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Wave propagation in strongly heterogeneous media 

G. DIENER and H. -H. BUDDE (DRESDEN) 

THE EFFECTIVE wave equation describing the propagation of the mean field in a stochastic me­
dium is considered. The medium is specified as a random arrangement of homogeneous regions 
(phase mixture). A self-consistent approach is used to calculate the velocity and the damping 
of the mean wave as functions of the wave number. The method can be applied to the case of 
strong heterogeneity. Detailed calculations are carried out for scalar waves, approximately 
spherical grains and long wavelengths. Some numerical results are given for a two-phase mix­
ture. 

Rozpatruje sict konk.retne r6wnanie falowe opisujllce propagacjct pola sredniego w osrodku sto­
chastycznym. Osrodek jest zdefiniowany jako przypadkowa rozmaitosc obszar6w jednorodnych 
(mieszanina faz). Dla wyliczenia pr~dko5ci i tlumienia fali sredniej w funkcji liczby falowej wy­
korzystuje si~ metod~ zapewniajllCCl zgodnosc. Rozwaiana metoda moi:e bye stosowana do 
przypadku silnej niejednorodno5ci. Szczeg6lowe obliczenia przeprowadzono dla przypadku fal 
skalarnych, ziaren w przyblii:eniu kulistych i fat dlugich. Podano wyniki numeryczne dla mie­
szaniny dwufazowej. 

PaccMaTpHBaeTc.R e<P<Pei<THBHoe Bo.JIHosoe ypasHeiDle OIDlCbmarow;ee pacnpoCTpaueiDle cpe,A­
nom~ B CTOXaCTW~eCI<OH cpe.z:te. Cpe,Aa onpe,lleJieHa I<ai< C.JJY'IaHHoe MHoroo6pa3HC OAHOPOA• 
HbiX o6JiaCTeH (cMecL QJa3) • .Ilmi pacqe-ra CI<OpOCTH H 3a'cyXaHH.R cpe,llHeH BOJIHbl B QJym<l.lHH 
Bo.JIHoBoro tmCJia ucnoJILaye-rc.R caMocornacoBaullbm noAXOJ:t. PaccMa1'pasaeMbm MeTOA 
MO>KeT 6b1Tb llpHMCHeH I< Cnyqal<> CHJILHOH HCO,llHOpJ,llHOCTH. ,IleTaJILHble pacqeTbl npoae­
.D;CIIbl ,I1;JI.R C.JJY'Ia.R CI<aJI.RpllbiX BO.JIH, CQJep~eCI<HX 3epeH H ,11;JIHHHbiX BO.JIH. IlpHBC.D;CIIbl tiH• 
CJieHHbie peayJILTaTbl ,l1;llil ,D;ByxQJa3HOH CMCCH. 

1. Introduction 

THis PAPER deals with the wave propagation in a heteregeneous medium consisting of 
a random arrangement of homogeneous regions (or grains), for example a phase mixture. 
The regions differ from each other by their material properties. Our aim is to predict the 
behaviour of the mean wave from information about the randomly varying material 
parameters. We are mainly interested in phenomena which are related to the heterogeneity 
of the material as dispersion and damping of the mean wave due to scattering processes 
at the inhomogeneities. 

Most of former work which has been done in this field is based on perturbation meth· 
ods (see e.g. [1-3]). With the aid of the multiple-scattering formalism, several authors 
investigated a material containing a random distribution of scatterers (e.g. [4]). In order 
to treat the case of strong heterogeneity, we use a self-consistent method developed in 
a former paper [5] hereafter referred to as I. This method is presumed to give useful re­
sults if all components of the mixture have comparable morphology. On the contrary, 
the proposed treatment seems to be less appropriate for a material consisting, for example, 
of a dense arrangement of isolated grains which are separated from each other by thin 
layers of a matrix material. Furthermore, the material is assumed to show negligible 
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60 G. DIENER AND H. -H. BUDDE 

correlations between the material properties of adjacent grains. In the present paper, 
practical calculations are restricted to the simplest case of geometry, where all homoge­
neous regions can be approximated by spheres. 

We consider a stochastic wave equation of the type 

(1.1) o2u a ( au) Lstu(r' t) = est(r) ot2 - Tr Est(r) Tr = q(r' t). 

(In comparison with I we slightly change the notation indicating stochastic quantities by 
the subscript st, whereas effective parameters are written without any subscript). Anal­
ogously to Eq. (2.1) of I, the stochastic material parameters est(r) and Est(r) can be 
represented as 

(1.2) est(r) = 2: el~Jt(r)' 
i 

Est(r) = }; e/1t(r), 
i 

where [)I and Et denote their values inside the i-th grain. The ei are step functions(!) de­
fined by 

(1.3) {
1 inside 

er = tC ) 0 outside the i-th grain, }; et(r) = 1. 
i 

The concrete form of the source term q(r, t) is of no consequence in the following. Thus, 
we assume it to be a deterministic function. In order to get rid of boundary effects, we 
consider an infinite medium. The sources q are located in a finite region, and the field u 
vanishes at great distances. 

For the sake of simplicity we restrict ourselves to the scalar fields u(r, t). Waves of 
practical interest are almost vector fields (elastic waves, electromagnetic waves). The vector 
character would involve additional computational difficulties without, however, changing 
the essence of the reasoning. 

The mean wave (u(r, t)) is governed by an effective wave equation (see [1-4]) 

(1.4) L(u(r, t)) = q(r, t) 

containing a linear effective wave operator L. The brackets denote an ensemble average 
over many samples showing identical macroscopic properties, but differing from each 
other by the random positions (and shapes) of the grains [9]. 

In Sect. 2 the self-consistent procedure to determine the effective operator which 
was outlined in I is briefly reviewed and extended to the dynamic case. In Sect. 3 calcula­
tions of the effective wave operator are carried out for the special case of approximately 
spherical grains and long wavelengths. From this operator the dispersion relation of the 
mean wave is readily obtained. It gives the velocity and the decay of the coherent mean 
wave (u) as a function of the wavelength A.= 2nfk. Finally, in Sect. 4 the example of 
a two-phase mixture is discussed numerically. 

(1) Mathematical difficulties which could arise in Eq. (1.1) from the step functions are physically irre­
levant. They can be avoided by imagining the steps as rapid, but continuous transitions. Equation (1.1) 
remains valid in the limit (1.3). 
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WAVE PROPAGATION IN STRONGLY HETEROGENEOUS MEDIA 61 

2. Self-consistent approach to the effective wave equation 

Due to the linearity of Eq. (1.1), the field u generated by the given sources q(r, t) 
can be expressed as a linear functional of the source term 

t 

(2.1) u(r, t) = g5,q(r, t) = J dr' J dt'g5,(r, r', t, t')q(r', t'). 
-00 

g5, and gst are called the stochastic Green's operator and the stochastic Green's function, 
respectively. Ensemble averaging gives, for deterministic sources, 

t 

(2.2) (u(r, t)) = J dr' J dt'(g5,(r, r', t, t'))q(r', t'). 
-00 

If we consider a material which is time independent (Eq. (1.1)) and statistically homo­
geneous, all averages containing only material properties have to be invariant under trans­
lations of space and time. This also holds for the mean Green's function 

(2.3) (g5,(r, r', t, t)) =: g(r, r', t, t') = g(r-r', t-t'). 

Therefore, Eq. (2.2) becomes a convolution integral, and Fourier-transformation leads 
to a simple product of numbers 

(2.4) or 
(u(k, w)) = g(k, w)q(k, w), 

(g(k, w) )- 1(u(k, w)) = q(k, w). 

A comparison with Eq. (1.4) shows that in the Fourier-space the effective wave operator 
takes the form of a number, too: 

(2.5) L(u)lk,w = L(k, w) (u(k, w)) = (g(k, w))- 1u(k, w) = q(k, w). 

In accordance with the form of the wave operator of a homogeneous material L 0 = 

- w 2e0 +k2e0 , we write the effective wave operator 

(2.6) L(k, w) = -w2e(k, w)+k2 e(k, w). 

But it has to be noticed that the decomposition of L into two terms e and e is not yet 
defined precisely. Only the meaning of the whole operator L is fixed by Eqs. (1.4) or 
(2.5). 

Analogously to the treatment of the static case in I, we consider a Fourier component 
of the mean field 

(2.7) 
q(r, t) = q0 ei(k·r-wt), 

(u(r' t)) = Uoei(k·r-wt) 

and then split up the stochastic operator L5, ( 1.1) into 

Lst = Lo+ 2: L,, 
i 

(2.8) L 0 = e(k, m) ::2 -e(k, m) ( :.
2

2 ), 

o2 0 0 
L, = (e,-e(k,w))8,(r) 

012 
-(e,-e(k,w))a;8,(r)ef. 
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62 G. DIENEll AND H. -H. BUDDE 

Let us note that the operators L 0 and L 1 defined above depend on the frequency w and 
on the wave vector k of the mean wave, whereas the whole stochastic operator L,, 
does not. 

The field u is decomposed into the mean field (u) given by Eq. (2.7) and the fluctua­
tions u1 

(2.9) u = (u)+ 2u, 

which satisfy the equations 

L 0(u) = L(u) = q, 

LstUt = (Lo+ 2 L1) u1 = -L1(u). 
(2.10) 

J 

In the frame of our self-consistent approximation, we neglect all contributions from 
grains j #= i in the last equation of the set (2.1 0), and obtain 

(2.11) (L0 +L1)u1 = -L1(u). 

Thus, in order to calculate the field u1, we imbed the i-th grain into a homogeneous ma­
terial characterized by the wave operator L 0 which contains the effective material para­
meters e(k, w), e(k, ro). Let us notice that this material differs from the effective material 
described by L, for L 0 is a local operator which contains the wave vector k of the mean 
wave only parametrically, whereas L in general is an integral operator. The solution u1 

of Eq. (2.11) depends on the properties of the i-th grain and the effective parameters e 
and e. 

From Eq. (2.9) it follows that the mean value of the field fluctuations must vanish 

(2.12) (2u,) = 0. 
I 

This self-consistency condition yields one equation for the two unknown effective quanti­
ties e(k, ro), e(k, ro). A second equation can be obtained from defining the decomposition 
of L(k, ro) into e and e (Eq. (2.6)), which is somewhat arbitrary, but has to be chosen 
in a physically reasonable way. This choice influences the validity of the self-consistent 
approximation in Eq. (2.11). The role of the self-consistency condition (2.12) may also 
be characterized in other words. Namely, after defining the decomposition (2.6), Eq. (2.12) 
provides us an implicit equation for the effective wave operator L(k, ro). 

In order to fix the meaning of e and e, let us proceed as folJows. Applying the opera-
tor L0 to the self-consistency condition (2.12) and using Eq. (2.11), we get · 

(2.13) Lo(2u,) = -(2 L1((u)+u1)) = 0. 
I i 

This · equation, in connection with the last line in Eq. (2.5), highly suggets the following 
decomposition: 

(2.14) 

<2 (e,-e(k,ro))e, !r ((u)+u,)) = 0, 
, 
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WAVE PROPAGATION IN STRONGLY HETEROGENEOUS MEDIA 63-

which may be considered as a definition of one of the parameters e and e. Thus, instead 
of Eq. (2.12), two equations (2.14) are now at our disposal to calculate the two effective 
quantities e and e. 

It may be interesting to point out that Eqs. (2.14) can be written in another form: 

<estu) = e(k, w)(u), 

(Est :r u) = e(k,w) :r (u) 

apart from terms of the type ei u1 (j =/: i) which have been omitted in Eqs. (2.11) and (2.13). 
Finally, let us mention that the approach outlined above coincides completely with 
a self-consistent imbedding procedure proposed by KORRINGA [10]. 

3. Evaluation for spherical grains 

Further calculations are restricted to the simplest case when all grains may be approxi­
mated by spheres. Then, Eq. (2.11) can be solved by expanding the fields (u) and u1 into 
series of spherical harmonics. The case of most interest is that of free waves q = 0 in 
which, in consequence of the first equation in the set (2.10), the frequency and wave vector 
k are connected by the dispersion relation 

(3.1) L(k, w) = -e(k, w)w2 + e{k, w)k2 = 0. 

After having found the solutions of Eq. (2.11), we put them into Eqs. (2.14), perform 
the averages, and thus get two equations to determine e and e. 

If we choose the center of the i-th grain as origin of the coordinates, Eq. (2.11) reads 

(ew2 + eL1)u1 = 0 (r > R,), 

(e,w2 +e1LI)u, = -[(e1-e)w2 -(e,-e)k2](u) (r < R 1), 

(3.2) 

R1 denotes the radius of the considered grain. At the surface of the grain, the foJiowing 
boundary conditions hold: 

(3.3) a a 
ea,((u)+u,)lext = e,a,((u)+u,)ltot· 

The labels ext and int indicate the outer and the inner side of the grain surface,. 
respectively. 

In order to solve Eqs. (3.2) and (3.3), we first expand the angular dependence of the 
mean field u into Legendre polynomials P1: 

where 

(3.4) 
k·r 

C = kr =cos( ~k, r). 

http://rcin.org.pl



64 G. DIENER AND H. ·H. BUDDE 

The Bessel functions ~+ ~ (x) satisfy the equations 
2 

(3.5) d
2

J + -~ !!l, + (1- ~) J, = 0. 
dx 2 x dx x 2 

Performing for u; an analogous expansion into a series of Legend re polynomials P1(e) 
and inserting it into Eqs. (3.2), we obtain the following solution: 

00 n<t> 1 (kr) 
~ 0 

1+2 
u1 = u0 e-iwt L,; Ai Y kr- Pz(C) (r > R,), 

1=0 
(3.6) 

00 J{l) 1 (k r) 
~ 1+- ' 

(u)+u1 = u0 e-iwt L.J Bf ~kr · P,(C) 
1=0 

where k; = roy ede; is the wave number inside the i-th grain. The H~~ ~(x) are Hankel 
2 

functions satisfying the same equations (3.5) as J1+ ~(x). They describe waves spreading 
2 

out from the center and tending to zero at large distances. Within the grain, the Bessel 
functions 11 +~have to be used in order to obtain a field u; which remains finite at the origin. 

2 

The coefficients Af, Bl can be determined from the boundary conditions (3.3). They 
are 

(3.7) 

where the abbreviations 

hi= ekR1([J, I, kR1]-[H, I, kR1]) 

(e-e1)1+e1k 1R 1[J, I, k 1R1]-ekR1[H, I, kR1] ' 

[J, I, x] = ~+dx)/~+!_(x), [H, I, x] = n?;!(x)/H?;!_(x) 
2 2 2 2 

(3.7') 

are introduced. 
Now we have to insert the solutions (3.6) and (3. 7) into Eqs. (2.14) and to carry out 

the ensemble average. Generally, the ensemble can be described by a probability function 
for the positions ri of the grains, their material parameters f!i, e;, and their sizes R,. 
But, because of statistical homogeneity, all the positions ri of the grains have equal pro­
bability independently of the values of the other stochastic parameters. Thus, as discussed 
in I, the ensemble average in Eqs. (2.14) reduces to the form 

(3.8) 

(~ (e,-e)fJ,((u)+u,)) = neik·r ~ Pcx(flcx -e) J dr'e-ik·r'{(u(r'))+ucx(r')} = 0, 
i ex r'<Rcx 

(2 (e,-e)fJ, :r ((u)+u,)) 
~i 

= netk·r 2 Pcx(Ecx -e) J dr'e-ik·r' :, {(u(r'))+ucx(r')} = 0, 
ex r'<~ 
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WAVE PROPAGATION IN STRONGLY HETEROGENEOUS MEDIA 6S 

where n is the numb'er of grains per unit volume. The sum goes over the kinds a: of the 
grains characterized by certain values f.! ex, ea, Ra. . of the stochastic parameters, and Pa. 
denotes the probability for an arbitrary grain to be of kind ex.. 

The integrals over the functions (3.6) Which are contained in Eqs. (3.8) are evaluated 
in the Appendix. Finally, inserting the results there obtained into Eqs. (3.8) gives 

00 (' 1 )2 n ex f!a-e 1+z(kRa) l "• 2.: (2/ + l)b, (kR )1 -(k R )1 J" -
ex 1=0 ex ex ex kRcx 

(3.9) 
00 ( J 1 )2 '\"1 ~ ex Ea-E kcx l+z(kRcx) 

L.J Vex .L.J (2/+ 1)b, (kR )2 -(k R )2 • k • .. ! 
ex I=O ex ex ex J' kRa. 

X {k.R.[J,I, kRJ-kR.[J,I,k.RJ+ k:~:~ /} = 0, 

where Va. = npa4nR!f3 means the relative volume part of the grains of kind a:. We have 
to keep in mind that Eqs. (3.9) on e(w, k) and e(w, k) are valid only for the frequencies 
w and wave vectors k which are connected through the dispersion relation (3.1). Since 
with the aid of this relation w can be expressed as a function of k, the effective parameters 
e and e for free waves are considered here as functions of k only. 

A general analytic solution of Eqs. (3. 7) being impossible, we restrict ourselves to long 
wavelengths: 

(3.10) kRa ~ 1, ka.Ra. ~ 1. 

Let us notice that shorter waves exhibit a strong damping so that their dispersion relation 
is of little interest. In theJimiting case of vanishing frequency w ...,... 0 and infinite wave• 
length k-+ 0, Eqs. (3.9) give for e0 = e (k = 0), e0 = e(k = 0): 

1: Va.(Qac - (!
0

) = 0 -+ fl = 1: V a. (!ex = (f!st), 
(3.11) a. a. 

Thus, the effective "density" e0 turns out to be equal to the average . densicy, whereas e0 

coincides with the static result given in Eq. (4.16) of I. Thi~ result is. in ac:cordance with 
[3, 4, "6]. 

For long, but firiite wavelengths, the effective mat~rial properties e(k) ··and . e(k) as 
well ·as the .dispersion relation may be eXpanded with respect to k: 

e(k) = eo+ e<2>k2 + e<J>k3 + ... ' 

(3.12) 
e(k) = e0 + e<2>k2 + e< 3>k3 + ... , 

(k) - -w / e(k) k - ok(1 P'k2 . 'k3. ) 
W - J1 Q(k) - C .- . -IX + ... , 

S Arch. Mech. Stos. nr l/80 
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The coefficients of these series are obtained from Eqs. (3.9) as 

<2> - -_I ~ Rz( - o, [ 9(_~o + e~) - ~ (s .!__)] e - 15 .L.J v~ ~ e~ e J. 2 ·o + o + , 
-~ E E~ (? E~ 

; " (e<X -e0
)

2 

e<J> = 3 L.J v<XR! eo 

(3.13) 

G. DIENER AND H. -H. BUDDE 

The coefficients fJ' and x' turn out to be real. Thus, {J' describes the dependence of the 
phase and group :velocities on the wave vector, i.e. the dispersion . 

L1cP., = :_ cp.,(k) -_.!.___ =. - .'P'k-2 
0 - . 0 . . + ... , 

c c 
(3.14) 

~~ = Cgr(k) -eo - -3{J'k2 
0 - 0 - + ... , c c 

whilst x' represents the damping .of the wave due to scattering processes at the heteroge­
neities of the material. It consists of two parts x; and x;; the -first of which depenqs only 
on est, whereas the second is a functional of Est only. This feature of the result is not due 
to the approximation, blit catf be proved ·generally by "investigating an arbitrary order 
of the perturbation series. 

From a general reasoning given in the Appendix of l, it follows that the above results 
(3.12) to (3.14) of the self-consistent approach agree with a perturbational treatment 
up to third order of the fluctuations of the material parameters . 
. · The dampingconstartt x' given in the result- (3.13) differs from that which would be 
obtained by simply considering the scattering losses at all grains imbedded in an effective 
niedium"[ll]. The difference lies in the denominator of e<3> in Eqs. (3.13), which rotighly 
estimates the influence ofthe heterogeneity of the material on the scattering properties· of 
a single grain. 

4. Results for a two-component mixture 

For a two-component mixture consisting of grains of equal size· Ra. = R, the dimension­
less coefficients 

(4.1) 
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have been calculated numerically. The results are drawn in Figs. 1 to 4. Figures 1 and ~ 
show the two parts of the damping coefficient ~(J and ~8 as functions of the ratios (]2/(!1 

and e2feh respectively, where ea. and ea. now denote the material properties of the <X-th 
component. Different curves belong to different mixture ratios characterized by the vo­
lume fraction of the second component v2 = 1-v 1 • With increasing heterogeneity e2 / e 1 --+ 

--+ oo, e2je1 --+ oo the damping tends to finite asymptotic values. The contribution -;e, takes 
maximum values for a mixture ratio corresponding to the percolation threshold [5, 7] 
v2 = vc = 1/3. In this case ~. even diverges for heterogeneities going to infinity 
e2je 1 --+ oo. This behaviour is physically reasonable. It results from the fact that near the 
percolation threshold of a strongly heterogeneous material the fluctuations of the fields 

Vz=0.1 

0.4 

07 

09 

~o-2 ....___.......__.._--"""-'~'-"-'--_.___.__......._.__'-'-'-L-1------'----'--'---'---"-'-'-'-' 
1 w w3 

PziP1 

FIG. 1. Damping coefficient HQ of a two-<:omponent mixture. 

102 ~---~~~~~-~~......._,__~~--~~~~ 
1 w w3 

ei!e1 
FIG. 2. Damping coefficient Ha of a tw<XOmponent mixture. 

S* 
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Pt!Pt 
w6~0T-r,-~~~~~~~~--~--~~--~~ 

FIG. 3. Dispersion coefficient P of a tw<K<>mponent mixture of mixture ratio 0.5:0.5. Lines of constant 
p are plotted. 

Pz/Pt 
r-~~~--~--,---~~--~--~~---r--.---,W6 

FIG. 4. Dispersion coefficient P of a tw<K<>mponent mixture of mixture ratio 0.2:0.8. Lines of constant 
P are plotted. 

[68) 
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become very important. They give rise to a rapid energy transfer from the incident mean 
wave to incoherent scattered waves and, therefore, to a strong damping of the mean wave. 

The dispersion {J does not divide intO partS depending On est and 88t, respectively. There­
fore, in Figs. 3 and 4, {1 is represented as a function of both the heterogeneity parameters 
e2 /e 1. and e2 fe 1 • On the plane of these coordinates, the curves of the constant {1 are 
plotted. Two typical mixture ratios 0.5:0.5 and 0.2:0.8 have been chosen. The most stri­
king qualitative feature of these results is the divergence of {1 ocurring for strong hetero­
geneities e2 /e 1 -+ 0, oo in materials whose mixture ratio lies above the percolation threshold 
(Fig. 3 and the left hand side of Fig. 4). Consequently, in such mixtures dispersion can be 
observed for wavelengths which largely exceed the characteristic length scaleR of the mi­
crostructure. 

The special case of porous media (where e1. = 0, e1 = 0 for the pores) results for 
e2 /e 1 ~ e2 /e 1 -+ oo. This limiting case, of course, shows a finite dispersion {1 which is 
represented in Fig. 3 by the region of the nearly constant {1 in the upper right hand corner 
(and, analogously, in the lower left hand corners of Figs. 3 and 4). 

5. Concluding remarks 

The aim of this paper has been to study the properties of mean wave propagation 
in a strongly heterogeneous material. The behaviour of the mean wave is mainly described 
by the effective dispersion relation which yields the velocity and the damping of the wave 
as functions of frequency. 

In order to calculate the effective parameters from information about the heteroge­
neous structure of the material, a self-consistent method has been used which also permits 
to treat strongly heterogeneous media. As has been shown in the Appendix of I, in the 
limit of weak heterogeneity the method coincides with a perturbation treatment up to 
third order of the fluctuations of the material parameters. 

For simplicity, the approach has been applied to a scalar model wave equation and 
to simple geometrical structures. It is to be hoped that the qualitative features of the 
results obtained above have general validity. But it would be desirable to treat in a similar 
manner more realistic cases. Especially, elastic instead of scalar waves and more general 
grain shapes are of interest for it is well known that the effective behaviour of strongly 
heterogeneous materials depends very sensitively on their morphology. 

In principle, the approach pushed forward in the present paper can be extended to 
more complicated cases. But, unfortunately, attempts to do this encounter considerable 
computational difficulties. Thus, in order to achieve further progress in this area, it is per­
haps inevitable to restrict oneself to special materials and to apply numerical procedures. 

Appendix 

Inserting the fields (3.6) into the first equation of the. set (3.8) leads to the integrals 

(A. I) J dre-ik·ret Jl+ ~ (ktr) P,(C) = JR, drr2 J d!Je-ik ·r Jl+ i (kir) p,(C). 
1/ktr 0 V (kir) 
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- --------------------------------

With the aid of the expansion (3.4), they are transformed· into 

(A.2) 

00 ]I_JR, J1 1 (k1r)J 1 (kr) J 
}; ( -i)•(2m+ I) ~ drr2 +.: V m;' dDP,(C)P.(C) 
m=O o kk,r 

]1 -;r:JR, J1+!. (kr)J,+! (k,r) 
= ( -i)14n - drr 2 2 2 

2 o ykk,r2 

== ( -i)'
4
n .. / n 1

1+ }(kR,) 1
1+}. (k,R,) kR,[J, I, kR1]-k1R1[J, I, kR1] R3 

V 2· ykR, ]ik,R, (kR,) 2 -(k,R,) 2 
i• 

On carrying out the integration over the space angle !J, the orthogonality of Legendre's 
polynomials P1 has been taken into account. Further, suitable integral formulae for the 
Bessel functions [8] have been used. 

The second equation of the set (3.8) contains the integral 

(A.3) J dre-ik·rf?)i :r (u,+(u)) = ik J dre-ik·re,(u1+(u))+ f:f dSe-ik·r(u1+<u)), 
r=R1 

Which, by integration by parts, has been transformed into two contributions, the first of 
which coincides with the volume integral discussed just now. 

For reason of symmetry, the surface integral in Eq. (A.3) must be parallel to the vector 
k so that it can be rewritten as 

~ dSe-ik·r((u)+u1) = ! f} dS: e-ik·r((u)+u1) 

r=R1 r=R1 

(A.4) 

= i ! Rr f:f d!J((u)+u,) o(~r) e-ik·rlr=R,· 

Inserting again the expansions (3.4) and (3.6) and integr~ting over the space angle lead to 

(A.5) f:f dSe-ik·r((u)+u1) 

_ . k 4 ... /1T: R2 ~ ( ")'B' J,+ i(k,R,) o 
1

t+ i (kR,) 
- 'T 1t V T Uo i ~ -l l yk,R, o(kR,) ykR, 

= i ! 4n .. j ~ u0 Rf}; ( -i)1BI J'1(k,R,) J,~(kR.) {1-kR.[J,I, kR11}. 
V I k,R, kR, 

In the last expression, an abbreviation introduced in Eq. (3.7') is used. 
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