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Film flow of an inviscid liquid(*) 

L. PFEIFROTH (DARMSTADT) 

THE PAPER is concerned with the steady flow of an inviscid liquid in a film which is formed when 
"rain" is falling onto a solid bottom. At first an exact solution of the problem is constructed. 
Then, an approximation method is derived and is finally tested by the exact solution. 

Praca dotyczy stacjonarnego przeplywu nielepkiej cieczy w cienkiej warstwie twor:u}cej si~ na 
ciele sztywnym podczas padania ,deszczu". Podano Scisle rozwi~e zagadnienia a tald.e 
rozwi~nie przybli:ione. W zakonczeniu pracy dokonano por6wnania obu rozwiilzafl. 

Pa6oTa I<&caeTCR CTIUUIOH8pHoro Te'leHWI HeB.R3l<oH ~OCTH B TOHl<OM CJioe, o6paayroi.UeMC.R 
Ha >KeCTI<OM TeJie BO BpeM.R OC&,[U(OB ,~O>KA.R". ,n&eTC.R TO'IHOe pemeHHe 38~a'DI, 9 Tal<>Ke 
npH6JIH>KeHHoe pemeHHe. B 38l<JIIO'Iemm pa60Tbi npoBe~euo epaBHeHHe o6omc pemei:IHH. 

1. Introduction 

THis PAPER deals with the following problem: Determine the flow in the film which is 
formed when "rain" is falling onto an impervious bottom. First of all one thinks of films 
caused by natural rain, of course. But those films are so thin that the viscosity plays an 
important role (the film thickness is of the same order as the boundary layer thickness}, 
whereas we shall neglect the viscosity. There are two arguments for this simplifying assump­
tion: Firstly, there are cases in which the films are much thicker than the usual rain films; 
one can think, for example, of artificial sprinkling. Secondly, investigations for an ideal . 
liquid should be helpful for the much more difficult viscous theory which leads to very 
complicated calculations if one has an arbitrary bottom shape or if one wants to simulate 
the discrete "rain" drops. (Compare the final ·remarks to chapter 4). 

The problem of viscous film flow has been considered by several authors (see BECKEil 

1976 and the bibliographical data there). The inviscid case was investigated at first by 
Becker (see BECKER 1975). (In the hydraulic approximation he derived an integrodifferential 
equation for the film thickness). 

2. Assumptions and basic equations 

We use a left-handed Cartesian coordinate system (x, y) with they-axis in the direction 
of the gravity acceleration g, and we consider a plane steady flow of an inviscid liquid 
with the constant density eo in the film domain D. D is bounded by the bottom b(x) and 
by the film surface s(~), which has the tangential vector tu the inner normal vector n, 
and the angle of inclination a (see Fig. 1). 

(*) Pap~r presented at the Xlll Biennial Fluid Dynamics Symposium, Poland, September S-10, 1977. 
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FIG. 1. Notations. 

As usual, we replace the "rain" by a continuously distributed fluid. In addition we 
assume that this continuous "rain" flow is steady. Hence at the surface s(x) the time­
independent outer limits of the density, the velocity, and the pressure: rF, v-, p- can be 
defined. Then the inner limits v+ and p+ (e+ = eo = const is given) result from the 
jump conditions for mass 

(2.1) 

and momentum, 

(2.2) [e(v · n,)v+pn,] = 0. 

(The brackets denote the differences between the inner and outer limits). 
The flow in the film domain D is described by the continuity equation 

(2.3) div v = 0 

and the Euler equations. 

(2.4) vxcurh- grad( ~ + :. -gy). 
These equations lead to following differential equation for the stream function 1p: 

(2.5) 

with 

(2.6) 
vl p 

B=-+--gy. 
2 eo 

We have the following boundary conditions: 
The impervious bottom b(x) is a streamline, i.e. 

(2.7) at b(x): 'P = const( = 0). 

The boundary value of 'P at the film surface, which we denote by 'P+, is a function /(x) 
determined by the normal velocity 

X 

(2.8) at s(x): 'P+ = - J v · n, dx = f(x). 
coscx(x) 

Jto 
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FILM FLOW OF AN INVISCID UQUID 211 

In addition we have 

(2.8) at s(x):( ~ r = y+. t,. 

In order to solve the differential equation (2.5) with the boundary condition,s (2.7) and 
(2.8) we must know the function B(1p). Its inner limit is given by the jump conditions 

v+ 2(x) p+(x) 
B+(x) = ---+---gs(x). 

2 eo (2.9) 

To construct B(1p) in D we make two assumptions: 

Assumpdon t. Liquid is added at the whole film surface. 
Assumpdon l. All the liquid in the film is added at the surface. 

From Assumption I it follows that f(x) is a monotonously decreasing function. So 
it can be inverted in the following way: 

{2.10) 

Inserting this into B+ (x) leads to a function B(1p+) defined by 

(2.11) B(1p+) = B+ [f- 1(1J'+)] 

and it is trivial to omit the + - signs to get B(1p): 

(2.12) B(1p) = B+ [f- 1 (1J1)]. 

Assumption 2 implies that this equation holds in the whole domain D. 
The function B(1p) depends on the shape of the film surface because it is constructed 

with the aid of the function B+(x). Therefore, the right-hand side of Eq. (2.5) is not known 
a priori, consequently the film flow for the given bottom b(x) can only be determined by 
successive approximation. This suggests to look at first for simple solutions of the inverse 
problem, i.e. the problem to construct the flow for th~ given surface s(x). Sometimes 
this method is applied to the usual free surface flows, too (see WEHAUSEN and LAITONE 
1960, pp. 736). 

3. A solution of the inverse problem 

To get a simple solution of the inverse problem we choose the film surface such that 
B+(x) is constant. Then B(1p) is constant (see Eq. (2.12)) and Ll1p is zero (see Eq. (2.5)): 

(3.1) B+(x) = const~ B{1p) = const~LI1p:.: 0 in D 

i.e. the corresponding film flow is a potential flow. 
REMARK. That this flow is free of vorticity is not inconsistent with the fact that strong 

vorticities are supplied to the real flow by the diving fluid drops. This is so since replacing 
the "rain" by a continuum means taking an average, and so B(1p) = const only signifies 
that the vorticity is zero on an average. 
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212 L. PFEIFRo111 

We use the simplest "rain" model: 

v- = (0, V), V= const, 

(3.2) e = const, 0 < e < 1 , 

p- = 0. 

For this "rain" the jump conditions lead to the following inner limits of the normal velocity, 
the tangential velocity and the pressure: 

(3.3) 

v · n, = e V cos Cl, 

v · t~ = V sin !X, 

+ 
L = e(l- e)V2 cos2 Cl. 
eo 

Inserting these results into Eq. (2.9), we get 

+ ( ) 1 V2 ( ) (1- e)2 V2 1 
(3.4) B x = 2 -gs x- - 2- l+s'2(x) · 

We are looking for solutions with B = const. 
This constant can be chosen such that s = 0 when s' = 0. The resulting differential 

equation has as solution the cycloid 

(3.5) 

with 

z,(!X) = ~ [2rl+sin2rl+i(l-cos2rl)] 

z, = x,+iy,, 
V2 

R = (1-e)2-, s = y,(rl), x = x,(rl). 
g 

The boundary values of the velocity potential rp (whose existence is guaranteed by Eq. 
(3.1)) and of the streamfunction 'P 

(3.6) 

X 

f dx 
rp+(x) = v+ · t, -- = Vs(x), 

cos ex 
0 

X 

'P+(x) = - J v+ ·n.~· = -eVx 
COS Cl 

0 

fix the boundary value p+ of the complex potential F = rp + i1p. 
By Eq. (3.5) it can be transformed into the following function of rl: 

(3.7) F+(!X) =V~ [I-cos2rl-ie(2!X+sin2rl)]. 

To determine the film flow belonging to z,(rl), a function F(z) has to be constructed, 
regular in D, which takes the values prescribed by Eq. (3.7) on z,(rl). It is known from 
the theory of functions (see e.g. BEHNKE and SoMMER 1965, p. 140) that this problem has 

one solution at the most, and because both z,(rl) and F+(a) are analytic between - ~ 
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FILM FLOW OF AN INVISCID UQUID 213 

and + ~ , this solution is obtained in parameter form by replacing the real parameter oc 

in Eqs. (3.5) and (3.7) by the complex parameter y = oc+i{J. So we find; 

z(y) = ~ [2y+i(1-e12Y)), 

(3.8) 

F(y) = V~ [1- cos 2y- ie (2y +sin 2y)]. 

Equation (3.8h can be transformed as follows: 

(3.9) F(y) = V : { (1- e) (1- cos 2y)- ei [2y + i +sin 2y- i cos 2y]} 

= (1-e)V~ (1-cos2y)-eiVz(y) = (1-e)F0 +eF1 • 

Thus we can interpret F(y) as the superposition, weighted bye, of the flow F0 = V: (1-

cos 2y) with a parallel flow in they-direction. (For the meaning of F0 see the final remark 
to this chapter). 

By separating z(y) and F(y) into their real and imaginary parts, we get 

z = ~ [sin2oce,... 211 +2oc]+ i ~ [l-cos2oce- 2fl + 2{J], 
(3.10) 

F = V : [1- cos 2oc ( ch:2fJ- e sh 2P) + e2{J] + iV ~ [sin 2oc ( sh 2p- e eh 2P)- e2oc] 

with - -~ ~ oc ~ T, P ~ 0. 

According to Eq. (3.10h the streamlines of the flow satisfy the equation 

(3.11) 'P = V~ [sin 2oc(sh 2{1- ech 2{J)- e2oc] = const. 

0 0.1 0.2 0.3 0.4 ~X 

0.1 

0.2 

0.3 

1 
FIG. 2. Potential film flow for a liquid "raining'' with constant velocity V, e = e-leo = 4 . 

S Arch. Mech. Stos. nr 2n9 
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214 L. PFEIFR9TH 

For ex ::/= 0 this defines a function p('rp; ex). Inserting it into Eq. (3.10)1 we obtain the stream­

lines in D as function z(1p; ex). (For 1p = 0, ex = 0, and P = ~ In ! ~: the flow has a stag-

nation point). Some streamlines are plotted for • = ! and E = 
1
1
6 

in Figs. 2 and 3. 
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g X 

V2 

FIG. 3. Potential film flow for a liquid "raining" with constant velocity V, t: = fl- /(lo = -1
-. 

16 

(The straight half line x = ! "', y ;a. ~ cannot be conceived as a part of the film 

surface because the jump condition (2.1) and (2.2) are violated here). We supposed that • 

lies between 0 and I. In the limit e--. l the film surface shrinks up to a point (see Eq. 
(3.5): R --. 0). In the limit e --. 0 the normal velocity v · n. = eV cos ex vanishes, i.e. the 
surface becomes a streamline, and B+ (x) = const implies that this streamline is a free 

surface. So the flow F0 = V: (l-cos2y), which is the limit ofF when e goes to zero, 

is a flow of a heavy fluid with a free surface. This flow is known all along. Apparently, 
itwasfirst investigated by N. E. Zhukowskii in 1891 (see GUREVICH 1965, p. 543 and the 
bibliographical date there, or GILBARG, 1960, p. 351). 

With the help of the exact solution constructed in this chapter we can test the following 
approximation method. 

4. A successive approximation method 

The governing differential equation (2.5) L11p = ~i- can be transformed into a system 

of three equations by reintroducing the velocity field (u, v). These three equations are: 
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(4.1) 

u = otp 
oy, 

otp 
V=-­OX, 

ou ev dB 
oy - ox = dtp [tp(x, y)]. 

21S 

In the following we assume u > 0 in the considered domain. Hence Eqs. (4.1)1 and (4.1)2 

describe a coordinate transformation 

(4.2) (x,y)-+ (x, tp). 

The inverse equations corresponding to Eqs. (4.1)1 and (4.1)2 are 

(4.3) 

oy 
-=-, u otp 

v oy 
-u= ox' 

and in the new coordinate system Eq. (4.1)3 takes the form 

ou ev ev dB 
(4.3)3 u otp +v otp - ox = dtp. 

The boundary conditions for the system (4.3) are 

at tp = O:y = b(x); (: = b'(x)), 
(4.4) 

at 1p = tp+(x): y = S(x), u = u+(x), v = v+(x), B = B+(x). 

Integrating the system (4.3) over tp and satisfying the boundary conditions (4.4), we get 

y+(x) 

f d-r 
s(x) = b(x)+ -(-), 

0 
U X, T 

(4.5) 

., 
u2(x, tp)+v2 (x, tp) = u+ 2(x)+v+ 2(x)+2[B(tp)-B+(x)]+2 J :x v(x, -r)d-r. 

y+(x) 

Now we confine the consideration to the "rain" model (3.2) (the following can be modified 
for more general "rains"), and we conceive all the quantities to be made dimensionless 
by the rain velocity V and a characteristic length R (which is for example an average radius 
of curvature of the impervious bottom). Hence the dimensionless streamfunction has the 
boundary value 

(4.6) tp+(x) = -ex. 

This relation suggests to introduce a new coordinate ~ by 

(4.7) tp = -e~. 

5* 
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216 L. PF.Emtom 

In the coordinate system (x, ~)and for the special "rain" model (3.2) Eqs. (4.5) take the 
following dimensionless form: 

(4.8) 

with 

I
X d" 

s(x) = b(x)- e __ T ,..-, 

0 
u(x, T) 

" 

v .(x,,P)==b'(x)-eJ~4-[ 1,.. .]dr, 
U uX ~X,~ 

0 

X 

+ 2e(l- •) sin2 a(x) + £2 + 2£ f :x v (x, T)di, 

"' 

V2 ds 
F,2 = gR ' tg ex = dx ' 

(u+(x) and v+(x) result from Eq. (3.3) and both B+(x) and B(~) from Eq. (3.4). Note 
that B(~) = B+(") because ,P+(x) = x.) 

Now we assume that the solutions u(x,~), v(x,~), s(x) of the system (4.8) can be 
expanded into powers of the small parameter e: 

u = u0 +eu1 +e2u2+ ... , 
(4.9) v = v 0 +ev1 +e2v2+ ... , 

s = s0 +esl +e2s2 + ... . 
Inserting these expansions into Eqs. ( 4.8), we get the following first approximations: 

s0 (x) = b(x), 

{4.10) v 0 (x, ~) = b'(x)u0 (x, ~), 

( ") 1 1/ b'2(~) 2 [b( ) b(")] 
Uo x, 'P = Jfl +b'2(x) 1 +b'2(.Y,) + F,2 x - tp . 

The first nontrivial term in the expansion of s is 

X 

s1 (x) = -y1 +b'2 (x) J dT 

o -.I b'l(r) + ~ [b(x)-b(r)J 
J1 1 +b'2(r) F/ 

(4.11) 

Hence we obtain a first approximation for the film height b-s simply by a quadrature. 
REMARKS: 

1) In some cases it may be advantageous not to consider the vertical fihn. height b;._s, 
but the film thickness d normal to the bottom b. It is easy to show that 

(4.12) 
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FILM FLOW OF AN INVISCID LIQUID 217 

2) The above formulae can easily be generalized to the· case that e is given by 

(4.I3) e = e0 g(x), 0 < g(x) (~ 1), 0 <Eo< 1. 

Then We have to replace Eq. (4.7) defining~ by 
A 

tp 

(4.14) 1p = /(~) = -Eo J g(i)di 
0 

which again leads to ~+ (x) = x. In that case we obtain 

X 

S1 (x) = -1/ I +b'2(x) r g(i)di 

o l / b'2(i) + 2_ [b(x)- b(T)] 
I I +b'2(i) F,2 

(4.15) 

3) The integral in Eq. (4.1I) tends to infinity for x ~ x0 if b'(x0) == 0. Therefore, the 
formula (4.11) can be applied immediately only if b'(x) > 0 for x > 0 (resp. b'(x) < 0 
for x < 0). If that condition is violated, we have to split up the function b(x) into the 
following sum for each fixed e (resp. e0 ) under consideration: 

'7 

(4.16) b(x) = b0(x) + 2: E" b,(x) 
,. .. 

with 

b~(x) > 0 for x > 0 (resp. b~(x) < 0 for x < 0), 

maxI b,(x)l = 0(1), n ~ oo. 

Consequently, in Eq. (4.11) b(x) must be replaced by b0 (x). Of course, the expansion (4.16) 
is not possible for all smooth functions b(x). But we should not forget that there are func­
tions b(x) for which our problem cannot have a steady solution. Such a function is, for 
example, b(x) = -cx2 with c ~ 0. 

S. Comparison with the solution of Chapter 3 

Of course, a strict convergence proof for the expansions of the preceding chapter would 
be very difficult. But we can test the procedure with the help of the exact solution construc­
ted in Chapter 3. For this purpose we choose as the characteristic length 

V2 
(5.1) R = (1-e)2 -. 

g 

Then we obtain for the bottom (see Eqs. (3.10)1 and (3.11)): 

xb = ! (sin2cxe- 2P+2cx), 

(5.2) 
1 

Yb = 4 (I -cos 2cxe- 2P + 2P), 

41pb =sin 2cx(sh2P -Ech2P)-E2ct == 0. 
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We define a new parameter {} by 

( 5.3) sin 28 + 28 = sin 21Xe- 211 + 21X 

and expand IX and Pinto powers of e: IX= 1Xo+e1X1 +e21X2 + ... , P = Po+eP1 +e2 P2+ .... 
Inserting this into Eqs. (5.2h and (5.3) gives 1X1(8), P1(8) (especially IX0 = 8, Po = 0). 
So we get the bottom expanded into powers of e: 

x6 = ! (sin 28+28), 
(5.4) 

1 e ( 2{} ) e
2 

[ ( 2{} ) 
Y• = 4 ( 1- cos 20) + 2 1 + sin 2{} + 4 2 1 + sin 28 

_ 1+2cos2D (t+~)
2

J+O(e3). 
1 +COS 2{} SlD 2{} 

The corresponding film surface (see Eq. (3.5)) is 

(5.5) 
x, = ! (sin2t?+21J), 

1 
y. = 4 (1- cos2{}). 

In the special case considered here the bottom and the Froude number Fr1 = ;~ = 

1/(l-e)2 depend on e. Therefore, the formulae (4.10) and (4.11) must be modified a little 
bit. We start again from Eq. (4.8) and obtain at first from Eq. (4.8)1 : s0 = b0 , i.e. 

(5.6) Yao = Y•o 
which is in agreement with Eqs. (5.4)2 and (5.5h. Then Eq. (4.8h gives 

(5.7) fJo = b~Uo = tg-Duo 

and herewith Eq. (4.8)3 leads to 

(5.8) U0 = ~ sin2D. 

Inserting this into Eq. (4.8)1 we obtain 

2x 
(5.9) St (x) = bt (x)- sin 2{}(x) 

or, in parameter form, 

(5.10) 

which again is in agreement with Eqs. (5.4)2 and (5.5h. In the next step we obtainfrom 
Eqs. (4.8)2 , (4.8)3 and (4.8)h respectively, 

(5.11) A A cos28 x-' 
"1 (x' 'P) = tgt?(x)u1 (x' 'P)+ I- 1 +cos28 (x) 4 sin2t?(x) ' 

(5.12) ( 

A 1 . 1 + 2cos 2{} A 

u1 x, 'P) = - 2 sm28(x)+ 1+cos 2{} (x)2(x-1p), 

(5 13) ( ) b ( ) 2x 1 +2cos2{} ( ) [ 2x ]
2 

· s2 x = 2 x - sin2{}(x) + 1 +cos2{} x sin21J(x) ' 
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or, in parameter form, 

1 ( 2{) ) 1 +2cos 2{} _!_ (t + ~)
2 

<5·14) Yll(f) = Yb2(1J)- 2 1+ sin2{} + 1+cos2{} 4 sin28 

which corresponds with Eqs. (5.4h and (5.5)2 • 

The author has also tested the validity of the next approximation. It can be expected 
that all the further terms of the expansions are correct. But it must be noticed that the exact 
solution cannot be expanded into powers of e for I} close to n/2 as Eq. (5.4)1 shows. Hence 
the procedure must fail there. 
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