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Viscoelastic properties in axially symmetric squeeze-film flows

S. ZAHORSKI (WARSZAWA)

IN THIS PAPER, being a continuation of the paper [10], we consider the problem of axially sym-
metric squeeze-film flows by means of convected coordinates. The flows discussed are treated
as instantaneous motions with superposed proportional stretch histories (cf. [11]). The cor-

responding constitutive equations of an incompressible simple fluid are simplified for the case
of low Deborah numbers. Two types of approximate solutions are obtained either for slightly
viscoelastic fluids or in the forms valid in the vicinity of an arbitrarily chosen instant of time.
The conditions of improved lubrication, leading to inequalities imposed on material constants
and kinematic quantities, are discussed in greater detail. A theoretical possibility for elastic
“bouncing” behaviour, observed experimentally at more severe loading conditions (cf. [6])

is also considered.

W niniejszej pracy, bedgcej kontynuacja poprzedniej pracy [10], rozwazono zagadnienie osiowo-
symetrycznych przeplywow wyciskajgcych opisanych wspolrzednymi konwekcyjnymi. Omawiane
przeplywy potraktowano jako chwilowe ruchy z naloZonymi proporc_rona]nyn'u historiami
deformacii (por. [11]). Odpowiednie réwnania konstytutywne niesciéliwej cieczy prostej zostaly
uproszczone dla przypndku malych liczb Debory. Otrzymano dwa typy przyblizonych rozwig-
zan: dla cieczy nieznacznie lepkosprezystych oraz w postaci okreélonc] w otoczeniu dowolnie
wybranej chwili czasu. Przedyskutowano bardzej szmgélowo lepszego smarowania,
prowadzace do pewnych nieréwnosci zawierajacych stale materialowe 1 wielkosci kinema-
tyczne. RozwaZono rOwniez teoretyczng mozliwoéé wystepowania zjawiska «podskokéwn

zaobserwowanego dodwiadczalnie przy wigkszych obcigZzeniach (por. [6]).

B macrommeit pabore, Gyaydeil mpofoDKeHHeM mpednigymieii paGorbr [10], paccmorpema
3aada OCECHMMETPHYECKHX BBIJABIHBAIONIAX TeWeHHUIl, OMMCAHHLIX KOHBEKIMOHHBLIMA KO-
opfmEaTamMe. OGCYy)K/IaeMble TEUCHHS TPAKTYIOTCA KAK MIHOBEHHBIC ABIDKEHHA C HATOMEH-
HLIMH DPOIIOPLMOHAGHEIME HcTopdami Hedopmamit (cp. [11]). Cooreercrayromie ompe-
ReMOINHE YPABHOHHA HECKHMACMON IPOCTOil >HHAKOCTH YOPOINEHBI ANA CIYYAR MAbIX
witcen Jeboprl. [Tomydensr qBa THNA MPAGIKEHHBIX PELIeHHN: IUIA HEIHAYHTE/LHO BAIKO~
YOPYTHX HAKOCTeHl B B BHIE ONPENE/ICHHOM B OKPSCTHOCTH MPOHSBONBHO H3GpaHHOIO Mo-
menTa BpemenH. OGcyracHs! Gonee moapobHO yooBHA mydiell CMa3Kd, MPHBOJALIHE K He-
KOTODbIM HEPABEHCTBAM COJCPYKABIIMM MATEPHANBHLIC IIOCTOAHHLIC H KHHEMATHICCKHE Be-
JH4YHHbL. PaccMoTpena Toj)e TEOpETHUECKAS BOSMOMKHOCTS BRICTYITAHHS ABJICHAS ,,IIPLDKKOB’’,

HabmoaaeMoro IKCIiepEMEHTANEHO MpH Gomsimux Harpyakax (cp. [6]).

1. Introduction

VARrIOUS problems connected with squeeze-film flows of viscous and viscoelastic fluids,
i.e. flows in which a test fluid contained between two horizontal plates or discs was
squeezed out under a constant vertical load, have attracted the attention of many authors
[1,2, 3, 4, 5]. The most systematic studies of squeezing flows were recently presented by
Walters and his collaborators [6, 7, 8, 9]. Viscoelastic effects, being in evidence for heavier
loading conditions (or higher Deborah numbers), could not be explained satisfactorily
by means of a simplified theoretical analysis, on the contrary to numerous experiments
according to which viscoelastic fluids behaved as better lubricants than purely viscous,

inelastic fluids.

g-
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In our previous paper [10] on plane squeeze-film flows, treated in a convected co-
ordinates system as instantaneous motions with a proportional stretch history (cf. [11]),
the theoretical predictions were in general accordance with the experimental data. An
attempt was also undertaken to determine condition under which a certain “bouncing”
behaviour of viscoelastic fluids may appear during flows even at lighter loadings (cf. [6]).

In the present paper similar problems are considered for the case of axially-symmetric
squeezing flows of viscoelastic fluids. To this end the formulation used in [10] has been
properly modified.

2. Squeeze-film flows described in convected coordinates

Let the flow considered be described by the equation of motion:
21 §(v) = x(X,7), Xedy, te(-,0),.

where E is the position vector of a particle at any time 7, X — the position vector of the
same particle in a reference configuration, ) denotes the continuously differentiable
mapping of &g x(—c0, c0) into the three-dimensional Euclidean space.

We assume the reference configuration to be chosen in such a way that

2.2) x = §() = x(X, 1),
where x denotes the position vector at present time ¢ (7 < #); the coordinates of vector
X are called the material coordinates (cf. [12]). If, moreover, the system of material co-
ordinates X*(a« = 1, 2, 3) moves and deforms together with a fluid, we shall use the
name of convected coordinates (cf. [13, 14]). _

Kinematical characteristics of a flow result from Eq. (2.1). In particular, the velocity
field v, the velocity gradient L with respect to the reference configuration at time ¢, the
deformation gradient F, and the Cauchy-Green deformation tensor C are defined as
follows (cf. [12]):

.9 V) = §0) = - XK, Dhemts Li1) = V0,

2.4 F(7) = Vx(X,v), C(7) = F'(7)F(),
where the superposed dot denotes the material time derivative and superscript T'— the

transpose. On applying the definition of the Rivlin-Ericksen kinematic tensors in the
form (cf. e.g. [12])

dl
(2'5) All(t) = dtn C(t)lruh n= l’ 2’ 3.9 sery
we arrive at the formula (cf. [10, 15, 16])
(2.6) AGHO() = ;:n AP (O)xa=const,  AP(D) = Vavp+Vjva,

if the convected coordinates X*(x = 1, 2, 3) are used, and A} denote the corresponding
convected components of the tensor A,.
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Since for complex axially symmetric squeeze-film flows the equation of motion (2.1)
is not known a priori, we shall assume that the velocity field at present time ¢ may be
written in the form

i)
@ ) = () A(t) +eb(a) 5,
where X?(8 = 1, 2, 3) denote the convected coordinates defined in the reference con-
figuration at time ¢, and ¢ is a small parameter proportional to the characteristic time 0
of a fluid (cf. (2.19)). There exist infinitely many motions leading to velocity fields in
the form (2.7), and the complexity of motion is rather connected with a way in which
the system of convected coordinates moves and deforms together with a fluid. The
material planes X* = const at time ¢ may not be plane at any past time 7 < ¢. In particular,
for Newtonian fluids ¢ = 0 and the first term on the right hand side of Eq. (2.7) is fully
sufficient (cf: [10]).

It results from the assumption (2.7) that

(2.8) L(t) = L'+ eL” = N, k(1) + eN, k(1)
where N;, N, do not depend on time ¢, and

2.9 kO =10, kO =[50 4
Since also,
@.10) LR = LR, Flt) =1,

where t’ denotes any other instant of time (¢’ # t), and the subscript ¢’ means that the
gradient is taken with respect to the reference configuration at time t’, we obtain

.11 Fe(r) = exp[N, (ki () =k (t)+ &Ny (k2 (1) — k2(2)].
After replacing ¢’ by t and ¢ by t—s, where s € [0, 00), we arrive at
(2.12) F(s) = F(t—5) = exp[N,/,(5)+ &N, L,(s)],

where

(2.13) I(s) = ki(t—s)=ki(t), i=1,2.

It is known from our previous considerations on motions with proportional stretch
history [11] that flows described by a history of the relative deformation gradient in the
form (2.12) belong to the class of motions with superposed proportional stretch histories
(MSPSH)(*). Thus, flows for which the velocity field at present time ¢ is described by
Eq. (2.7) may be treated as an instantaneous MSPSH. The right relative Cauchy-Green
deformation tensor is of the form

(2.14)  C(s) = FT(s)F(s) = exp[NT/,(s)+eNZ/5(s)]exp[Ny/y(s) + &N [z(s)]

U Oy O S rzts)] [ L) g )
= L
“"[ Lo Rl R0 T Rol

(') These motions may also be called unsteady homothermal motions [17].
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where, according to Egs. (2.8), we have denoted

(2.15) L'(f) = Noky (1), L"(1) = Noks(1).
Thus, the constitutive equation of an incompressible simple fluid (cf. [12]) can be presented
in the following form:

@16 TO) = -pl+ $ (€)= —pl+ * (L), O L), eL'()),

where T(?) is the stress ténsor at time ¢, p — the hydrostatic pressure, and »# denotes
a functional with respect to /,(s), /;(s), being an isotropic tensor function of tensors L’
and eL”, and allowing for interchange of arguments. If L'"+L’ and &(L"7+L") have
three eigen-values distinct, it can be proved (see Appendix) that also

@17 T() = —p1+ X (L9, 1(9): Af, eA3, A, eAT),

where A;, A" (i = 1,2) are the partial Rivlin-Ericksen kinematic tensors defined by
Egs. (A.1) and (A.2).

If we take an expansion of the function (2.17) with respect to A;, A}’ (i = 1, 2), the
corresponding coefficients will be functionals in /,(s), /;(s) and scalar functions of all
joint invariants composed of A and ¢A}’. To obtain more explicit results, allowing for
an effective solution of the problem, we shall seek the simplest representation of Eq. (2.17),
valid for sufficiently small Deborah numbers and linear with respect to parameter &.

Bearing in mind the well-known form of an isotropic tensor function of two arguments
(cf. [12]) and the fact that X" must be symmetric with respect to the pairs of arguments

; and €A} (i = 1,2), we have
(2.18) T() = —pl+a, A+ a,eAY + o0, Aj + a2, AR+ 0(e?),
where «,, o, and o, are gssumed as material parameters, constant in such short periods

of time in which the flows are realized. The parameter &, proportional to the characteristic
time of a fluid 6, may be expressed as

3 a3

oy

=0 or e= =cf,

(2.19) -

@
what justifies the rejection of terms proportional to o,e, aye etc.

Equation (2.18) differs from that for a second-order fluid (cf. [12]) if the second term
in the velocity equation (2.7) is not identically equal to zero. This difference becomes
much greater when all tensor quantities at time ¢ are related to a system of convected
coordinates X* (a = 1, 2, 3), moving and deforming together with a fluid.

3. Axially symmetric squeeze-film flows

We consider the test fluid contained between two horizontal discs of radii @ which
are at rest for f < 0 (Fig. 1). At some instant ¢ = 0 the top disc is released and falls
down under the constant load F. The distance 4 (4, means the initial value) between
the discs is measured as a function of current time ¢ (cf. [6]). We use the spatial system
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FiG. 1.

of the cylindrical polar coordinates r, #, z fixed in the centre of the lower disc, with the
z-axis directed upwards, and the system of convected coordinates R, 8, Z (cf. Egs. (3.2)).

Bearing in mind the formalism developed in Sect. 2, we assume an instantaneous
velocity field in the following form:

o® = o R~ RE'(2) ’;’(‘,‘))
(3.1 v =0,
v@ = fZ)h(r)+eg(2) ’;,((,?

where primes denote derivatives with respect to Z, and v<®> are the velocity physical
components referred to the system of convected coordinates R, 8, Z, introduced as follows:

(3.2) R=rh(t), 0=9, Z=:z/hQ),
where h(t) denotes a function of ¢ only.
The velocity field (3.1) must satisfy the continuity equations as well as the boundary
conditions:
v =@ =0 for Z=0,
(3.3 , .
v =0, v@®=h(t) for Z=1,
and this requires that '
(0 =f0) =g'(0)=g0)=0
fM=gM)=¢gl)=0 f(1)=1.
Taking into account the definitions (2.6), we arrive at the following partial Rivlin-
Ericksen kinematic tensors (cf. Appendix) expressed in convected coordinates at time ¢:

I 1

(3.9)

=f B = "R
(3.5 1= o -f 0 |hh,
—~;—f"R- 0 2f"

’ l r’
(4" = S L L
1
s _j,_gnR 0 23’
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(3.6) (] = [A%) ( ") (4] = [A;§"12%,
' " 1 Fald ¥
f=+7f R* 0 ——ff"R
3.7 [4P = 0 2 0 (hh)?.

—if'f”R 0 4f”+—l—)"”’1‘tz
2 4 ol
Physical components of the above tensors result from the relations:

(3.8) [A’ )] = [A,S')]T]z_, "( g] n(n)} hz

It can easily be shown that all eigen-values of A] as well as A} are distinct, what
justifies the application of the constitutive equation (2.18). The corresponding Deborah
numbers may be defined as follows:

h h
(3.9 De—ﬂh—u or De= C@E
where 0 is the characteristic time of a fluid (cf. (2.19)).
Physical components of the stress tensor resulting from Eq. (2.18) take the form

l " 7 ;; '.hz 1 F add j,z l I hz
r<nz>=.§_f R(a1h+a,(7+7;2—))—7ff RaaF 23 Roy — e

' i }; jlz ’ 1 L jlz ’ hz
IR = —p—f (a1h+ otz (7 +F)) + (fz'l' —4"f 3Rz) %357 —E8 %1 g7
(3.10) W i {
; h R h? h?
X% = —p—f (“1’”“12 (T i F)) +f'1d3F A *E

T@D = —p+2f' (e h+a (£+ —i'i) + (424 Lrape) E—sﬁlg’a L
S € T 4 R R
where the terms of orders &, a,¢, aze (cf. (2.19)) have been disregarded. After sub-

stituting the above stress components into the inertialess equations of equilibrium (cf.
Appendix)

TR | OT<RZ>
oo v ity CRR) _ (68 =
G.11) g (TRO-T®)+ o =0,
oT<RZy | oTED>
OTE2 | 1 rzy -
R TRTt—z =0

and eliminating the pressure p, we arrive at the differential equation

(3.12) i [=Ih+ "-‘z( )](f“'f +21°1™) aaj;z—ﬂx"“: ,,: -
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Since the Newtonian solution (¢ = a;, = a3 = 0) is of the form

(3.13) V=0, f(2)=2°(3-22),

we also have the solution

(3.14) eg(Z) = — %% Z2(2Z° - 5Z* +4Z—1).
1
It may be verified that f(Z) as well as g(Z) satisfy the boundary conditions (3.4).
The total force P(t) acting on the top disc due to the fluid, balancing the applied
constant load F (if the inertia force Mk may be disregarded) can be calculated as follows:

alh

a
619 F=p)= - [ 19|, 2mir= —i2 [ 10| 2nrir
0 0 '

alk

oTZ2>
= A3 2
=h 5( R 7R

3

=1

where integration by parts and the boundary condition
(3.16) T#2> =0 for R=alh, Z=1,

have been used. The above condition discussed in [6] means that the normal stress
vanishes at the rim if the upper disc is not immersed in a fluid.
On the basis of Eqs. (3.15) and (3.10) we arrive at the equation

: 3nata,h a [k .k 9 a3 h
3.17) F = _T[1+Z(T+T)+WZT]
This ordinary second-order differential equation is highly nonlinear in h(t), being a par-
ticular type of the Emden-Fowler equation (cf. [18]), the solution of which can be ob-
tained in a finite form only in certain exceptional cases.
For Newtonian fluids (2, = o3 = 0) the order of Eq. (3.17) is reduced by one and
we obtain at once

1
1 4Ft "7, 2Fh3
(19 n(e) = (7,“ * _:;W) WO = -

where the subscript N denotes Newtonian quantities and k, = k(0).

To get other approximate solutions of Eq. (3.17) we can either seek the solution as
an expansion about hy(?) for very small values of o, a3 (a2 = a2 = a5 = 0) (cf. [6]),
or, for finite values of a,, a3, solve Eq. (3.17) in the vicinity of an arbitrarily chosen
instant ¢’ for which &’ = h(t’) can be treated as a constant parameter (cf. [10]).

For the first type of solution, we take into account the fact that for a Newtonian
fluid loaded with the same constant F

(3.19) P w2 C. N ol
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and then Eq. (3.17) leads to

. * 9
(3.20) h(r) = "«[‘ e (‘“"* 10 )]
or to
hy hy
(321) My ”*[‘"—,;.;(““"* 10 )"‘(m, )]

where hy is determined by Eq. (3.18),. _

It can easily be dedl_med‘from the above results that the fluid considered will behave
as a better lubricant (# > hy, & > hy) than a Newtonian fluid of the same viscosity a;
only for negative 4o, + 33 . Thus, in terms of the normal stress differences defined
for steady shearing flows (cf. [19]), we obtain the following conditions of improved
lubrication:
(.22) Mty <0 OF 9 50,

" oy -ﬁ o3 [0 ¥i1— -lT Y3

where »; denotes the first normal stress difference, while v, — the second one. These
conditions are quite realistic, at least for the majority of viscoelastic fluids (polymer
solutions and melts) for which », is positive and v, — negative, with absolute values
much smaller than », (cf. e.g. [6, 19, 20]). The reason why our conclusion differs from
certain previously reported theoretical results (cf. [1, 4, 5, 6]) is mainly due to the con-
stitutive equation applied. Our simplified constitutive equation (2.18) differs from that
for a second-order fluid.

To get the second type of solution we consider the following nonlinear differential
equation:
a:. 2Fh"?
100, K T ”"’ T
where &' = h(z’) is a constant parameter. In lhe case of a Newtonian fluid, Eq. (3.17)
leads to

- h2
(3.23) ks 90+ 10, A

2FR3 . . 2Fh'?

(3.24) hy(t) = hy— 37“1‘“1 (t—t), hy=hy=— Inata, ’

where hy = hy(t').
Equation (3.23) can be integrated in quadratures and its general solution satisfying
the initial conditions A(t") = &', h(t") = h' depends on sign of the expression:

Sa,h’ . Sa, i
3. — 1 1 )
(3.25) 4 ( 100, + a5 ) 10a; +%a5
Since in our case it is reasonable to assume that (cf. (3.22))
(3.26) 100,493 >0 or 4v+%, >0,
where v, v, are the corresponding normal stress differences, we obtain either
(3.27) A: A>0 if —>uk —2hy,

_— >
100, 4+ 905
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or
% . Sﬁih‘ »
(3.28) B: A<0 if T 2hy.
For 4 > 0 (the case A) we arrive at
- 10!:!;+9a3 t - Salh'
(3:29) he) = V4 th ['/_ (C"' ~10x, T)] 100, +9a; *
106.3 ' 10&2"‘9&3 4 5 Sal h'
(3.30) k) = 5o T Kln h[;/_(c-l- h—)] “Tou, 49, "D
where
2 Sa, i 100, +9a; ¢’
L A' o [,/— ()' * 102, + 94, )] T T 10w, B
(3.31) lOu; — 10313 + 9“3 t Sul K
D= 10a; +9at; Kinch ['/A (C+ 10a, ’F)] * 0w, +9a;

Similarly, for 4 < 0 (the case B) we have

. 10¢3+9¢3 t 5“1"'
(3.32) h(t) = —y “‘“3[‘/ 4 (C+ T 10a; F)]— 100, + 95 ’

(33 ) = 55 ;f_’:;% Kn |cos [m( Lﬁ:f—ai%)]
- Wﬁ'%:‘”’-'
where
= ]_/_—I—A_ arctg [V%_\(—h’_. 10:::.}';,3 )] . 10%1-19% ;_:'
(3.39) . ﬁ%:%: - cos[ % (c+ 10a,+9a, ¢ )] ]0:::&9’% )

The above solutions may be useful to derive condlt:ons under which the fluid con-
sidered will behave as a better lubricant than a Newtonian fluid of the same viscosity
a,. To this end we shall analyse the conditions under which either (t) or h(r) are greater
than the corresponding Newtonian quantities hy(f) or Ax(t).(*)

Taking into account the solutions (3.30), (3.29) and the inequality (3.27), we can
deduce that
(3.35) h(t) > hy(t) if  {a; <0, 10a;+9%; > 0, &' > hy},

11t

(3.36) h(t) > hy(t) if {100, +9a3 > 0, I > k).
-1

The above conditions show that if the distance between the discs 4’ and the rate A’ at
any instant ¢’ are greater than the corresponding Newtonian quantities, a similar tendency

. ()] Let us note that if h(t) > hu(t) for any ¢, the fluid is really a better lubricant. This is not true
if A(t) > hy(t) and, simultaneously, hn(t) < hx(t).
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will be observed after a very short time lapse t—1t’, only for negative «, and positive
102, +9a5. These inequalities are again quite realistic for the majority of viscoelastic
fluids for which the first normal stress difference is positive and much greater than the
absolute value of the negative second normal stress difference (cf. (3.26)).

Taking into account the solutions (3.33), (3.32) and the inequality (3.28), we can
also deduce that

(3.37) h(t) > hy(t) if {23 <0, 10a;+9a; >0, &' > hy},
1=

(3.38) h(t) > hy(t) if  {10a;+9a5 > 0, hy > k'}.
1=

The above results are very similar to those descri.bed by the inequalities (3.35) and (3.36).
The only difference is connected with the rate 4’. Bearing in mind the inequality (3.28),
it is easy to note that such cases are possible for slightly higher loads.

4. Other viscoelastic properties of squeezing flows

BRINDLEY et al. [6] reported that for certain viscoelastic fluids under more severe
loading conditions (or higher Deborah numbers) the distance A(?) did not always decrease
monotonically with time as one would expect from inelastic analysis. Sometimes, they

observed a “bounce” appearing on the experimental A(¢) curves (Fig. 2) being a manifes-
tation of solid-like or elastic behaviour.

Although our solutions are valid only for light loading conditions (or low Deborah
numbers), there exists a possibility of similar elastic or solid-like behaviour. To show
this we shall seek conditions under which either the negative rate h(f) may change its
sign or the distance A(t) may become greater than the distance A’ at slightly earlier instant
t'. The case of 4 > 0 as well as the case of 4 < 0 must be considered separately.

For 4 > 0 (cf. inequality (3.27)) we can deduce on the basis of Eqs. (3.29) and
(3.30) that
@4.1) neither A(t)>0 nor h(®) =k if {a <0},

1t (Sl

what means that a “bounce” is not possible for negative a,.
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On the other hand, for 4 < 0 (cf. inequality (3.28)) we can deduce on the basis of
Egs. (3.32) and (3.33) that
(4.2) b)=>0 if {a, <O, 10a,+9; > 0},

1=t

(4.3) hit)=hH if {a, <0, 10a,+9a; > 0}.

1=
The above results show that a “bounce” on the h(t) curve may appear for negative a,
and positive 10a; + 9, if simultaneously the inequality (3.28) holds. This inequality cor-
responds to the case of loading conditions slightly heavier than those described by the
inequality (3.27). A small but finite time lapse 1—¢’ after which h(t) may change its sign
can be estimated from the following relation:

100, +9a5 t—1' i':’}

(4.9) h(ty=0 if :- 10, 7

where 4 <0, a; <0 and 10a; +9a; > 0.

Since our present considerations can be repeated for many various instants of time
denoted by t’, we do not exclude the possibility of several “bounces” existing on the
h(t) curves. We want to emphasize, moreover, that from the fact that “bounces” are
possible on the A(t) curves it does not result that they should appear or could be observable
for lighter loading conditions.

Appendix A

To prove the corresponding representation theorem we use the following definitions
of the partial Rivlin-Ericksen kinematic tensors:
(A1) A =L7T4+L, Ay =L"T+L",
(A2) Aj = Aj+A[L'+LTA{, Ay = AY+A{L"+L"TAY,
_where L' and L are defined by Egs. (2.15) and superposed dots denote the material
time derivatives.

Moreover, the following lemma is very useful (cf. [11]):
LemMA. Let [S] be a 3 x3 diagonal matrix and [W] 3 x3 skew-symmetric matrix:

al00 0 xy

(A.3) [S]=[0b0, [W]=[—x Oz], a#b+#c#a,
00c y —z 0

then:

(A.4) [SW] = [WS] if, and only if, x=y=2z=0.

This lemma can be proved in a straightforward manner by direct multiplication of matrices.

THEOREM. If the partial Rivlin-Ericksen kinematic tensors A; and A’, have three
eigen-valyes distinct, the partial velocity gradients L' and L' are uniquely determined
by A, A; and AY, A}, respectively.
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The proof of the above theorem will be presented only for the primed quantities
L', A;, A;; for L, AY, AY it can be repeated in an analogous way.
Let L’ not be uniquely determined by A}, A;. Then, taking an L’ such that

(A.5) Al =L7+L' =L7+L,

(A.6) A, = Al +AL'+L'TA, = A+ AL’ +1L'TA,
we obtain from Eq. (A.5)

(A7) (L'-L)" = —(L'-LY;

thus the difference L'~L’ is skew-symmetric. From Eq. (A.6) we also see that L'—L’
commutes with A], namely

(A8) @' -L)A, = AUL-TI).

Since, according to the lemma, A; does not commute with any non-zero skew-symmetric
tensor, we have L'—L’ = 0. Thus, L’ is uniquely determined by A] and A;.

Appendix B

The proof that the inertialess equations of equilibrium in the system of convected
coordinates R, 0, Z defined at time ¢ are of the form (3.11) can be outlined as follows.

For any system of curvilinear coordinates X* (a = 1,2, 3) we have in general (cf.
e.g. [14])

(B.1) O, T + Li} T+ {:;} T =0,

o
where T™ are contravariant components of the stress tensor and H ﬁy} are Christoffel

symbols of the second kind. From the definition (3.2) it results that
2

(B.2) [g,,(r)l-[o R 0 ] {22} {221}={122}=%,

0 A
where g,; denote covariant components of the variable metric tensor. Thus, Egs. (B.1)
lead to
1

Or TRE+ 0, T*R + R TEX_RT* =0,

(B.3) i
6R TRZ+ 3; TZZ+ "R‘ Tu = 0.

Bearing in mind the fact that physical components of the stress tensor are defined as
follows (cf. [14]):

(B.4) ¢8> = % T% (no summation),

we immediately arrive at Egs. (3.11).
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