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A nonlocal theory for nematic liquid crystals

H. DEMIRAY (ISTAMBUL)

CONTINUING previous works on the subject and considering the conditions to which liquid
crystals may be subjected, we present in this work a nonlocal continuum model for nematic
liquid crystals. To this end we first list the balance equations which are applicable to nonlocal
interactions. These are: conservation of mass, balance of linear and angular momenta, con-
servation of energy and the entropy inequality. Using these conservation laws and thermo-
dynamical restrictions, a set of nonlinear and linear constitutive relations are derived for non-
local nematic liquid crystals, and several special cases are discussed. Finally, to illustrate the
present derivation the solution of shear flow problem and related discussions are presented.

Przedstawiony w tej pracy nielokalny model kontynualny dla cieklych krysztaléw typu nema-
tycznego stanowi kontynuacje poprzednich prac na ten temat i uwzglednia warunki jakim
moga byé poddane ciekle krysztaly. W tym celu przytacza si¢ réwnania zachowania stoso-
walne w przypadku oddzialywad nielokalnych. Sa to réwnania zachowania masy, pedu i mo-
mentu pgdu i energii oraz nier6wnod¢ entropii. Za pomoca tych praw zachowania oraz ogra-
niczeri termodynamicznych wyprowadzono uklad nieliniowych i liniowych réwnah stanu dla
nielokalnych cieklych krysztalébw nematycznych i ombwiono szereg przykladéw szczegdlnych.
Dla ilustracji przedstawiono rozwiazanie zagadnienia $cinania plastycznego wraz z dyskusjg.

TIpencraBnernan B sroll paGoTe HeNOKANBHAA KOHTHHYATHHAS MOIENS JKUIKAX KPHCTAILIOB,
HEMATHIECKOTO THIIA, COCTAB/IAET HPOO/DKEHHE NMpeAbIAYIInX paGoT Ha 3Ty TeMy H YUHTHI-
BAET YCNOBHA, KAKMM MOTYT OLITh NOJBEPrHYTHI JKAIKHE KpHcTaUThl. C 310l nensio npuso-~
AATCA YPAaBHEHHA COXPAHCHHMA, MPHMEHSEMbIE B CIIy9at HEJOKLHLIX BIaMMOJeHCTBHI.
OT0 ypaBHCHMA COXPAHEHHA MACCHI, HMITY/IBCA, MOMEHTA HMITY/IBCA M SHEPIHMM, & TAKIKE He-
pPaBeHCTBO SHTpomuH. C MOMOLIBIO 3THX SAKOHOB COXPAHEHHA H TEPMOJHHAMHYECKHX Orpa-
HUYCHHI, BBE/IeHA CHCTEMA HE/IMHEHHBIX X JIHCHHBLIX ypaBHeHMH COCTOAHAA IVIA HEJIOKAIb-
HbIX MHIKAX HEMSTHUECKAX KPHCTAUIOB H 00CY>K/ICH PAJ WacTHBIX crydaeB. [[na wumocrpa-
LMK IPEACTAB/ICHO PEllicHHE 3a7aYH IUIACTHYECKOrO CABHMTA COBMECTHO C OGCY)[cHHEM.

1. Introduction

Because of its important technological applications in medicine and electronics, the
subject of liquid crystals has been extensively studied by several researchers, both from
the viewpoints of the molecular theory and continuum approximations. After the initial
approach of OsgeN [l, 2], ANzeLius [3] and FraNK [4], in a series of papers ERICKSEN
[5-7] and LesLie [8, 9] have proposed a continuum theory of liquid crystals, in which
the director theory of Ericksen has been utilized. A number of other approaches to the
subject were made by other authors, e.g. DAvisoN [10, 11] MARTIN ef al. [12], HELFRICH
[13, 14], Aero and BuULYGIN [15], Lee and ERINGEN [16, 17] and ERINGEN and LEr [18].
An assessment of the subject matter was recently made by STEPHEN and STRALEY [19]
and EricksEN [20] where extensive references to the literature on the subject are to be
found. Each theory has its own merits and a limit of applicability and it hardly seems
necessary to comment on the nature and the differences of various theories available
today.
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The above-mentioned continuum theories of liquid crystals are based upon the long
wavelength (or low frequency) approximations (cf. FOSTER et al. [21]). In other words,
these theories, the so-called local theories, do not take into account the long-range inter-
molecular forces or phenomena associated with high frequency waves. However, due
to the feature of places where the liquid crystals are used, in many instances the liquid
crystals are subjected to high frequency waves and/or electromagnetic forces which are
of long-range in nature. As pointed out by ERINGEN [22] and DEMIRAY [23], in such cases
the local theories of materials, in general, cannot be used to describe the electro-mechanical
behaviour of the body involved. So that, in such situation the nonlocal theories that
take long-range effects into account must be developed. As a matter of fact, nonlocal
effects resulting from long-range intermolecular forces and short time effects are briefly
touched on in the papers by OseeN [2] and FosTeEr [21].

As a sequence of the above observations, in this paper we introduce a nonlocal director
model for nematic non-heat conducting liquid crystals. In doing this, the local balance
equations of Ericksen and Leslie are generalized to the contributions of nonlocal residuals.
These are: conservation of mass, balance of linear and angular momenta, conservation
of energy and entropy inequality. Furthermore, a set of nonlinear and linear constitutive
equations satisfying certain symmetry requirements are derived and several special cases
are discussed. Finally, to illustrate the theory the problem of shear flow of nematic liquid
crystals is studied.

2. Kinematics

We consider the motion of a continuum consisting of rod-like molecules (particles).
Referred to the same set of fixed Cartesian axes, the position x; and the orientation d;,
at time ¢, of a particle which is initially at X, with the relative orientation D;, are given by
(2.1) xp=x(Xy, 1), d;=d(X,1).

The components of the macro-velocity ©; and the director velocity w; of a particle are
defined by
D

1 = Ex“ Wi = ﬁdn

(2.2) v

a d . G g p—
where the operator % + 9 Els used to denote the material time derivative.
k

Dt
Adopting the notation used by LEsLIE [8] and ErICKSEN [5], we define the following quan-
tities:

1 1
D, = 7 (0.,49,), oy= 75 ®1,;-95,0,

2.3)
N = wi—wud;, Ny = Wy, ;—0ndy,;.

We now consider the motions of the continuum which differ from that given by
Eq. (2.1) only by superposed rigid body motions,
xF(t) = Qu(t)x,(t) —ci(t),

(24) d(t) = Q,,(t)d)(1),
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where Q;;(¢) is a proper orthogonal tensor function of time ¢. The associated quantities
defined in Eq. (2.3) will be denoted by the same symbol with an asterisk above. One
can readily show that

2.5) fo = 0uQDu, of= 00w+,

DO,
Ni* = QHN!: Ni} = QuQnNkh Qu = le g: .

Thus it is seen that D;;, N; and N;; are form invariant under the motions (2.4) of the
spatial frame of reference but not w;;.

3. Conservation laws and entropy inequality

In order to describe the nonlocal dynamical behaviour of liquid crystals, we adopt
the conservation laws proposed by ERICKSEN [5] with proper modifications. For com-
pleteness of the subject a brief outline of the derivation of the conservation laws is given
below.

For a material volume ¥V bounded by a surface 4, we assume that

1 1
3.1 % 9(—2—v,v,+TJw,w,+ U)dV= fg(r+F,v,+G,w,)dV
v v

+ J‘ (rlﬂ;"‘-ﬁw‘ —k)dA,
A

where p is the mass density, U integral energy per unit mass, r heat supply per unit mass,
t; surface force per unit area, s; director surface force per unit area, 4 the heat flux per
unit area and time, F; body force per unit mass, G; an intrinsic director body force per
unit mass, and J the constant microinertia.

Now consider a motion of the type (2.4) in which

a(t) =at, Q=794

where a; is an arbitrary constant vector. Assuming that o, U, F;, G;, t;, 5;, r and h re-
main form invariant under such a motion, Eq. (3.1) becomes

I I
(.2) L;- f 9[-2_ @+ a)@ta)t 5 In, w;+U]dV
v

= [elr+ Fwtart Gmdav+ [ tutocta)+som—Hida.
v A
Hence, from Eqgs. (3.1) and (3.2) it follows that
(3.3) '—’?}- fg(v,a,-l--;—a;a,) dVv = fQE[aldV"’" fﬁa;dd
14 Vv A

and, since g; is arbitrary,

D . D _ [
3.4) = J oV =0, o Vf ovidV = ! oFid¥+ | i
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Assuming that without loss in generality the mass is locally conserved, from Egs. (3.4),
with the usual smoothness assumptions

2 Do, 5
(3.5) 6—f+(ev¢).= =0, ey =eFitau,~h,
(3.6) 4 = a,ny, fﬁdV =0,
V

where o,; are the components of the stress tensor, n; is the unit outward normal to the
surface and ﬁ is the nonlocal body force (or the rate of nonlocal linear momentum)
per unit volume. From these equations one sees that the classical linear momentum
equation for local bodies is generalized to include a term (f':) corresponding to nonlocal
interactions.
Introducing Eqgs. (3.5) and (3.6) into the master equation (3.1), one obtains
(X)) f(-’@‘*’: I;); +e {)D?) av = J (or+ G:Wt+ﬁ"t+01;DiJ+°'J:w:J)dV
v

+ | (sywy—h)dA.
/

Adopting the arguments introduced by LesLie [8], we may assume that the following
local equations are valid:

Dw,
(338) o5 = s+ eGi—gu,

where g, is the total intrinsic director body force (both local and nonlocal) and =, is
the director stress tensor defined by

(3.9) 5y = TNy,
Substituting Eqs. (3.8) and (3.9) into Eq. (3.7), the energy equation becomes

(3.10) fg dv = f(gr+ﬁﬂ,+g,w;+auDu+cr,,mu-!-n,,w, _,)dV—fhdA

Consider a second motion of the type (2.4) in which

dl
co(r) =0, Q) = éy,, % =ay = —day,

g.'here a;; is a constant and skew-symmetric second-order tensor. Assuming that o, U,
fi» 81, Gij, 7y, r and h are form invariant under such a motion, Eq. (3.10) takes the follow-
ing form:

DU 7
(311) feﬁr_dV= f(g!'+O'U.Du“{"n“Nu'!'ﬁvl+glNl)dV"' .f’!dA
v v -

4 fwu(“.u +81d+ 7 d,; ) dV +a,, f (o3 +g,b';+ ?‘ktdj.k+ﬁx1)dV-
v 7
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Equation (3.11) must be valid for all arbitrary variations of a;;. Thus we must have

(3.12) ou+dig+d, k“u‘*'xjfl RJI
such that
(3.13) [ (Ry=Ryav = o,

v

where R, ; is the rate of the nonlocal generalized momentum residual tensor. Introduction
of Eq. (3.12) into Eq. (3.11) yields

DU ~ A~
(3.14) f@”ﬁrdy: f(9’+UuDu‘l‘ﬂ;isz+ﬂ”i+31Ni+Piiji"Q’i.t)dV,
v 7

where the heat flux vector ¢; and the tensor ﬁu are defined by

(3.15) h=qm, by= ﬁ”—-x,fj.
Hence, from Eq. (3.14) the localized form of the energy equation follows:

DU : ; 5
QW = Qr+ G’JlDu'f‘ﬂJ;Nu'hf[v(+g|.N¢+PJ.th_Qi.i+e'

Here ¢ is the nonlocal energy residual and subject to

(3.16)

(3.17) fst =0.

In conjunction with the above conservatlon laws we consider an entropy inequality
of the form

D or Q
(3.18) i fngV— f—dV+ f(—)n,dA >0
Dt J P T P T

Here S is the entropy per unit mass, T is the absolute temperature. Then the localized
form of the entropy inequality reads

(3.19) o D5 _or i aT.

epr~ Tt 2 th>0

where 7 is the rate of the nonlocal entropy residual and subject to

(3.20) [hav=o.
1 4
Introducing Helmholtz free energy F
(3.21) F=U-TS
with the aid of Eq. (3.16), the inequality becomes
(3.22) O'_rlpu"'ﬂﬁNu"‘ﬁ"l+8iNt+ﬁﬂwu_ qi_;-" _9(%:'4'3 )+(T”+ €) > 0.

This inequality must be valid for all independent processes.

4 Arch, Mech. Stos. nr 2/80
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4. Constitutive equations

For nonlocal nematic liquid crystals adopting the principle of equipresence [24] we
assume that the constitutive dependent variables

@.1) F, S, qi, 01y mug, 815 fos Pus, 1,

at any particle x at time ¢ are all single-valued functions of(!)

4.2) e, T,d,di;, wi, v, 0, Ty, Xy

and single-valued functionals in

43 o', T', d;, d;.j, Wi, vi, Y5, Ty, X4

Equivalently, from Egs. (2.3) and (2.4) they are functions, or functionals, in the follow-
ing quantities:

0,T,dy.dy;,N, Dy, Ty,

e, T',dj, di ;, Ni, Dy, T!y, iy, 03, i,

where £}, w; and r; are defined by

(4.5 Qi = wjj—wy, 0; = Vi—-U+ (X —X)0, T = Xi—X,.

It can easily be shown that the above quantities are objective under orthogonal trans-

formation of the spatial frame of reference. Thus the general functional form of a de-
pendent variable reads
(46) F=F(,T,d,d, ;,N,Dy To\, T,d;,di; Ni,Diy, T, Qi r).

We are here primarily concerned with liquid crystals of the nematic type. Hence,
following FRANK [4] we assume that the constitutive functionals are invariant under
reflections through planes containing the director. This excludes the liquid crystals of
the cholesteric type. However, the implication of this assumption is that our constitutive
functionals become locally isotropic rather than hemitropic, i.e. Eq. (4.5) holds for both
proper and improper orthogonal tensors. Also, we assume that d; and —d, are physically
indistinguishable and thus
F—» —-F, S§- -8, q-—q, o0y— -0, &= —my,

& = —&i, fl-' "f;: PU_’ '“Pili 3_’ _E’ ﬁ'_’ -ﬁ'

@4

4.7
if
(43) d - —d, du" —d;_,, Ni— =Ny, Ni;— —Nu-

These constitutive equations are further restricted by the principle of entropy in-

equality. If one takes the material derivative of Eq. (4.6) and substitute it into Eq. (3.22),
the first implication of the second law of thermodynamics is(?)

(49) F= F(Q, Ts dh dl..f; Q,: T" d:: d;,_;,f;).
(*) In general, one should also include wy,; as an independent constitutive variable. Following Leslie,

we have not included this term which characterizes the directorial viscosity.
(¥ In its complete generality the function F depends on Dy, Dj;, Nis, Ni;, Ni, Ni, 2;; and o/ in

a special way, e.g.
oF oF
—_ d *qy' =0,
24a +i’."’ (M;.)
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Noting that F is a functional in the primed quantities, the material time derivative of
Eq. (4.9) may be given by (cf. Demiray [23])

JoF oF DT aF

(4.100 F= —ga—gf’n,x‘f* aT Dt (N1+wudk)+ d (Nu di Dy

, O0F , oF DT' oF
+oupdy,+oud )+ fl‘@ Tg“’k.ﬁ' W'Dr E7A (Ni+wixdy)

’ r r I ’ i’ JF r
5d' (N —d; 3 Dijtidy s+ wid; ) + o (@ —v‘)] av’,

where we have used the following relations:

Dd D
—L = Ni+oud, Dr (d\,) = Njj+ond, ;+opd; y—d; Dy,

(@.11)

.D! — 00k

Here the symbol 6F/d( )’ is used to denote the Fréchet gradient of F with respect to that

of associated quantity.
Introducing the following abbreviated notations

o= 22 —E 0 = __Q.F_ K, = ﬁ.

=¢ ag’ 7?=a ’ l—ead‘l U"gadj"’

, _ , OF , _ OF , _OF , _ OF

(4.12) b 4 =QQ-""—69,, n =_-T” G(:Q‘—“-—‘ad;, K‘J:Q——-—-——ad}",
oo OF
i

into Eq. (4.10), we have

. 7 DT 1 1
4.13 = i Eosniia e i & _
(4.13) F 2 U+ Di + 3 o(Ni+oud)+ P Ky (Nij—di xDy;

] u’ ’ ’ r ’ ’ r
toudy,;+oud )+ i f [ ~e Oyt +0i(N] +oidy)
¥V

+Kji(Ni;j—d; 2 Dys+oidy, j+opdi )+ ti(v; "f’l)] av’.

The requirement that F is form invariant under rigid body rotation implies that the tensor

(4.14) Ty = 0idy+ Kyd, ;+ Kud o+ IT;JdV'=
7

where

(4.15) i = oidj+ Kiydy j+ Kidy o+ vi(x; — X))

where Ay (or A,)) represents one of the above variables on which F depends. But it is rather difficult to
find the solution for F that satisfies the foregoing functional equation. One of the solutions of this equa-
tion is that F is independent of these variables, such as Eq. (4.9).

4*
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should be symmetric in its indices (i,j). Substituting Eq. (4.13) into Eq. (3.22), then
integrating the result over the volume of the body and using the condition (3.17), one
obtains '

(4.16) f {[a‘,+(n+ f n‘dV'}&,,+(Kﬁ+ f xjadV')dk,,] D,
v ¥ 4
+(JTJ;—K}¢— fK_:‘dV’)-I-(gl_al - {U?dV’)Ng‘I'[f:— f(r,*—‘r,]dV']ﬂ,
v 4 v

+[Bumd (ot [otav)-du(kit [ Ktav)-(Kut [K2av)a,Jos
v 4 : L4 '

D1 A~ 4T, l
- *qV'| — B
(9S+gq+ lfa;: av ) Di + (7:: )[dV; 0,

where the starred quantities ( )* indicate the conjugate functions obtained from the
original functions by interchanging the primed and unprimed variables, i.e.

4.17) G, X = G(X, X)),

This inequality must be valid for all arbitrary variations of independent constitutive
variables. For the sake of simplicity, in the subsequent analysis we write

oy =dofj+ol, my=aj+af, Py=P;+pl,

¥

(4.18) L e
Si =fi+fP, g = gi+gl,

where
(4.19) o= —(n+ [a*av’)o,—atd,,

vV
(4.20) = Ky+ [ K,adv',

1 4
(4.21) Pjy=digi+d ymii+ a5k di s
4.22) fe= [ =vpav,
v

(4.23) g =0+ [ordv’

are respectively the elastic (or reversible) part of the stress tensor, the director stress
tensor, the rate of nonlocal generalized momentum residual, nonlocal body force residual,
and the intrinsic director body force. The attached letter (D) is used to indicate the ir-
reversible parts of the corresponding quantities.

Substituting Eqs. (4.19)-(4.23) into Eq. (4.16) and noting that the resulting inequality

is linear in%and N,;, we obtain

(4.25) §= —-n—% f n*dv’, ab=0.
14
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The remaining parts of the inequality (4.16) take the following form:

(4.25) f (aﬁD,,+ﬁ”ﬂ,+gPN;+ﬁﬂwu+Tﬁ- _‘I‘TT-‘)JV > 0.
14
If the heat conduction is neglected, i.e. T = T(t) for all X’ € B, from Eq. (4.25) one has
(4.26) =0,
(4.27) [ (BDy+fP0,+ PN+ BRwyj) dv > .
v r

The irreversible parts are subjected to the following restrictions:

(4.28) a{}zﬁ”gg?zﬁﬂso, when Dy;=N,;=N, =9, =w,;=0.
Furthermore, as can be seen from Eq. (4.25), when D;; = N;; = N; = 0, i.e. the body
undergoes rigid body motions, we must have

(4.29) [frav =0, [ (@®RE-RB)aV =o.
vV Vv

Since ﬁfj and f:‘ are independent of D;;, N;; and N;, from Eq. (3.6), (3.13) and (4.29)
it follows that

(4.30) ,,f feav = o, Vf (R —R%)dV = 0,

where

(4.31) Ry = x, ,,f (¢* = 7)) dV’ +d,g5+dy x 75+ Wind .-

If Eqs. (4.10) and (4.18)-(4.26) are substituted into Eq. (3.22), this yields
(4.32) 8D, +fP0+ PN+ Phw s+ E> 0,

where

-

(433) i=Tn+e, fEdV =0:
v

(434) E= f [( "'J'!“U.'l'l' ﬂ'ﬂ;_t) + ( _Kj*kdg,[.ou +K}gd;;D;_f) + (K_;Nu - K;;N;J)
v
+ (v}, —7i19) + (6N —0iN}) + (o dyw;;— otdiwi))+ (Kd ,0y

4 i’ r r ’ I DT ’ DT’ 'l

—Kuudj x0i)) + (K dyyoiy — Kindy, i) + (ﬂ*-ﬁr— - -T)-t_)] av’.

It is seen from Eq. (4.34) that E has the property of nonlocal residuals of a scalar nature,

viz. the integral of E over the volume of the body vanishes. The requirement that E
should be form invariant under rigid body motions implies that the tensor

(4.35) Zy= [ @h-vpav’
1 4
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must be symmetric with respect to its indices (i,j). At this point it might be pertinent
to introduce

(4.36) ¢ =¢&"-E,

where £° satisfies the condition (3.17), and will be termed as the irreversible part of the

nonlocal energy residual. Substituting Eq. (4.36) into Eq. (4.32), there follows the en-
tropy inequality governing the irreversible part of the constitutive relations

@.37) 8Dy +1P0,+gPN,+ PRw, 4 &° > 0.

Furthermore, assuming that £° is objective and requiring that the entropy inequality is
form invariant under all arbitrary motions of the spatial frame of reference, we obtain

(4.38) fP=0, P2=0.
Hence Eq. (4.37) becomes
(4.39) 0P Dyy+gPN,+&° > 0.

Since we have assumed that the temperature is space-uniform, without loss in generality,
we may set €2 = 0. Then the simplified form of entropy inequality takes the following

form:

(4.40) ofiD,;+gPN, = 0.
From this inequality we may conclude that
(4.41) oj=g =0, when D,;=N,=0.

These restrictions will be used as we formulate the linear constitutive equations.

5. Incompressible liquid with director of constant magnitude

In the liquid crystal theory it is generally assumed that the fluid is incompressible
and the director rotates about its center of gravity without changing its magnitude. When
the director is constrained to be of fixed length, it is convenient to absorb its magnitude
into other fluid properties and to consider the vector d; as a unit vector. In this particular
case the following relations are valid:

d‘dg = l, dgd"! = 0,

(5.1)
4N, =0, dN,+Nd,,, =0,
(5.2) 9,; =0 (incompressibility).
Due to the relations (5.1); and (5.2), the free energy F can be replaced by
63 Fo F+ 2t o-e) + 2 (@di-1)+ 2 4d,,,
Qo e 2o

- where g, is the constant fluid mass density, p is the hydrostatic pressure, and » and f;
are the arbitrary scalar and vector. These quantities are to be determined from the field
equations and the boundary conditions.
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If Eq. (5.3) is substituted into Eq. (4.6) and noting that F is independent of o and
the magnitude of d;, after some manipulations we obtain

(5.4) a5 = Budi+ag,  af =K+ Vf Khav,
(5.5) ofj = —pdy—nxdy,

(5.6) gl = vdi+Bd + &, 8=+ f otdv’,
.7) fe= Vf (et =)V,

(5.8) Py = g5 +dyunfy+ 5.

Here p, y and B, are, in general, functions of x but functionals in x’. However, to simplify
the problem, in the rest of the study, we will assume that these quantities are only func-
tions of x and .

Thus far we have kept the generality of the problem and assumed that F is an arbitrary
but continuous functional in d;, d; ; and r; (assuming that ¢ = T = constant). For the
purpose of simplifying the problem further we assume that F is given by

(5.9) 0oF = [, d, s di, di,,,ri)av",
v

where y is a continuous function of the primed quantities as well as unprimed ones,
Introducing Eq. (5.9) into Egs. (5.4)-(5.8) we obtain

(5.10) nf = —az;dV's 7§y = af+pid),

’ od;,
(5.11) 05y = —p8y—nfids,y,

, b . iz
(5.12) g = ydi+Bd g, g = E‘"dVa
vV
(5.13) fi= oz w,
6}';

V
(5.14) P = dig5d, o+ 7 + i
where

Here we note that, because of the particular form we have selected for the free energy
functional, the Fréchet gradients of F are simply replaced by the ordinary partial de-
rivatives of .
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6. Quasi-linear theory of nonlocal nematic liquid crystals

In this section we will develop a set of constitutive equations that is linear in 4, j,
Dj;, £2i; and N/ but an arbitrary function of 4;, d/ and r. To this end we assume that
the function 2 may be expressed as

(6.1) Z = Xo(dy, di, s )+ Ciyd, ydi 1,
where
(6.2 s'=|r'%  Ciu = Cipldm, dy, ).

In general, the functions X, and Cj;;; depend upon r; rather than on s’, but for iso-
tropic materials such an assumption is permissible on the grounds that the orientational
dependence of liquid crystals is characterized by the vector d; (or dj), not by r;. Further-
more, as stated by OseeN [2] and FrRANK [4], only the splay, bending and twist (in general
the gradient of d;) of far-distant thread-like particles, but not the relative rotation of
them, affect the behaviour of a particle considered. This statement is tantamount to the
assumption that X, and Cj;, are of the form

(6.3) Zo Zo(dy, 8), C;J'tl = C;Ju(d;sf)-
Introducing Eq. (6.1) into Eqs. (5.10)-(5.14), the constitutive equations read

(6.4) g = ,,f Ciuds AV,

(6.5 o = —Pdu-ﬁfsdx 1

©6) # = f v,

6.7) fr=-2 f [az ‘3C“"*’ = iy, ,]r,dV
(6.8) Pty = digf+d,+ 7+ 7edy. .

From Eqgs. (4.40) and (4.41) the reversible part of the constitutive equation reads

(6.9) o) = f (ZimDu+FiaNdV', Zip = Zim,
v
(6.10) &= f (N +ah DAV’ ok = ok,

where X, Fij, oif and «;}; are functions of d;, and s'.

The constitutive equations are further restricted by the axiom of objectivity. This
axiom states that the constitutive functionals of nematic liquid crystals are form in-
variant under a full group of orthogonal transformation of the spatial frame of references,

e.g.
(6.11) %) = QinQymTmas
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where

QimQm = OmiQmj = &y, detQ = F1.

Similar forms are valid for other dependent variables provided that their vectorial and
scalar character are taken into account.

Applying this principle to Eq. (6.1)-(6.10) and noting that d;d; = 1, the following
appropriate relations are obtained:

(6.12) Zo = Zo(s),
(6.13)  Cij = o0y 0+a) 05 0p+ 03 0y 0j+ a3 aud}d; + o4 0pd; di + 05 6,,d,d),

'’ 1 1] l i’ r L3 i Ly l s * r
(6.14) 2y = _j‘ﬁl(alk‘sﬂ +6405) +—2—ﬁz(éndj di + 6udjdt)+?ﬁa(ajkdi di
+ 0, didy)+padidjdid;,
(6.15)  Fiy = f10udj+f;0pdi,
’ l r L3 i’
(6.16) i = ??o(audk +0ud)),
(6.17) a;}a = C:] 5,1,

where ap, , ..., ¢o and c¢; are all functions of s’ = |r'|2. Here one must note that F
when d; — D; (where D; is the initial value ofd), d; ;- 0,D;;—+0,N;—» 0, and N; - 0,
the constitutive variables xy;, 0y, g;, P;; and ﬁ must vanish. From Egs. (6.4)-(6.8) this
argument implies that

a):o ' ! R,
(6.19) Jﬁrr,a’lf = 0.
This is possible if and only if

(6.19) Zo(s") = 2, = constant.

Thus, substituting Egs. (6.12)-(6.17) into Egs. (6.1)-(6.10), the linearized form of the
constitutive relations follows:

(6.20) 2= Xo+aod,  dymt oy dydia+ oy dyydi g+ a3y dy, did)
B d;d;.,d;',d; d; + a; d;.Jd; d} d;'u,

621) a5 = J’ (%ol m Oy + &y )+ 2yl s df  d}d] + o d) 1 di d] + ds dry mdi d))dV",
V

(6.22) ofy = —pdy,

(623) 8 =0, =0, P5=0,

(624)  of = [ (B.Diy+B,Diudi dj+Bsd; Djud; + B d; Diudid; +£,Nidj +f3d; N))dV",
V

625 &P = [ (coNi+voDixdp)dv".
V

It might easily be seen that the condition (4.30), is spontaneously satisfied by Eq. (6.23),.
Moreover, Eqgs. (6.24) and (6.25) are further restricted by the principle of objectivity and
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the condition (3.13). However, because of the simplifying assumptions we have made at
the outset of linear constitutive relations, the condition (3.13) is not exactly satisfied. In
order to fulfill this requirement approximately, we must have

(6.26) cofa—fi, Yo =ps—Pa

The constitutive equations (6.24) and (6.25) are further restricted by the principle of
entropy inequality. Substituting these relations into Eq. (4.40), we obtain

627) [ (BDiyDuy+ B Djudi d; D+ By d; Diyd; Doyt Biad; dy Dy, Dindid;
v

+fiN;d; Dy +f;d;N; Di;+ CoNiN+yo Dy diNi)dvV' > 0.

This inequality must be valid for all arbitrary variations of Dj;, D;;, N; and Nj.
Before we proposed further it might be useful to study a special case, namely, the
local theory of mematic liquid crystals.

Local theory of nematic liquid crystals

To obtain the local constitutive relations of nematic liquid crystals it will be sufficient
to express the functions characterizing the material properties as
(6.28) a'(s") = ad(x'—x),

where a is a constant characterizing the material properties and é(x’—x) is a Dirac delta
function.

Introducing Eq. (6.28) into Egs. (6.20)-(6.25) the following linearized local constitu-
tive equations are obtained:

(6.29) F = aod, 1y m+ 0y di 1y 1+ 020, dy i+ 034y 5y 1 did),

(6.30) 7 = codmmOyt ey dyit+2dy s+ t3dy1did),

(6.31) of; = —pdy,

(6.32) o) = By Dy+p.Dudid)+f3d Dy dy+ fadid; Dy dydy+ 1y N dy+ f2d, N,
(6.33) gl = coNi+yoDydy.

These equations are exactly the same as those given by LESLIE [5]. This consistency provides
us with a check-up about the completeness of the theory.

Field equations

The field equations governing the nonlocal mechanical behaviour of nematic liquid
crystals may be obtained by substituting Egs. (6.21)-(6.25) into the balance laws (3.5),
and (3.8). If this is done, the following integro-differential equations are obtained:

©34)  ~put [ BiDjur+BuDpd'di) 4 By Dindi) s+ Bu(dy di Diadid)
v

T T r r r 74 ’ r m
+fi(Njd)), s +/2(d;Ni) JavV’ — ffnﬂjds'ﬂ?(f:-ﬁ) =0,
i
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(6.35)  (B;—v)di+ f [0 mi+ 01+ @] i+ a3(d] 1 did)), + 2o (df di d))
v

’ r ’ i’ [ r ’ L5 ’ ’ ’ 'D
+ as(dm‘mdjdi).j - CQN( _}’QDudk]dV — f PﬂntdS+g (GIHJT“;!) = 0,
A

where t;; and Pj; are defined by

(6.36)  t; = B\ Diy+ B3 D didj + Bd; Djydi + 4 d; dj Dy didi +f, Nid;+1,di N},

(6.37)  Pij = todmm0y+ oy d} +a3d), ;4 a3d;, djd + o, d;  di di + o dyy o did].

Here, in obtaining Egs. (6.34) and (6.35) we have used the following relation:
Tt e =)

and the generalized Green-Gauss theorem to convert some volume integrals into sur-

face integrals. It is interesting to note that the field equations (6.34) and (6.35) contain

some surface integral term which represents the effect of surface tension and has no

counterpart in the local theory of nematic liquid crystals. These field equations and the

constitutive relations provide us with sufficient relations to describe the nonlocal mechanical

behaviour of liquid crystals completely. In the next section we will study the solution

of the shear flow problem in nematic liquid crystals.

We finally remark that the influence functions «, f; and p; are restricted by the
axiom of attenuating neighbourhood (cf. ERINGEN [24]). This axiom is a strong continuity
requirement arising from the fact that the nonlocal effects diminish rapidly with the
distance, e.g. the intermolecular forces are known to die out with distance rapidly. This
can be achieved by taking

(6.38) lim s'2*¢[ai(s"), Bi(s"), yu(s)] =0, &> 0.
Yr=0
In practice we may select a functional form such as
’ ’ r l ’
(6.39) (ai, Bt y) = (af, 7. ??)7 exp(—s'/x).

Here we note that the parameter x represents the range of nonlocality. It can easily be
shown that as % — 0 the following relation is valid:

(6.40) HI% {—xl— exp( -—s'!x)} - 4(s").

Using this property of influence functions in the limit of » — 0, one can easily obtain
the classical local theory of liquid crystals.

7. Shear flow

The purpose of this section is to investigate the shear flow of an incompressible liquid
crystal of the nematic type. Assuming that the body forces vanish, the velocity and director
fields may be expressed as

Uy = u(y), v, =9,=0,
(7.1) ol
d, = cos(y), d,=sinb(y), d.=0.
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The statement of the balance equations (6.21) to (6.25) in the Cartesian coordinate system
reads

do,, Op _ d _ op
(7.2) 2 % 0, ) (oyy) = 0, ¥ " 0,
i) i
(73) 'Ey'_n)x"'gx = 0! Enrr'l'g? =0.
From Egs. (7.2) it follows that
(7.4) O,z = ay+c¢, p = po+ax+a,,,

where a, ¢ and p, are arbitrary constants and g,, is the pressureless part of the correspond-
ing stress components which can be derived from constitutive relations. Here we note
that the constant a stands for the magnitude of the pressure gradient along the x axis.
Assuming that, for the time being, the pressure gradient is zero, that is a = 0, Eqs. (7.4)
become

(7'5) Oy = €, P = P0+Ew'

From Egs. (6.24) and (7.5),, we obtain

) f KO -7 ) My =,

@’
where B, B3, ..., fi,f3 and K(y'—y, y) are defined by

GO -n= [ Guraxdy,
a.mn l"’ o
KO =y; ¥) = 5 Bi+(B2+fi)cos®0' (/)
+ (B3 +13)sin0'(y")]+ Bisin26’ (") cos?0(y")
and h represents the depth of the upper surface of the liquid body.
After some elimination Egs. (7.3) reduce to

h
vy 470 L OH(©';6) (4o’ 2
(7.8) {H(ﬂ 30— - (#_)
! dy a0 dy

2. j“, [chcos(®’ 3)+y0cos(3’+9)]} &' =0,
where H(#', 0) is defined by
(190 H'(0';60) = (ap+a3)cosd cosf+a cos(6' —0)

+ (a3 + as) cos0'sin@’sin(6’ —6) + w; sin?6'cos (6’ —6).

Here «), @3, ..., s are defined in a similar fashion to quantities in Eq. (7.6),.

Equations (7.6) and (7.8) give the complete set of integro-differential equations for
determining the functions 6 and u, provided that a set of properly posed boundary condi-
tions is given.
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Flow near a boundary
We look for a solution of the set (7.6) satisfying the boundary conditions

u(0) =0, 6(0) =6,,

(7.10)
ﬂ(y) 2 BOa 1 Cﬂ(h = CO),

where 0, and 0, are given constants having values between zero and 2.
Selecting 4 to be infinite and integrating Eqgs. (7.6) and (7.8) and noting the relation
(6.39), we obtain

.11) HO,, 0)%, + f [c{,cos(&'—ﬂ)+yi,cos(ﬁ'+G)]§;—:—dy'=0,
0

(7.12) ofG(y'—y;y’)u(y')dy’ = —c,

where
GO -y; ) aK(y;,;:v ¥,

(1.13)

Here #x, is another constant of integration and should be determined from the boundary
conditions (7.10).

Equations (7.11) and (7.12) give two integro-differential equations for the determina-
tion of 6’ and u'. As is seen, these equations are linear in »’ but highly nonlinear in 6’
and they cannot be solved by analytical means. A numerical technique must be made
use of.

Flow between parallel plates

We now look for a solution of Egs. (7.6) and (7.8) satisfying the boundary conditions
(7.14) u(=h) =0, wuh)=V, 6(—h)=06(h)=0,

where h and ¥ are constants. This boundary condition corresponds to a flow between
two parallel plates at a constant distant 24 apart, one of which is at rest and the other
moving with uniform velocity V. The orientation at the walls has been set equal to zero,
so that the directors are parallel to the plates at the boundaries. As indicated by LEsLIE
[5], this is a possible boundary condition for the flow of liquid crystals of the nematic
type. In view of the condition (7.14),, it is reasonable to assume that

(1.15) 6(~») = 007), %,. =o.
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In this case from Eqgs. (7.2) the governing integro-differential equations read

(1.16) f KO-y ) Gty =,

.17) f {H(ﬂ’ a)‘”' aHgf") (%;) 1 j“: [chcos(@’ —6)

+yacos(8’+6)]}dy’ = 0.

Integration of these equations gives
h
(7.18) f GO —y; Y)W (y)dy' = K(h—y; h)V —c,

“k
’ r ’ o’ d" ’
(.19) [ [choos(® =)+ Yocos(8 + 0] Gordy’ = Hy @),
~h

where
(7.20)  H,(0) = (ao+a,+a3)[%4cosb

and K, = % which must be determined from the conditions (7.15). These two
y=h

relations again give two nonhomogeneous integro-differential equations for ' and 6'. It
is extremely difficult to solve these equations by analytical means. A numerical technique
must rather be used. To make the paper short we will not discuss the solution technique
here. A separate paper is planned for the method of solving these integro-differential
equations.
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