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A diffusing vortex model of a waterspout 

P. G. BELLAMY-KNIGHTS (MANCHESTER) and L. HATTON (SURREY) 

A CLASS OF UNSTEADY multicellular viscous vortex similarity solutions, which qualitatively agree 
quite well with the observed properties of waterspouts, is described and represented analyti­
cally by inner and outer series expansions. This solution is not externally driven in that there 
is no imposed axial pressure gradient. The highest order terms in the far field correspond to 
steady flow and the velocity tends to zero with increasing radial distance from the viscous core 
of the vortex. 

Przedyskutowano klas~ wielokom6rkowych lepkich rozwi<Izan wirowych, kt6re pod wzgl~dem 
jakosciowym dobrze opisuj'l zachowanie si~ tr<IbY wodnej; rozwi<Izania przedstawiono anali­
tycznie za pomoc'l rozwini¢ zewn~trznych i wewn~trznych. Przyj~to, i:e w przeplywie otaczaj'l­
cym nie wyst~puje osiowy gradient cisnienia. Czlony wyi:szego rz~du opisuj(lce przeplyw w dui:ej 
odleglosci od wiru odpowiadaj'l przeplywowi laminarnemu, a pr~dkosc zmierza do zera przy 
wzrastaj(lcej odleglosci radialnej od lepkiego rdzenia wiru. 

06Cy}l{~eH I<nacc MHOroHqeMCThiX BH3I<MX BMXpeBbiX pernemtii:, I<OTOpbie B I<aqecTBeHHOM 

oTHorneHMH xoporno onHChiBaiOT noae~eHHe BO~Horo cMepqa; perneHHH npe~cTaBneHhi aHa­

.TIMTHqeci<M npM ITOMOII\H BHeiliHMX H BHyTpeHHMX pa3JIO»<emtii:. ilpHHHTO, ~0 B OI<py»<aiO­

ll\eM TeqeHMM He B h iCTynaeT oceaoif rpa~MeHT ~aaneHMH. "lJneHhi Bhrcrnero nopH~I<a, onM­

ChiBaiOII\Me TeqeHHe Ha 6oJihiliOM paCCTOHHHH OT BHXpH, OTBeqaiOT JiaMMHapHOMY TeqeHMIO, 

a CI<OpOCTh CTpeMHTCH I< HYJIIO npM B03paCTaiOmeM pa~HaJibHOM paCCTOHHHH OT BH3I<OrO Ce­

~e~MI<a BnXpH. 

1. Introduction 

THE WATERSPOUT and its land equivalent, the tornado, are among the most violent and 
destructive of all atmospheric vortex flows. They are both columnar vortices and have 
a vertical scale of the order of 100-1000 m. 

The visible part of these vortices may take on a variety of different forms. The water­
spout has a highly cylindrical core and interacts with a water surface giving a cylindrical 
sheath of spray at the foot of the vortex. This visual similarity has led to some speculation 
as to how alike these two vortex structures are dynamically. 

An important defining difference is the nature of the terminating surface, and many 
authors, e.g., BELLAMY-KNIGHTS [1], HATTON [2], RAYMOND and RAO [3], have discussed 
the terminating boundary conditions in detail. A waterspout is here taken to be a colum­
nar vortex with swirling speeds of up to about 40-150 mfs lying over a body of water deep 
enough to exclude the effects of water-bottom. Waterspouts are more amenable to ob­
servational study than tornadoes owing to their high frequency of occurrence in certain 
preferred locations, for example, the Florida Keys, and also because their structure is not 
masked by the cloud of debris characteristic of tornadoes. 

GOLDEN [4, 5] conducted a series of field experiments on waterspouts. His observa­
tions suggest that there are basic differences in the environments of tornadoes and water-
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spouts. For example, whereas pronounced low-level instability (c.f. BELLAMY-KNIGHTS 

and SACI [6]) and vertical wind shear are prominent features in tornado formation, they 
are more typically absent from the environment of waterspouts. This supports the argu­
ment (c. f. SERRIN [7]), that some atmospheric vortices can be modelled by solutions of the 
equations of motion without reference to the energy mechanism supporting them, parti­
cularly in the case of waterspouts and so in the analysis to follow only dynamical solutions 
are considered. These observations of waterspouts also suggest that near the water sur­
face the swirl resembled closely the Rankine vortex structure of solid rotation near the 
axis and a potential vortex away from the axis. Waterspouts also seem almost invariably 
to be highly cylindrical over most of the visible core. These features suggest that the 
waterspout might be modelled by solutions adopting a simple variation with height. 

Finally, waterspout observations appear to show a two-cell structure with a noticeably 
clearer central region, suggesting axial downflow, surrounded by a mistier annular outer 
region. This involves an axial downflow in the inner core and a sharply defined region 
of upftow around this core with radial inflow away from the core. This structure is an im­
portant feature of the vortex to be described in the following analysis. 

2. Mathematical analysis 

The energy equation will not enter the subsequent discussion as only dynamically 
allowable solutions of the governing equations are being sought without reference to 
the energy mechanisms supporting them. The assumption of incompressibility will also 
be made, which can be justified by considering the observed magnitudes of winds rarely 
exceeding 150 mfs. Axisymmetry is also assumed as observations taken throughout the 
life of waterspouts seem to suggest that even fairly large departures from symmetry 
do not affect the dynamical structure of the vortex core. 

The effect of turbulence on atmospheric vortices has been discussed by, for example, 
SERRIN [7]. The usual assumption that the eddy viscosity is constant will be adopted here. 
Then if Y is the sum of the kinematic viscosity and the kinematic eddy viscosity, the equa­
tions of motion reduce to laminar form. 

Cylindrical polar coordinates (r, 0, z) are adopted where r is the radius, () is the azi­
muthal angle and z is the axial distance, the plane z = 0 lying on the water surface. The 
velocity components in the corresponding directions are u, v, and w. The type of unsteadi-

ness considered in this paper has a radial length scale of the order y Yt, where tis the time. 
BELLAMY-KNIGHTS [8] considered a similarity analysis in terms of the variable 

(2.1) 

Then if 2nK is the ambient circulation, the velocity field 

(2.2) 

(2.3) 

(2.4) 

u = - 2Y/(r;)/r, 

v = -Kh(r;)/r, 

w = zf'(r;)/t 
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reduced the Navier-Stokes equations to the form 

(2.5) 

(2.6) 

('YJf" +nf')' +If"-!' 2 + c = o, 
n(h" + h') + fh' = o, 

653 

a pair of coupled ordinary differential equations, where C is a constant. The boundary 
conditions satisfied were 

(2.7) 

(2.8) 

/(0) = 0, 

h(OJ = 0 

giving zero radial and tangential velocity on the axis. This accords with the conditions 
existing in a waterspout. Far away from the axis, as 'YJ ~ oo 

(2.9) 

(2.10) 

where y is a constant. Hence C = y(y-1). This causes the velocity field to tend asympto­
tically to 

(2.11) 

(2.12) 

(2.13) 

u = -0.5yrft, 

v = Kfr, 

w=yzft. 

Bellamy-Knights found analytical and numerical solutions to Eqs. (2.5) and (2.6) which 
were characterised by the values of y, determining the outer potential flow andf'(O) de­
termining the axial velocity on the axis of symmetry. 

Two comments should be made regarding these solutions. Firstly, they satisfy only 
an inviscid condition at the terminating surface, z = 0. Although a waterspout permits 
some slip over this surface, a boundary layer solution could be included as described by 
BELLAMY-KNIGHTS [1]. Secondly, they represent "weak" vortices in that they are driven 
by the outer potential flow. Mathematically, this is because u tends to infinity with increas­
ing radius. The present work, however, shows that there exist solutions to Eqs. (2.5) and 
(2.6) which satisfy 

(2.14) (u, v, w) ~ (0, 0, 0) as r ~ oo. 

This special case has some satisfying properties when used to model flow in a waterspout 
and is obtained when y = 0, so giving a zero value of the constant in Eq. (2.5). The re­
maining parameter/'(0) must lie in the range -2 <f'(O) < 1 in order to satisfy Eq. (2.14). 
The asymptotic behaviour of these solutions, replacing Eqs. (2.11) and (2.13), will be 
obtained in the next section. 

3. Solution of the equations and discussion of the results 

Equations (2.5) and (2.6) with C = 0 can be solved numerically using a modified shoot­
ing technique for which initial conditions at 'YJ = 0 are required, i.e., f(O) and h(O) are 
both zero and on the physically reasonable assumption that f and all its derivatives are 
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finite at 'YJ = 0, .f"(O) = A(A -1) where A = .f'(O) must be specified. A typical solution 
for fwhen A = -1 is shown by the curve a in Fig. 1. Alternatively, for small values of 'YJ, 

the solution of Eq. (2.5) may be represented by the following power series expansion : 

(3.1) f =}; Qp'Y}p' 
p==l 

10 .-------y----,----,---~----.---.----,,----r--,----r--:;;;ii'~ 

F 

0.8 

0 6 

0.4 

0.2 

-0.2 

FIG. 1. Radial velocity function f versus rJ when A = - 1 computed by numerical integration, the inner 
series expansion and the outer series expansion for curves (a), (b) and (c), respectively. 

wherea1 =.f'(O), a2 = 2/"(0), etc. Then, substituting Eq. (3.1) into Eq. (2.5), and equating 
to zero successively increasing powers of 'YJ, we get for p = I, 2, 3, ... ad. inf., 

p 

aP+l = - {p2op+}; q(2q-2-p)aqap+l-q}IP2(p-l). 
q=l 

In particular, when p = I, a2 = 0.5a1 (a1 -1). Then, when A is specified, numerical com­
putation of the series (3.1) can proceed. Curve b in Fig. 1 shows the resulting solution 
based on the first 100 terms of the series. The radius of convergence of the series (3.1) 
varies with A and is, for example, 3.6 when A = - 1.0 and 5.1 when A = - 0.4. It might 
be possible to extend the usefulness of this series by adopting methods reviewed by VAN 

DYKE [9]. For example, when A is positive, the signs of the coefficients aP alternate, indi­
cating a singularity on the negative 'YJ axis. By plotting ap/aP_ 1 versus 1 fp, the position 
of the singularity can be estimated. When A is negative, the signs show a short pattern 
of five signs repeated with occasional slips suggesting singularities in the complex plane 
of 'YJ· A power series solution for h can also be obtained, i.e., 
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where, for q = 1, 2, 3 ... ad. inf., 

q 

bq+t = - { qbq+ 2 (q+ 1-r)arbq+l-r}fq(q+ 1). 
r=l 

Equation (2.6) is linear in h and so a numerical solution for any assumed nonzero value 
of h'(O) can be normalised so that the outer boundary condition (2.10) is satisfied. 

In order to determine analytically the behaviour of the solution of Eq. (2.5) for large 
values of 'YJ, it is useful to consider the following outer series expansion: 

(3.2) 

where c, d and ai.i are constants to be determined. Substituting Eq. (3.2) into Eq. (2.5) 
the following explicit formula for as+ 1 ,r can be obtained by equating coefficients of 
(loge'Y})t/'YJ5 +2 (for t = s+ 1, s ... 1,0 and s = 0, 1, 2 ... ad. inf.) 

as+l,c = {-Ct+2)(t+1)as+l.r+2+2(s+1)(t+1)as+l,r+l 

- (t + 3)(t + 2)(t+ 1)as, t+ 3 + (t + 2)(t+ l)(3s + 2)as, t+ 2- (t+ l)(s+ 1)(3s + l)as, r+ 1 

+s(s + 1) 2a.~. t- c[(t+ l)(t- 2)as, t+ 1 + (2s- 2st- t -1)as. r + s(s+ 1)as, r- t1 
- d[(t+ 2)(t + l)as, t+ 2 - (t+ 1)(2s+ l)as, r+ 1 +s(s+ 1)as, rl 

s-1 i 

-2 2 a1,A,i(2j-t-3)as-l.t-i+ 2 +i(2i-s+1)as-t,t-J 
i= I i=O 

+ (js-4ij- j + i + it)as - i. t-J+ tJ}/(s+ 1), 

where ap,q is zero unless 0 ~ q ~ p and p ~ I. Note that there is no contribution from the 
doubleisummation term in the above equation when s = 0 and s = 1. These coefficients 
can~readily be computed given c and d. No means of deriving c and d analytically in terms 
of A were discovered but the validity of Eq. (3.2) was checked by obtaining c and d by 
matching the series solution at~very large values of 'YJ with the numerically obtained sol­
ution. Thenl the: solution given by Eq. (3.2) and retaining terms up to and including order 
l/'YJ 4 compared identically with the numerically obtained solution for values of 'YJ as low 
as about 5.0 when A = -1.0 as shown by curve c of Fig. 1. The main value, however, 
of this outer series is that it describes analytically the behaviour off and hence of u and w 
at large values of 'YJ· 

i.e. u = - (4vcloger)fr+ 0(1/r), 

w = (4vcz)/r 2 + O(loger/r4
) 

showing that u and w tend asymptotically to steady flow values. Moreover since h --+ 1 
as 'YJ --+ oo, v --+ K/r so that when y = 0, Eqs. (2.11) and (2.13) are replaced by the above 
two equations but Eq. (2.12) remains unchanged. Thus the ambient flow is steady and 
tends to zero with increasing radius and there is no imposed axial pressure gradient. 
These solutions, when y = 0, are governed by only one parameter, namely A. For A < 0.0 
two-cell vortices are obtained whereas for A > 0.0 the vortices have one cell, the number 
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of cells being defined as one more than the number of finite zeros off'. A further interes­
ting feature of the present solutions is that there are no two-cell vortices with upftow on the 
axis. Rather, they are always characterised by downflow on the axis and radial inflow at 
large radial distances. This qualitatively agrees with the earlier discussed observations 

regarding the two-cell structure of waterspouts. Figure 2 shows h/Vn plotted against y;j 

0.4 

0.2 

OL-________ L_ ________ J_ ________ -L---------L--------~--------~3 

Vrj 

FIG. 2. Circumferential velocity function hl{fi versus y1} when A = - 1 computed by numerical integra­
tion, the inner series expansion and the outer series expansion for curves (a), (b) and (c), respectively. 

which corresponds to tangential velocity versus radius. This figure shows clearly the transi­
tion from solid rotation near the axis to the potential vortex behaviour as r increases. Thus 
the swirl velocity field also qualitatively agrees with observations of the Rankine like be­
haviour of waterspouts. 
·- Finally it may be noted that (vju) 2 -+ K 2 /(2vcloge1]) 2 for large 17 which tends to zero 
as 17 -+ oo. Hence the formulation of BELLAMY-KNIGHTS [1], which takes account of the 
boundary conditions at z = 0, could be applied. 

4. Conclusions 

A simple dynamical model for a diffusing waterspout is presented, which develops 
earlier mathematical models so that there is no imposed axial pressure gradient in the core. 
The resulting equations are solved numerically and analytically to give two-series expan­
sions, valid for small and large radii respectively. The outer expansion involves loga-
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rithmic terms, the leading term of which yields time independent velocity components 
which tend to zero with increasing radius, thus satisfying more acceptable ambient flow 
conditions than earlier models. 

Mathematically, the present solution of the Navier-Stokes equations is an unsteady 
viscous diffusing vortex core embedded in a steady ambient flow which is reminiscent of 
the classical OsEEN [10] vortex solution. This solution, however, unlike Oseen's vortex 
allows radial and axial velocity in the vortex core and also shows some of the observed 
features of a waterspout. 
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