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Viscoelastic properties in axially symmetric squeeze-film flows 

S. ZAHORSK.I (WARSZAWA) 

IN nus PAPER, being a continuation of the paper [10], we consider the problem of axially sym­
metric squeeze-film flows by means of convected coordinates. The flows discussed are treated 
as instantaneous motions with superposed proportional stretch histories (cf. [11]). The cor­
responding constitutive equations of an incompressible simple fluid are simplified for the CQe 
of low Deborah numbers. Two types of approximate solutions are obtained either for sliptly 
viscoelastic fluids or in the forms valid in the vicinity of an arbitrarily chosen instant of time. 
The conditions of improved lubrication, leading to inequalities imposed on material constants 
and kinematic quantities, are discussed in greater detail. A theoretical possibility for elastic 
"bouncing" behaviour, observed experimentally at more severe loading conditions (cf. [6]) 
is also considered. · 

W niniej~j pracy, ~cej kontynuacjll poprzedniej pracy [10], rozwa.Zono zagadnienie osiowo­
symetrycznych przeplywow W}'CiskajllC)'ch opisanych wsp<'>lr~ymi konwekcyjnymi. Omawiane 
przeplywy potraktowano jako chwilowe ruchy z nato2:onymi proporcjonalnymi historiami 
deformacji (por. [11]). Odpowiednie r6wnania konstytutywne nieSciSiiwej cieczy prostej zostaly 
uproszczone dla przypadku malych liczb Debory. Otrzymano dwa typy przybliZonych rozwill­
zan: dla cieczy nieznacznie lepkospr~stych oraz w postaci okrdlonej w otoczeniu dowolnie 
wybranej chwili czasu. Przedyskutowano bardzej szczeg6towo warunki lepszego smarowania, 
prowadzllce do pewnych nier6wnoSci zawieraj,cych_ stale materiatowe i wielkoSci kinema­
tyczne. Rozwatono r6wniez teoret}'CZIUl moZiiwosc wyst~powania zjawiska ((podskok6w)) 
zaobserwowanego do5wiadcmlnie przy wi~kszych obciqt.eniach (por. [6]). 

B HaC'l'O~eit pa6oTe, 6y.QY~~ei: npo,ttoJDKemleM npe~ei: paOOrbi ['0], paCCMOTpeHa 
aa,ttalla oceafMMeTpiA~ Bbl,tttlBJISBaiOIIUIX Tetlemdi:, OIIHC8HIIbiX KORBeKIVIOIDiblMB KO­
op,ABHa'l'ILMit. ~e Tet~emm TpaKTYIOTCJI. KaK MrHOBellllble ~R>KeBWI c IWIO>KeH­
HbiMS upouop~oiWII>HbiMB UCTOpWIMit .z:teciJop~ (cp. [11)). CooTBeTcmyro~ue oupe­
.z:temuonuce ypaBHeHIIJI Hec>KBM&eMoit npocroit >KH.z:tKOCTU ynpo~ellbl .z:tJVI c.JIYt1U MaJihiX 
uce.n ,l(e6opbi. IIOJl}"lellbi .z:tB8 TBDa np116JIB>KeHIIbiX: pemeiDIH:: .z:tJV1 He3HallUTeJILHO BJI3Ko­
ynpyrux: >I<H,LlKOCTeit U B BU,tte onpe,tteJieHHOM B OICpecTHOCTU npOU3BOm.HO U36paHHOI'O Mo­
MeHTa BpeMeml. 06cy>l<.z:teHbl 6oJiee no.z:tpo6HO yCJIOBUJI .nyqmeit CMa3KU, npuso.z:tmnue K He­
KoropbiM HepaBeHCTB&M CO,ttep>KaBIIIHM M&Teplfam.Hble nOCToRHHble B KIIHeM&TIAecKIIe :se­
JDrtlHHbi. PaCCMO'l'peua TO>Ke TeOpeTIAecKaJI B03MO>KHOCTI> BblcryirallllJI .RBJiemm ,npbi>KKOB ", 
Ha6mo,ttaeMOI'O 3KCIJepHMeHT&JibHO npB OO.m.IIIKX Harpy:maK (cp. [6]). 

1. Introduction 

VARIOUS problems connected with squeeze-film flows of viscous and viscoelastic fluids, 
i.e. flows in which a test fluid contained between two horizontal plates or discs was 
squeezed out under a constant vertical load, have attracted the attention of many authors 
[I, 2, 3, 4, 5]. The most systematic studies of squeezing flows were recently presented by 
Waiters and his collaborators [6, 7, 8, 9]. Viscoelastic effects, being in evidence for heavier 
loading conditions (or higher Deborah numbers), could not be explained satisfactorily 
by means of a simplified theoretical analysis, on the contrary to numerous experiments 
according to whi~h viscoelastic fluids behaved as better lubricants than purely viscous, 
inelastic fluids. 

9* 
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432 S. ZAHoltSICI · 

In our previous paper [10] on plane squeeze-film flows, treated in a· convected· co­
ordinates system as instantaneous motions with a proportional stretch history (cf. [11]), 
the theoretical predictions were in general accordance with the experimental data. An 
attempt was also undertaken to determine condition under which a certain "bouncing" 
behaviour of viscoelastic fluids may appear during flows even · at lighter loadings (cf. [6]). 

In the present paper similar problems are considered for the case of axially-symmetric 
squeezing flows of viscoelastic fluids. To this end the formulation used in [10] has been 
properly modified. 

2. Squeeze-film ftows described ia convected coordinates 

Let the flow considered be described by the equation of motion: 

(2.1) ~('r)=x(X,:r), Xedl1" Te:(-oo,oo),. 

where ~ is the position vector of a particle at any time T, X- the position vector of the 
same particle in a reference configuration, x denotes the continuously differentiable 
mapping of dl R x (- oo , oo) into the three-dimensional Euclidean space. 

We assume the reference configuration to be chosen in such a way that 

(2.2) x = ~(t) = x(X, t), 

where x denotes the position vector at present time t (T ~ t); the coordinates of vector 
X are called the material coordinates (cf. [12]). If, moreover, the system of material co­
ordinates XC'( IX = 1 , 2, 3) moves and deforms together with a fluid, we shall use the 
name of convected coordinates (cf. [13, 14]). 

Kinematical characteristics of a flow result from Eq. (2.1). In particular, the velocity 
field v, the velocity gradient L with respect to the reference ~onfiguration at time t, the 
deformation gradient F, and the Cauchy-Green deformation tensor C are defined as 
follows (cf. [12]): 

(2.3) 

(2.4) 

• iJ 
v(t) = ~(t) = TT x(X, T)lt'=t' L(t) = Vv(t), 

F(t') = vx<X, T), C(T) = Fr(T)F(T), 

where the superposed dot denotes the material time derivative and superscript T- the 
transpose. On applying the definition of the Rivlin-Ericksen kinematic tensors in the 
form (cf. e.g. [12]) 

(2.5) 
d" 

A,.(t) = dT" C(T)It'=" n = 1, 2, 3, ... , 

we arrive at the formula (cf. [10, 15, 16]) 

(2.6) A<n+ t>(t) - iJ" A<t>(t)l 
a.fJ - iJt" a.fJ X«=consh 

if the convected coordinates XC'( IX = 1, 2, 3) are used, and A&i} denote the corresponding 
convected components of the tensor A,.. 
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VISCOBLASTIC PROPEilTIBS IN AXIALLY SYMMETRIC SQUEEZE·nLM FLOWS 433 

Since for complex axially symmetric squeeze-film flows the equation of motion (2.1) 
is not known a priori, we shall assume that the velocity field at present time t may be 
written in the form 

(2.7) 
. . i 2 (t) 

v(t) = cp(XP)A(t)+~(XP) A(t) , 

where XP({J = 1, 2, 3) denote the convected coordinates defined in the reference con­
figuration at time t, and e is a small parameter proportional to the characteristic time 0 
of a fluid (cf. (2.19) ). There exist infinitely many motions leading to velocity fields in 
the form (2. 7), and the complexity of mo~ion is rather connected with a way in which 
the system of convected coordinates moves and deforms together with a fl~id. "fhe 
material planes XC'= constat timet may not be plane at any past timeT < t. In particular, 
for Newtonian fluids e = 0 and the first term on the right hand side of Eq. (2.7) is fully 
sufficient (cf~ [10D. 

It results from the assumption (2. 7) that 

(2.8) L(t) = L' +eL" = N1k1(t)+eN2k2(t), 

where N 1 , N2 do not depend on time t, and 

(2.9) 

Since also, 

(2.10) 
d 
dt F,,(t) = L(t)F,,(t), F,.(t') = 1, 

where t' denotes any other instant of time (t' ::#: t), and the subscript t' nieans that the 
gradient is taken with respect to the reference configuration at time t ', we obtain 

(2.11) F,•(t) = exp[N1 (k1(t)..-k1(t'))+eN2 (k2(i)-k2(t'))]. 

After replacing t' by t and t by t-s, where se [0, oo), we arrive at 

(2.12) F(s) = F,(t-s) = exp[N1 11(s)+eN2!2(s)], 

where 

(2.13) 11(s) = ki(t-s)-k1(t), i = 1, 2. 

It is known from our previous considerations on motions with proportional stretch 
history (11] that flows described by a history of the relative deformation gradient in the 
form (2.12) belong to the class of motions with superposed proportional stretch histories 
(MSPSH)(l). Thus, flows for which the velocity field at present time t is described by 
Eq. (2. 7) may be treated as an instantaneous MSPSH. The right relative Cauchy-Green 
deformation tensor is of the form 

(2.14) C(s) = FT(s)F(s) = exp[Nf/1 (s)+eNI/2(s)]exp[N1 11(s)+eN2 / 2(s)] 

= exp[L'r !~(s) +eL"r ./l(s) ]exp[L' ./t(s) +eL" !l(s) ], 
kl (t) k2(t) kt(t) kl(t) 

(I) These motions may -also be caiJed unsteady homothermal motions [17]. 
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434 s. ZAHoaal 

where, according to Eqs. (2.8), we have denoted 

(2.15) L'(t) = N1 k1(1), L"(l) = N2 k2 (1). 

Thus, the constitutive equation of an incompressible simple fluid (cf. [l2D can be presented 
in the following form: 

00 00 

(2.16) T(l) = -pl+ t6 {C(s)) = -pl+ Jf'{/1(s),/2 (s);L'(I),eL"(1)), 
1=0 1•0 

where T(l) is the stress tensor at time I, p- the hydrostatic pressure, and K denotes 
a functional with respect to /1(s), 12(s), being an isotropic tensor function of tensors L' 
and eL", and allowing for interchange of arguments. If L'r + L' and e(L"r + L") have 
three eigen-values distinct, it can be proved (see Appendix) that also 

00 

(2.17) T(l) = -pl+ f (11(s), /2 (.r); A~, eA~', Ai, eA;'), 
1=1 

where Ai, AI' (i = 1, 2) ue the partial Rivlin-Ericksen kinematic tensors defined by 
Eqs. (A.1) and (A.2). 

If we take an expansion of the function (2.17) with respect to Ai, eAi' (i = I, 2), the 
corresponding coeffis;ients will be functionals in /1(s), /2 (s) and scalar functions of all 
joint invariants composed of A~ and eA~'. To obtain more explicit results, allowing for 
an effective solution of the problem, we shall seek the simplest representation ofEq. (2.17), 
valid for sufficiently small Deborah numbers and linear with respect to parameter e. 

Bearing in mind the well-known form of an isotropic tensor function of two arguments 
(cf. [l2D and the fact that .7C must be symmetric with respect to the pairs of arguments 
Ai and eA~' (i = 1, 2), we have 

(2.18) T(l) = -pl+ cx1 A; + cx 1 eA~' + cx2 Ai + cx3 A~2 +0(e2), 

where cx1 , cx2 and cx3 are assumed as material parameters, constant in such short periods 
of time in which the flows are realized. The parameter e, proportional to the characteristic 
time of a fluid 8, may be expressed as 

(2.19) • -I :: I -8 
or • = I :: I = c8 • 

. what justifies the rejection of terms proportional to cx2e, cx3e etc. 
Equation (2.18) differs from that for a second-order fluid (cf. [12D if the second term • 

in the velocity equation (2. 7) is not identically equal to zero. This difference becomes 
much greater when all tensor quantities at time 1 are related to a system of convected 
coordinates XC' (ex. = 1 , 2, 3), moving and deforming together with a fluid. 

3. Axially symmetric sqaeeze..film ftows 

We consider the test fluid contained between two horizontal discs of radii a which 
are at rest for t < 0 (Fig. 1). At some instant t = 0 the top disc is released and falls 
down under the constant load F. The distance h (h0 means the initial value) between 
the discs is measured as a function of current time t (cf. [6]). We use the spatial system 
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r-const 

r 

FJG. l. 

of the cylindrical polar coordinates r, {}, z fixed in the centre of the loW(!r disc, with the 
z-axis directed upwards, and the system of convected coordinates R, 8, Z (cf. Eqs. (3.2)). 

Bearing in mind the formalism deyeloped in Sect. 2, we assume an instantaneous 
velocity field in the following form: 

v<R> = _ _!_Rf'(Z)h(t)-e_!_Rg'(Z) ifl(t) 
2 2 h(t) ' 

(3.1) v<8> = 0, 
. h2 (t) 

v<Z> = f(Z)h(t)+eg(Z) h(t) , 

where primes denote derivatives with respect to Z, and v<«> are the velocity physical 
components referred to the system of convected coordinates R, (), Z, introduced as follows: 

(3.2) R = rfh(t), 0 = IJ, Z = zfh(t), 

where h(t) denotes a function of t only. 
The velocity field (3.1) must satisfy the continuity equations as well as the boundary 

conditions: 

(3.3) 
v<R> = v<Z> = 0 for Z= 0, 

(3.4) 

Taking into account the definitions (2.6), we arrive at the following partial Rivlin­
Ericksen kinematic tensors (cf. Appendix) expressed in convected coordinates at time t: 

-f' 0 - _]_ f"R-
. 2 

(3.5) [A:X~,t>] = 0 - f' 0 hh, 

- _!_ f"R 0 2/' 
2 

-g' 0 

[A;,'pU)] = 0 - g' 
1 

. - yg"R 0 

1 "R --g 
2 
0 

2g' 
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(3.6) [A~'/'1 = [A:,Y'l(! + : ). [A;.',.<''! = [A~iP'l2 ~, 

f' 2 + ! ["1R2 0 - ~ /1"R -

(3.7) [A~~0)2 = 0 f' 2 0 (hh)2 • 

- J_f1''R 0 4/'2+j_/"2R2 

2 4 

Physical components of the above tensors result from the relations: 

(3.8) [A'(II) ] - [A'(II)] _1 
(«{J) - rx{J h2' [A"<">] = [A"<">] -

1
-. <.a:tJ> IX{J h2. 

It can easily be shown that all eigen-values of A~ as well as A'! are distinct, what 
justifies the application of the constitutive equation (2.18). The corresponding Deborah 
numbers may be defined as follows: 

(3.9) 
h 

De= 0-
ho 

or 

where 0 is the characteristic time of a fluid (cf. (2.19) ). 
Physical components of the stress tensor resulting from Eq. (2.18) take the form 

(3.10) 

T<ZZ) = -p+2f' ( a 1 i.+cx2 (! + :: }) + ( 4/'2 + ! f"'R2
) a3 ~: -e2g'a1 !: , 

where the terms of orders e2, rt2 e, rt3e (cf. (2.19)) have been disregarded. After sub­
stituting the above stress components into the inertialess equations of equilibrium (cf. 
Appendix) 

(3.11) 
~T<RR> 1 ~T<RZ> 
u - (T<RR)- T<OO>) u = 0 

oR + R + oZ ' 

oT<RZ> 1 oT<ZZ> 
oR + R T<RZ>+; oZ = O, 

and eliminating the pressure p, we arrive at the differential equation 

http://rcin.org.pl



VISCOELASTIC PROPEltriEs IN AXIALLY SYMMETIUC SQUEEZE-FILM FLOWS 

Since the Newtonian solution (e = cx2 = cx3 = O) is of the form 

(3.13) / 1v = 0, f(Z) = Z2(3-2Z), 

we also have the solution 

(3.14) 
6 cx3 eg(Z) = ---Z2(2Z3 -5Z2 +4Z-1). 
5 CX1 

It may be verified that f(Z) as well as g(Z) satisfy the boundary conditions (3.4). 

437 

The total force P(t) acting on the top disc due to the fluid, balancing the applied 
constant load F (if the inertia force Mii may be disregarded) can be calculated as follows: 

a afh 

(3.15) F = P(t) = - J T<ZZ>I 'bcrdr = -h2J T<ZZ>I 2nRdR 
Z=l .jZ=l 

0 . 0 

a/h 

= h2 f nR2 ar<zz>l dR, 
iJR Z=l 

0 

where integration by parts and the boundary condition 

(3.16) T<ZZ> = 0 for R = a/ h, Z = 1 , 

have been used. The above condition discussed in (6] means that the normal stress 
vanishes at the rim if the upper disc is not immersed in a fluid. 

On the basis of Eqs. (3.15) and (3.10) we arrive at the equation 

(3.17) F = _ 3mt"cx1h [ 1 ~( ii . !!_) -.9 ~.!!__] 
2h3 + CXt h + h + 10 CXt h . 

This ordinary second-order differential equation is highly nonlinear in h(t), being a par­
ticular type of the Emden-Fowler equation (cf. [18]), the solution of which can be ob­
tained in a finite form only in certain exceptional cases. 

For Newtonian fluids (cx2 = cx3 = 0) the order of Eq. (3.17) is reduced by one and 
we obtain at once 

(3.18) 

where the subscript N denotes Newtonian quantities and h0 = h(O). 
To get other approximate solutions of Eq. (3.17) we can either seek the solution as 

an expansion about hN(t) for very small values of cx2 , cx3 (ex~ = cxi = cx2 cx3 = 0) (cf. [6]), 
or, for finite values of cx2 , cx3 , solve Eq. (3.17) in the vicinity of an arbitrarily chosen 
instant t' for which h' = h(t') can be treated as a constant parameter (cf. [10]). 

For the first type of solution, we take into account the fact that for a Newtonian 
fluid loaded with the same constant F 

(3.19) 
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and then Eq. (3.17) leads to 

(3.20) 

or to 

(3.21) h(t) = h,. [ 1- 11::N ( 41tz + :o 1%3) In ( ~ )] • 
where hN is determined by Eq. (3.18)1 • 

It can easily be deduced from the above results that the -fluid considered will belJ&ve 
as a better lubricant (Ji > JiN' h > hN) than a Newtonian fluid of the same visCosity «t 

only for negative 4cx2 + :0 cx3 • Thus, in terms of the normal s~ess differences defined 

for steady shearing ftows (cf. [19]), we obtain the following conditions of improved 
lubrication: 

(3.22) 

where v1 denotes the first normal stress difference, while P2 - the second one. These 
conditions are quite realistic, at least for the majority of viscoelastic ftuids (polymer 
solutions and melts) for which P1 is positive and P2 - negative, with absolute values 
much smaller than P1 (cf. e.g. [6, 19, 20]). The reason why our conclusion differs from 
certain previously reported theoretical results (cf. [I, 4, S, 6]) is mainly due to the con­
stitutive equation applied. Our simplified constitutive equation (2.18) differs from · that 
for a second-order ftuid. 

To get the second type of solution we consider the following nonlinear differential 
equation: 

(3.23) ii 9cx3 + IOcxl j,l ~h. 2Fh'3 - 0 
· + 10cx2 h' + cx2 + 3na'cx2 - ' 

where h' = h(t') is a constant parameter. In the case of a Newtonian fluid, Eq. (3.17) 
leads to 

(3.24) 

where h~ = hN(t'). 
Equation (3.23) can be integrated in quadratures and its general solution satisfYing 

the initial conditions h( t ') = h', h( t ') = h.' depends on sign of the expression: 

(3.25) 

Since in our case it is reasonabJe to assume that (cf. (3.22)) 

(3.26) 10cx2 +9cx3 > 0 or 4P1 +9-v2 > 0, 

where "1, v2 are the corresponding normal stress differences, we obtain either 

(3.27) A: L1 > 0 
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or 

(3.28) B: 

For Ll > 0 (the case A) we arrive at 

(3.29) h(t) = y Ll th(JI'Lf(c+ 10ac2+9ac3 ~)] _ Sac1 h' 
lOac2 h' lOac2 + 9ac3 ' 

(3.30) h(t) = lOac2 h'lnch(t Ll (c+ 10acl+9ac3 ::!...)) _ . Sac1 h' t+D, 
10ac2+9ac3 10ac2 h' 10ac"'+9ac3 

where 

(3.31) 

Similarly, for Ll < 0 (the case B) we have 

(3.32) h(t) = _ y-::Lf tg [v--Ll- (c + IOac2 + 9ac3 !.-)) _ ----=-=-s_ac_. h-::-' _ 
10ac2 h' 10ac2 +9ac3 ' 

(3.33) 10ac2 +9ac3 .!_)]1 
10ac2 h' 

where 

1 ·[ 1 ( ·, Sac1h' )] 10~2+9«3 t' 
C = y -LI arctg JI-LI' - h - 10ac2 +9ac3 - IOac2 h'' 

D = h'- lOacl h'Inlcos[v -LI (c+ 10acl+9«3 !:_))I+ Sac1h' t'. 
10ac2 +9«3 10ac2 h' 10ac2 +9ac3 

(3.34) 

The above solutions may be useful to derive conditions under which the fluid coJt­
sidered will behave as a better lubricant than a Newtonian fluid of the same viscosity 
ac1 • To this end we shall analyse the conditions under which either h(t) or h"(t) are greater 
than the corresponding Newtonian quantities hN(t) or liN(t).(l) 

Taking into account the solutions (3.30), (3.29) and the inequality (3.27), we can 
deduce that 

(3.35) h(t) >hN(t) if tac2 <0, 10ac2+9ac3 >0, h' >h~}, 
1-+tf 

(3.36) h(t) > liN(t) if {10ac2 + 9ac3 > 0, h' > h~}. , .... ,. 
The above conditions show that if the distance between the discs h' and the rate h' at 
any instant t' are greater than the corresponding Newtonian quantities, a similar tendency 

(1) Let us note that if h(t) > h,(t) for any t, the fluid is really a better lubricant. This is not true 
if h{t) > h,(t) and, simultaneously, h,(t) < h,(t). 
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will be observed after a very short time lapse t- t ', only for negative cx2 and positive 
1 Ocx2 + 9cx3 • These inequalities are again quite realistic for the majority of viscoeJastic 
fluids for which the first normal stress difference is positive and much greater than the 
absolute value of the negative second normal stress difference (cf. (3.26) ). 

Taking into account the solutions (3.33), (3.32) and the inequality (3.28), we can 
also deduce that 

(3.37) h(t) > hN(t) if {cx2 < 0, 10cx~+9cx3 > 0, h' > h~}, 
1-+11 

(3.38) h(t) > hN(t) if {10cx2 + 9cx3 > 0, h~ > h'}. 
1-+1' 

The above results are very similar to those described by the inequalities (3.35) and (3.36). 
The on~ difference is connected with the rate h.'. Bearing in mind the inequality (3.28}, 
it is easy to note that such cases are possible for slightly higher loads. 

4. Other 'riscoelastic properties of squeezing Oows 

BRINDLEY et al. [6] reported that for certain viscoelastic fluids under more severe 
loading conditions (or higher Deborah numbers) the distance h(t) did not always decrease 
monotonically with time as one would expect from inelastic analysis. Sometimes, they 

h{t) 

hD 

Fio. 2. 

observed a "bounce" ·appearing on the experimental h(t) curves (Fig. 2) being a manifes­
tation of solid-like or elastic behaviour. 

Although our solutions are valid only for light loading conditions (or low Deborah 
numbers), there exists a possibility of similar elastic or solid-like behaviour. To show 
this we shall seek conditions under which either the negative rate h(t) may change its 
sign or the distance h(t) may become greater than the distance h' at slightly earlier instant 
t'. The case of L1 > 0 as well as the case of L1 < 0 must be considered separately! 

For L1 > 0 (cf. inequality (3.27)) we can deduce on the basis of Eqs. (3.29) and 
(3.30) that 

(4.1) neither h(t) ~ 0 nor h(t) ~ h' if {cx2 < 0}, 
1-+1 1-+1' 

what means that a "bounce" is not possible for negative cx2 • 
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On the other hand, for Ll < 0 (cf. inequality (3.28)) we can deduce on the basis of 
Eqs. (3.32) and (3.33) that 

(4.2) ~(t) ~ 0 if {(%2 < 0, 10(%2 +9(%3 > 0}, 
1-+t'. 

(4.3) h(t)~ h' if {(%2 <0, 10(%2+9(%3 >0}. 
1-+11 

The above results show that a "bounce" on the h(t) curve may appear for negative (%2 

and positive 10(%2 +9(%3, if simultaneously the inequality (3.28) holds. This inequality cor· 
responds to the case of loading conditions slightly heavier than those described by the 
inequality (3.27). A small but finite time lapse t- t' after which h(t) may change its sign 
can be estimated from the following relation: 

{ 
- 1 0(%.2 + 9(%3 t- t ' h'} 

]0(% h' ~ Ll ' 2 . 
(4.4) h(t) ~ 0 if 

where Ll < 0, (%2 < 0 and 10(%2 +9(%3 > 0. 
Since our present considerations can be repeated for many various instants of time 

denoted by t ', we do not exclude the poss~bility of several "bounces" existing on the 
h(t) curves. We want to emphasize, moreover, that from the fact that "bounces" are 
possible on the h(t) curves it does not result that they should appear or could be observable 
for lighter loading conditions. 

Appendix A 

To prove the corresponding representation theorem we use the following definitions 
of the partial Rivlin-Ericksen kinematic tensors: 

(A. I) 

(A.2) 

A~ = L'T +L', A~' = L"T +L", 

A~ = A~ +A~L' +L'T A~' A'; = A'; +A'l'L" +L"T A';, 

. where L' and L" are defined by Eqs. (2.1 S) and superposed dots denote the material 
time derivatives. 

Moreover, the following lemma is very useful (cf. [ll]): 
LEMMA. Let [S] be a 3 x 3 diagonal matrix and [W] 3 x 3 skew-symmetric matrix: 

[

a 0 0] 
[S] = 0 b 0 , 

0 0 c 

(A.3) 
[ 

0 X y] 
(W) = -X 0 Z , 

y -z 0 
a #: b #: c #: a, 

then: 

(A.4) [SW] = [WS] if, and only if, x = y = z = 0. 

This lemma can be proved in a straightforward manner by direct multiplication of matrices. 
THEOREM. If the partial Rivlin-Ericksen kinematic tensors A~ and A';, have three 

eigen-values distinct, the partial velocity gradients L' and L" are uniquely determined 
by A;, A~ and A'/, A';,, respectively. 
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The proof of the above theorem will be presented only for the primed quaatities 
L', A~, Ai; for L", A';, A'; it can be repeated in an analogous way. 

Let L' not be uniquely determined by A~, Ai. Then, taking an L' such that 

{A.S) 
(A.6) 

A~= L'T +L' = L'T +L', 
Ai = A~ +A~L' +L'r A~ = A~ +A~L' +L'r A~, 

we obtain from Eq. (A.5) 

(A.7) (L' -L')r = - (L' -L'); 

thus the difference L' -L' is skew-symmetric. From Eq. (A.6) we also see that L' -L' 
commutes with A~· , namely 

(A.8) (L' -L')A~ = A~(L-L'). 

Since, according to the lemma, A~ does not commute with any non-zero skew-symmetric 
tensor, we have L'-L' = 0. Thus, L' is uniquely detennined by A~ and Ai. 

Appendix B 

The proof that the inertialess equations of equilibrium in the system of convected 
coordinates R, 8, Z defined at time t are of the form (3.11) can be outlined as follows. 

For any system of curvilinear coordinates xa (ex ~ 1, 2, 3) we have in general (cf. 
e.g. [14D 

(B.l) 

where 1"" are contravariant componeu.ts of the stress tensor and {;,} are Christoffel 

symbols of the second kind. From the definition (3.2) it results that 

(B.2) 

where Ka.p denote covariant components of the variable metric tensor. Thus, Eqs. (B.J) 

lead to 

(B.3) 

oRTRR+ozTZR+! TRR_RTf6 = 0, 

l 
oRTRZ+OzTZZ+ R TRZ = 0. 

Bearing in mind the fact that physical components of the stress tensor are defined as 
follows (cf. [14D: 

(B.4) T<a.fJ> = .. (i;i rzP (no summation), V?-
we iJilJ.l¥diately arrive at Eqs. (3.1 I). 
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