< 2
> n< 2 >2CT J dv J dv1j(v, t)f(v1 , t)lv-vtl 

Here v denotes the collision frequency (v< 2> for two-dimensional gas, v< 3> for three­
dimensional gas), e1 is the diameter of the rigid sphere (molecule), n denotes the number 
density (respectively: n< 2> for two-dimensional gas, n<3 > for three-dimensional gas) and 
I is the mean molecular free path (respectively: /<2> for two-dimensional gas, /<3> for 
three-dimensional gas). The only difference from the three-dimensional case is that 2a 
appears here instead of ne12 in the denominator. Introducing the velocity vector of the 
center of mass 

(3.3) 

we can write 

(3.4) 

(3.5) 

and thus the collision frequency for two-dimensional gas is 

· J J .. 1-, jkTn .. r (3.6) v< 2> = 2an< 2 > dv dvJ(v' t)f(v it t) g = 0'2 Jl 2 Jl 2m nC2) = 2 r2 v< 2>n< 2 >C1. 

For three-dimensional gas the collision frequency is 

(3.7) 

Finally, for two-dimensional gas 

(3.8) 

instead of 

(3.8') 

for the three-dimensional one. 
One should note that the number densities in these formulae have different meaning 

and dimensions. The mean free path for the gas model different from the hard spheres 
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model is defined by Eq. (3.2) putting instead of u some type of effective diameter a. In 
all cases, however, we use non-dimensional magnitudes and a as the unit of length. 

The non-dimensional mean free-path is 

(3.9) 
/(2) 1 

/*<
2
> = -a = 2 y2n* 

and, accordingly, 
/(3) 1 

(3.10) /*(3) - -
--g-- nJ/2n*. 

In the formulae (3.9) and (3.1 0) n* is the non-dimensional number density of molecules: 

(3.11) 

The last equality follows from the assumption that both, the two-dimensional and 
three-dimensional gases, are ideal; p*, T* are non-dimensional pressure and temperature. 

Form Eqs. (3.9) and (3.10) it follows that 

(3.12) 

4. The numerical procedure 

/*<2> n 
/*<3> = T· 

The resulting expression (1.5) contains two numbers A and C. A can be found analy­
tically but C must be found using either some series expression (as in [4]) or numerical 
procedure. 

For two-dimensional gas C is the four-fold integral over infinite velocity space. 
Due to these boundaries it was necessary to introduce an appropriate correction. 
Let F = F(f1 ,/2) be the function similar to the H(v} function (2.11), i.e. such that 

it is a function of combination of the products of / 1 and / 2 • 

This form suggests the type of correction which has been used, namely: 

oo a 
(4.1) J Fdv = d1 (a., b)d2 (a., b) J Fdv. 

-oo Ot 

The correction factors d1 ( rx., b), d2 ( rx., b) are defined by the formulae 

(4.2) 

and 

(4.3) 

00 

J ftdv 
d1 (ex, t5) = --~~.,.....oo __ 

J ftdv 
<X 

00 

f f2dv 
d2(cx., b)= -=;-00

--

J f2d>: 
<X 

I) 

f ftdv 
<X 
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The correction factors d1 , d2 or, strictly speaking, ld1 -11, id2 -11 can be treated as 
the measures of the accuracy of the calculations. We assumed these values do not exceed 
w- 3, and appropriately we chose the step of the integration. 

Our computations run as follows: 

I. In the front of the shock wave we assume nf = 1, Tf = 1 {where n* = n< 2 >a2 , 

T* = ~ T, k being the Boltzmann constant, • I k - the so-called potential parameter} ; 

the only free parameter was thus the Mach number M 1 (or ui). For two-dimensional 
gas y = cPfc, = 2 [11], where cP, c, are the specific heats. 

2. The values of ni, Ti., uj are obtained from the Hugoniot's conditions. 
3. The A* integral can be directly found and it is equal to 

(4.4) 
[ 

( u* u* )
2

] _1 +-2 

A* = Aa4 = ( - 1) n*n* I I +4 __!L__!L_ 
4n 

1 2 
( 1 1 )

2 
1 1 T*T*- - -1 2 Ti + Tf Tf + Tf 

ll ( uf u! fj 
x exp 2 - ui2 - ui2 + Tl + Ti 

T~ Ti 1 1 

Ti + Ti 

4. To calculate the angle "1' (2.1) we change the variable and we get 

Po d{J 

(4.5) "1'= J y1-f12-U*fg*2' 
0 

n*/nt M1=2 

<>-<> Maxwe/1 s=3 

- uhard spheres'' 

1 a z, 
1----------l 
A*/l~ (Haxwe/1) 

A*/L; (hard spheres) 

FIG. 2. The influence of the intermolecular potential on the shock wave structure (M1 = 2). 
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where 

b b* 
{3=-=---. 

r r* 

Here {30 is the root of the functional equation 

(4.6) 

where U*(/3) = Ufe is the non-dimensionalized potential and g*2 = ~ ~ g2 (g is defined 

in Eq. (2.5) ). 
5. The subintegral function G (see Eq. (2.10)) depends on v, v1 and v~, v', which 

in turn depend on P. 
The most time-consuming procedure is the calculation of the integral C* = C · a6 , C 

being determined by Eq. (2.15). 

d'/n~ 
3.0 Mt=4.5 

----~ A*/t;{Maxwell) 

FIG. 3. The influence of the intermolecular potential on the shock wave structure (M1 = 4.5). 
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The non-dimensional width of the shock wave is equal to 

(4.7) A* = ~ = ~:. 
6. Using Eq. (1.2) we find the distribution function in any desired point in the flow. 

S. Results and conClusions 

The influence of the intermolecular potential for Mach numbers 2 and 4.5 on density 
profiles is shown in Figs. 2 and 3. 

As in the three-dimensional case there are two limiting cases, namely hard spheres 
molecules, what corresponds to s = oo in the formula U(r) = K/rs, and Maxwellian 
molecules, what in two-dimensions corresponds to s = 3 [5, 12, 13]. 

For 3 < s < oo the shock structure lies between these shock structures for two limits. 
All magnitudes are related to the conditions before the shock (denoted by the subscript 1). 
The pressure and temperature profiles have a similar form. The main characteristic of 

the shock wave is its non-dimensional thickness A*fl* which is equal to 1~ y C*/A* 
1 

(Ji denotes the non-dimensional mean free path for the gas in front of the shock wave). 

1M1• 

0.5 

0.4 

0.3 

0.1 

1.0 2.0 

::; ...... 

-... _____ _ 

3.0 

Maxwell 
(theorett'cal ca/culat/on- Yen) 

4.0 

FIG. 4. The inverse of the shock wave thickness versus Mach number M 1 • 

In Fig. 4 the inverse of the shock wave thickness versus Mach number M 1 for dif­
ferent intermolecular potentials is shown. The asymptotic value for the infinitely strong 

. . I* I 
shock wave found by Tamm IS equal to j* = 0.

503 
= 1.988 and is much higher than 
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the values shown in Fig. 4 for M < 5. For the weak shock wave the inverse of its thick­
ness tends to zero. The distribution function for the hard spheres is presented in Figs. 5 
and 6. At the center of the shock wave this function has a usual bell-shape form with 
respect to the v; axis. 

The form off across the shock (i.e. along the x axis) for v, = 0 is presented in Fig. 6. 

v: 
FIG. 5. The distribution function versus v!, v~ (M1 = 4.5, x* = 0). 

r 

FIG. 6. The distribution function versus v!, x*/1~ (M1 = 4.5). 
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For x = ± 3 the distribution function does not differ significantly from the one assumed 

at ± oo. 
At the middle f has two maxima, and clearly this results from our initial assumption 

(1.2) concerning the form of the distribution function. 
Finally, we should mention that the results presented in Fig. 4 are in qualitative 

agreement with those obtained for the three-dimensional case [1, 2, 3], but are shifted: 
/< 2 > jA< 2 > is greater than 1(3> jA<3 >. For the hard spheres model, Maxwellian molecules 
and s< 2 > = 4 (i.e. s(J> = 5) the comparison is given in Fig. 4. 
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