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Asymptotic method of homogenization of two models of elastic shells
T. LEWINSKI and J.J. TELEGA (WARSZAWA)

THis PAPER deals with homogenization of Koiter’s linear shell and the geometrically nonlinear
shallow shell. To derive the effective moduli, the method of two scale asymptotic expansions
has been employed. In the case of Koiter’s shell, the local problems are coupled. They become
uncoupled for shallow shells. An example is also given.

W pracy rozpatrzono homogenizacje liniowej powtoki Koitera i geometrycznie nieliniowej
powloki matowyniostej. W celu otrzymania modutow efektywnych zastosowano dwuskalowg
metode rozwinig¢ asymptotycznych. W przypadku powloki Koitera zagadnienia lokalne sa
sprzezone. Staja si¢ one rozsprzezone dla powlok malowyniostych. Podano rowniez przykiad.

B pafote paccMoTpeHa roMoreHu3alusa JIHHeHHOH odoounk Koifrepa u reoMeTpHYecKd HeIM-
HeitHol rrotoroit obomouxu. C menpio monydeHdsa 3¢hdeKTHBHBIX MOAYJIEH NPHMEHEH NBYX-
MaciuTaOHBIN METOJ ACHMIITOTHUECKHX pasioykeHmi. B ciyuae oOomouxm Koiirepa soka-
JbHBIE 3a0aud conpsDKeHbl. CTaHOBATCA OHM PAacHpsDKEHHBIMH IS TOJIOTHX 000JI0ueK,
ITpuBefieH To)Ke IIpHMeEp.

1. Introduction

SHELLS of periodically varying stiffness, e.g. shells with ribs, with openings or fibre-rein-
forced, are often used in engineering practice. The aim of this paper is to provide an effective
method for the statical analysis of such structures.

The first part of the paper is devoted to the linear analysis of a Kirchhoff-Love shell
(we use Koiter’s version of this theory, [9]) being periodic with respect to assumed curvilin-
ear parametrization. Under the assumption that a cell of periodicity has the shape of a
shallow shell, using the method of asymptotic expansions [5, 8], formulae will be derived
for effective stiffnesses (which are non-constant). Although homogenization methods are
widely used for periodic composites (cf. [5, 30]), there is a limited number of papers in
which they are applied to plates and arches [1-3, 7, 11-14, 16-19, 21, 22, 26-30, 32, 34,
38, 39]. The problem of homogenization of shells has been dealt with in the papers [18, 20,
31]. However, only the paper [31] concerns the homogenization of thin linear shells.
Unfortunately, we recognize that the results of this paper are incorrect due to errors made
in the passage to a limit (¢ — 0). Also the local problems, assumed as being uncoupled,
seem to be incorrect. For the Budiansky-Sanders model studied in [31] these problems
should be coupled, cf. [40] and Sect. 3 below. We shall not follow the energy proof employed
in this paper. Instead we use here asymptotic expansions. The problem studied is not
conventional since not only do the components of the stiffness tensors depend on periodically
varying elastic moduli but they also vary nonperiodically according to variations of metric
tensors and curvature tensors of the shell mid-surface. Thus we are faced with a non-
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uniform homogenization problem, cf. [8], pp. 71-87. The homogenized model of such
a problem is still nonhomogeneous. The asymptotic method employed reveals that the
constitutive equations of the homogenized shell model are coupled: tangent deformations
contribute to moments while changes of curvature affect membrane forces. This phenom-
enon has been recently confirmed by the method of I-convergence [40]. It is worth
noting here that the averaged constitutive equations for lattice shells found by Pshenichnov
[36] are decoupled. In the light of our findings his results should thus be reexamined.

The second part of the paper deals with moderately large deflections of shallow shells
with periodic structure within the framework of the theory by Mushtari-Marguerre, cf.
[24, 35]. Also for this case we obtain the homogenization formulae using the asymptotic
expansion method. In this shallow shell theory the tangent displacements do not affect
changes of curvature, what implies that the homogenized constitutive equations are
uncoupled.

The paper is illustrated by an example of a shallow shell periodic with respect to one
curvilinear coordinate. In this case the basic cell problems can be analytically solved. Thus
the explicit formulae for effective stiffnesses can be given.

2. Basic relations

A variety of mathematical models for linear and nonlinear shell behaviour have already
been developed, see e.g. [6, 24, 25, 33, 35]. In the present contribution we study two prac-
tically important models of thin shells under the Kirchhoff-Love hypothesis. The first
model is sometimes called Koiter’s linear model [9]. The second model will be the geometri-
cally nonlinear shallow shell model [10, 35].

Before proceeding to the process of homogenization, we provide the indispensable
information related to a description of such shells.

Let Q = R? be a bounded sufficiently regular domain and @:2 — § a mapping
of class C3(£2), see [9, 15]. Here S denotes the middle surface of the undeformed shell
and {2 stands for the closure of Q. The plane R? containing 2 is referred to coordinates
(&%), whereas R3 is referred to (x); « = 1,2;i = 1, 2, 3. Obviously we have § = ¢(2) c
< R3. The vectors tangent to the coordinate lines are @, = d®/d&* = @ ,. The symmetric
covariant metric tensor of the middle surface S is given as the scalar product

@.n Qg =D o Dy.

If v is the unit normal to S, then the covariant components b,s of the curvature tensor
b = (bys) are

(2.2) bup=v-a,5= —25"v,3;.

The contravariant metric tensor (a*) satisfying the relation a*a;, = 6% is used to raise the
indices. The Christoffel symbols of the undeformed shell middle surface S are given by

1
(23) Fg,, = a“‘I}ﬂ,,, Faﬁy = E(aaﬁ‘,,—}-aa,'ﬁ—aﬁ,,_a).

Throughout this paper the Lagrangean description of the deformation of the shell is
consequently used.
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By U = (u, w) = (4, w) we denote the displacement vector of the middle surface
of the shell. Thus we may write

2.9 U = u®a,+wv.
The linear Kirchhoff-Love shell model (in the version by Koiter) is described by the

following strain-displacement relations:

1
(25) eczﬂ(u’ W) = ? (ualﬁ"l"uﬁlm)—baﬁws

(26) Qaﬁ(us w) = wlaﬁ—cdﬁw+bgualﬁ+b§uoid+bglﬂua‘

The nonlinear shallow shell model by Mushtari and Marguerre obeys the following kinema-
tic relationships:

@7 s, W) = Oup(B, W)+ Wio i,
2.8 #ap(W) = Wiap.

In the above relations the quantities not yet defined are
2.9) Uy g = Na.ﬁ—riﬂuz,

(2.10) Wieg = W,ap—LagW, 3,

@.11) Cap = By

We note that only the strain tensor y is nonlinear. If @ = identity, then Eqs. (2.7)-(2.8)
reduce to the well-known von Karméan plate equations.

For both of the above models the stored energy function W is quadratic. Thus for
Koiter’s model we have

1 1
@12) WO, 0) = 5 A 0og03-+ - D™ upoe,
where
(213) AP —  gPodp A/],uo:ﬁ’ phin — pheis Dimzﬁ’

are membrane and bending stiffness tensors of a shell made from a material for which the
surfaces z = const are surfaces of material symmetry; the coordinate z is perpendicular
to the shell middle surface. We observe that the fourth order tensors, depending on &,
are not necessarily isotropic.

A relation similar to Eq. (2.12) holds in the nonlinear case.

The vector (f% f) stands for the loading distributed over the shell middle surface.

We make the following assumptions:

(2.19) feel?*(?), felL*(Q), A“‘”ff e L*(9), Db ¢ L*(92),
(2.15) APt = Coluglaps  D*™luglyy > ¢y luples,  VteM(R);

where ¢, and ¢, are positive constants while M, (R) is the space of real symmetric 2 x 2
matrices.

15%
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For Koiter’s shell model the constitutive relations are
(2.16) N°F = 3W[30,5 = A%,
2.17) M = aW[d0ys = D“ﬁ’“glﬂ.

Here N, M denote the membrane force tensor and the bending moment tensor, respectively.
In the case of the shallow shell we have

(2.18) N = gW |8y = A™PHy,,,
(2.19) M — QW |y = DMy,

BERNADOU and CIARLET [9] solved the problem of existence and uniqueness of solutions
for Koiter’s shell. Similar problems for nonlinear shallow shells have been studied by
BerNADOU and ObpEenN [10].

3. Homogenization of Koiter’s version of the Kirchhoff-Love shell model

3.1. Formulation of the problem

The objective of this part of the paper is a statical analysis of a shell of a structure
periodic with respect to the fixed curvilinear coordinates & = (&%), see Fig. 1. We assume
that the reduced (according to the neglection of o, stresses) elastic moduli C** (&, y,)
or the shell thickness #(&, y,) are slowly varying with respect to & and are ¢, ¥-periodic
with respect to the second variable y, = &/g,; here Y is a rectangle (0, ¥;)x (0, Y3),
while &, is a positive number. We aim at constructing the homogenized model for the
considered periodic shell under the assumption that the periodicity segments D(g,Y)
are of shapes of shallow shells. Modelling such a shell consists of two steps. Starting from
the three-dimensional description, one should reduce the transverse dimension keeping ¢,
constant. Thus one arrives at the ¢, Y-periodic two-dimensional shell model. Then an
e-family of eY-periodic shells is to be considered. Upon homogenizing the equations
of such shells, one arrives at the effective model for the initially considered ¢, Y-periodic
shell. The first step of the model construction is realized by substituting in Eq. (2.12)
the tensors A, and D, for the tensors A and D; A, and D, being functions of two variables:
& and y = &/e, e¥Y — periodic in y. Thus we write

(3']) Agﬁﬁu e Amﬁiat(g_:, _v)’ ng e Daﬁlﬂ(E’ )’)-

The functions A4*#%(&, -) and D***(&, -) are Y-periodic and are such that
APH(E, ) e Lice(R?),  D*PH(E, ) € Lis(R?).

Further on we shall consider the shell being transversely homogeneous, hence

A&, y) = h(E, y) C*¥(§, ),
3.2
G5 D#w(E, y) = 1% R3(&, y) CP¥(&, y).

The functions C****( -, y) describe ¢ — independent variations of the metric of the shell
middle surface.
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FiG. 1.

According to the relations (2.16) and (2.17) the constitutive equations for the Y-
periodic shell have the form
(33) NP = AP, )8, MY = DM, )i,
where the deformation measures 0°, p* are associated with the unknown displacements u®,
w*® according to the relations (2.5) and (2.6). As it is usually done in papers on homogeniza-
tion, we assume that the shell is clamped along its boundary. The shell is subject to external
forces of densities (f* f) independent of the parameter «.

The virtual work of stresses associated with the displacement field (u®, w*) € V' on
deformations associated with virtual displacement fields (v%, 2*) € V' reads

(3.4) a@, w; v, o) = f [N (085 — bapt’) + MEP (0 s — Cap @ + 262055+ BY g 0] Y adE,
0

where a = det[a,s] and V = [H(Q)]* x H3(Q).
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The virtual work of external forces has the form
(3.5) 0, o) = [(fvs+for)ade.
Q

Qur main problem consists in finding (u®, w®) € ¥ such that
(3.6) a@’, w; v, o) = v, v°), V(¥ v)eV.

The above problem will be referred to further as the (P°) problem. According to the
results of BERNADOU and CIARLET [9], this problem is well-posed; u®, w® exist and are
unique.

3.2. Derivation of the homogenization formulae

Similarly as in the case of nonuniform homogenization of the Dirichlet problem (cf.
[8], pp. 71-87), we postulate that the solution (u®, w°) of the (P) problem can be
expanded in the form

= uPE) +eafPE, N+ ..., y=Ele,
w® = wO(E) + 2wP(&, p)+ EwD(E, )+ ...

In similar way we expand also the trial functions v¢, 2. We assume that
W, weV; ubl, oPeCRxY),

(3.9) uP(€, ), vP(E, °) € Hpo(Y),
w®, 9@ € C(Qx ¥); w(E, ), v®(¢, ) € Hpu(Y),

(3.7)

where, cf. [37]
HL.(Y) = {ve H(Y)| traces of v are equal at the opposite sides of Y},
HZ.(Y) = {v € H*(Y)| traces of v and ;;— are equal at the opposite sides of Y}.
We set
Woer = [Hpee(Y)])? % Hyee(Y).

According to the relationships (3.3) and (2.5), (2.6), we can find stress and couple resultants
associated with the displacement fields (3.7)

N* = N#¥+0(s), N2 = A& y) lﬁ'iﬁ ig%i)“]
(3.9) 32w ‘ At
MP = MFP+0(), MP = D™, )) [9*"* Tava T, ]
where

ﬁ.;';p = Bap(u(o), w(O))’ Q:;,s = Qaﬁ(u(o), W(O))‘
Let N, and M, be averaged stress and couple resultants
Ni# (&) = (NS, v

(3.10) M (&) = (MFPE, y).
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The parentheses ¢ -) imply averaging over Y:
1
(3.11) @ =3 [ed. 1= meas(r) = 7, 7.,
Y

Let us put o8& = 22, v* = v into Eq. (3.6) and let ¢ tend to zero. According to the well-
known lemma (cf. [8], p. 86), the integrands tend to their averages over Y. Thus the (P?)
problem entails the homogenized problem (P,):

find (u®, w®) eV such that ¥ (v, o) eV

(3.12) [ [NEP (053}~ bupt®) + M (0 — capv® + 267053
Q
+2 505V adt = f(f“v&°)+fv‘°’)VEdE.
2
Now, let us put v; = ofP(E)+evP(¢, y)+ ... and o = V(&) + 20D (£, y)+ ...

into (3.6), then pass to zero with . Upon substraction from the equation thus obtained
of Eq. (3.12), one arrives at

(1) 25(2) (1)
(3_13) r <Ngﬁf4%v_“_4\+<Mgﬁ( *v +2B? a'vy ) ]‘/ /- 0,
1]

ve / Oyadys | v
V(v‘”(E, ), vB(E, -))e Woer-
Let
2" = v, (M) p(é), HL(Y), 9e2(9),
o® = p(y)p(®), veHe,(Y) y € D(RQ).

Substituting into Eq. (3.13), we get

61 PN+ 265 SNV ade =0, Vune Hu(D), Ve (0,

(3.15) f:,u(M“” /;/ adt =0, VveHZ(Y), vea(Q).

We eventually arrive at the local problem defined on the basic cell:
P find  (uM(¢, 1), w®(, '))E~WD,, such that
= a; (@D, w»: v, 9) =f(v,0) V(v,9)€ Wy,
provided that (%) and p"(&) are given.
We have introduced the following notations:
(3.16)  a,(u, w; v, v) = (B*¥¥e,5(u) £2,(v) + E*¥ (£,5(u) ku(0)
+ eap(V) kzu(W)) + Dk s (W) k(@)Y

2
(3.17) fiv,v) = /A“W(a?e = b:ez,.) s (V) + Dl kg (o)),
where
ou, v
318 a = s s a
(3.18) cald) = 55 Kale) = 5o
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The tensors B, E and D are defined by

BoH(E, ) = [az o+ 262 (f)bz(f)]fi“ﬁ”(f o
(3.19) gn(e, ) = B ) o, ),

DM(E, 3) = g (6, D) AP¥E, ).

The problem (P,.) can be written in the form of the variational equalities:
find (uV(£,.), w®(&,.)) € W, such that

b, v)+e(v, W) +f(V) =0 Vve [HuW(V),

(3.20) e, 9)+d(w®,v)+g(®) =0 Voe HZ(Y),
where
b(a, v) = (Bon(e, y) St ay g; )
d(w, v) = \D“‘”“(E, ¥) af ai,, %;;;ﬁ’
3.21) e(u, w) = {EPH(E, )aj ,;:, z;:>
1) = {40, y)(azeﬁ,,+ = b:;gh) Z;: )

{ pebin A
g(0) = {D¥M(E, Y) ok e ay,,>'

Note that the solutions u‘®, w(® are linear with respect to 8* and p*, hence there exist
functions W) (¢, y), (&, y), EP(E,y), P (&, ), such that

U = WED(E, ) 01(8) + RO (£, »)oks(8),
w® = ECO(E, y)685(8) + 2P (€, y)ois(€).
The functions (WP (£,.), E¢P(&,.) € W,,, are solutions to the problem

(3.22)

v,
B(F, v)+e(v, EA) 4 (4%M 2 ) = 0,
(EO0, ¥)+efy, S 4 {oie 2
B0, )4 dEW, ) =0, V(3,) € W
Similarly the functions (@%(£,.), x* (&, +)) € W, are solutions to the problem

(P ltc)

v, \
ayp!
e(P, 0) +d(x* 7))+<Daﬁl¢u ,ﬂ\ =0, V(v,?)€ Wp.

’ ’ Oulys! ’
It is worth noting that the local problems (PL.) and (P2.) are coupled due to the influence
of the geometry of the shell.

2
b(®, v) +e(v, y*)+ <~hf64 A%Ppy, =0,

(Pic)
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3.3. Well-posedness of the basic cell problem

Prior to analysing the homogenized problem, we shall prove that the problem (P,.)
is well-posed. Thus also the problems (Pf.) are well-posed.

Let

W= {(7,0) € Woull(¥» =0 and (o) =0},
and
R = {(v,v) e fVlal(v, v;v,v) =0}.

We shall demonstrate that the form a,(.,.;.,.) is W-elliptic and # = {0, 0}.

According to our assumption concerning the mapping @ (see Sect. 2) there exists
a constant A, > O such that [bf] < A,. The bilinear form a,(.,.:;.,.) can be written
in the form

(3.23) ay(u, w;u, w) = <A°‘W(Saﬁ(ﬂ) su@+ 15 il KuﬂKlﬂ)>
where

Ky = kog(w)+bie,s)+bse,,(u) and (u, w) e W,.
On account of the inequality (2.15);, we have

h2
(3.24 a,, w3, W) > e(ecn an+ 15 Kaa Kas),

where ¢, h arc positive constants.

The condition a,(u, w; u, w) = 0 implies e,4 = 0 and K,5 = 0. The first equation

yields
uy, = a-by,, u,=d+by,,
where a, b and d are constants.

Taking account of the Y-periodicity of the functions #, and the condition {u,> = 0,
we obtain u, = 0. Hence (g,4(u)) = Vu = 0 and k,z(w) = 0. Thus w = ¢, y,+c, 2+
+c;. Since w e HZ, and {w) = 0, therefore w = 0. We see that 2 = {0, 0}.

Now we pass to proving the W—-—elhptlclty of a;(.,.;.,.). We set ||| = |l "l|i:1)-
An elementary inequality furnishes (see [9], Chapter 6)

1Kull > o el =40 Bllewsl P+ el
629 IKuall > o laall? =430 le0a1 1oz,
[1K2l)* = ﬁﬁ [1ky2l]? ~ 8'10,3(”811”2"‘”322“2'*'“512|I2+”-‘321”2),
where g > 0.
Taking account of the inequalities (3.25) in the inequality (3.24), we arrive at
(3.26) a;(u, wiu, w) = ¢, (e(u) +k(w)—ec, fl[Vu|[?),
where

¢ >0,¢,>0, &= |lewn®)eap@Il and k(w) = |lkus(W)kap(W)I].
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Bearing in mind that 2 = {0, 0}, we conclude that ]/ £(u) and }/ k(w) are equivalent to
[lullgscrys |IWlla2cr), Tespectively, provided that (u, w) € W, see [16, 17]. Further we have
[[Va)|? < [[ullfn-

For § > O sufficiently small, we finally obtain
(3.27) ay(u, wiu, w) = c(|[ullgi, +Wllgan)
where

(u,w)e .
On the other hand, the functions A** and D** are essentially bounded. Thus the

linear formf(u, w) is continuous. By employing the Lax—Milgram theorem, we infer that
the local problem (P,,c) possesses a unique solution in W.

3.4. Properties of the homogenized problem

Now we pass to the study of the homogenized constitutive equations. Substitution
of Egs. (3.22) into Egs. (3.10) leads to

(3.28) Ni# = AP0t + EgPMoh,,
(3.29) MpP = FPagh, + Dif¥oh
where
sav _ [ asmna| myase OPED N
APy — \Aa (5}'5,,-1— 3}’,. />
gz — (geom 2087
ay, &
(3.30) " b2 5 JPEn  FREON\\
afby __ apip (4 L
F; <12 A (Zbi, ay“ = 3y;3y,,)/’
h? dDEN 32x(ﬂr) \
Daﬁay _ / Aaﬂm(ad 6r+2ba a ) 3
TR e T andn
The effective tensors satisfy the following symmetry conditions:
(3.31) Aaﬂdr = Adwaﬁ Dgﬁdv . Dﬁraﬂ’
(3.32) Fprof = Egbor,

To prove it, let us take v = ¢ and v = ¥ in (P2 and v = ¥¥), ¢ = &
in (Pf.). Then we obtain

(3.33) B(FH, BON) 4 o(DOD, ::‘(M))+/ 4B 32)‘ >=0’
(3.39) (T, yON) = _d(EM, 4N,
h? b
(3.35) BB, W) 1o (FW, 0) +{— 4 o =),
@7) S ©Oy) FH)y [ pasoy —
(3.36) e(@ON, FW) +d(y*r, ) +(D ayaay;,>
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Equation (3.33) implies
(3.37) E7 — — p(Fa0), SOV) _ o(POD, S0

On adding Egs. (3.35) and (3.36) and taking into account Eq. (3.30);, one obtains
(3.38)  FPM+b(@OV, W) +e(FM, 101) 4 o(PCN, ZA) +d(y*, M) = 0.
Substituting Eq. (3.34) into Eq. (3.38), we arrive at
(3.39) Fovit — _ p(PON, W) _ o(PON) S

Now we see that Eqs. (3.37) and (3.39) imply the symmetry property (3.32) since the form
b(.,.) is symmetric.
In order to prove the conditions (3.31), let us define new symmetric matrices:

A (6 (@f)
Af:ﬂ"v=<,4~w(aaaﬁ+ i )(a:‘&z+ ik, )),

(3.40) Y Y,
Daﬁﬁy - <Dv91y 5" (56 x(tﬁ’) (5 &B+ 52 1) \
a0y \ 7T y,dy, ay, f

Let us take v = W in the first equation of (PJ,) and v = £ in the second equation
of (Plc.). On combining these equations, one obtains

(3.41) AP — 5 _ (5P FOM) 4 g (WCH PoN),
where

du, dv,\
o JafAu 70
g, v) = \ b”b A 3}7,, (')y; />

which proves the relation (3.31), since the forms g(.,.) and d(.,.) are symmetric.
Similarly it can readily be shown that

(3.42) Dyt — Db _ p(Deh, SON),

which proves the condition (3.31), due to the symmetry of the bilinear form b&(.,.).
The elastic potential of the homogenized shell is given by

(3.43) W, p") = % NP0+ M3Poly),

or

(3.44) WO, 0) = 5 <A™, Byt D>,
where

_ oY (e» DN
3. 0, — fh 1 h ) h
( 45) A ).,u+ ay“ ed'y+ ay 4y

]
_ J2EON %yt Pl 4G PO
3.46 = 0 g o 23— —gh,
( ) Oiu Oiu + ay;‘ ay” dy + a a de +2b ay" 66? ¥ Zbl 3y,, Qsy

and
0" e M,(R), p"eM,R).
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The formula (3.44) can be verified by employing the equations describing the local problems

(Pie)-
By using Eq. (3.44) and the inequalities (2.15) we readily get

= — h? _
(347) Wh > ¢ <ectp Gaﬁ + 1_2' Qap 9aﬁ>,

where ¢ > 0 is a constant. Hence we infer that W* is non-negative. Now we shall prove
that W" = 0 implies 6 = 0 and p* = 0. Let W* = 0. Then 6" = 0 and p = 0, hence (8> = 0,
and {p) = 0. Bearing in mind the periodicity properties of the functions W@ (&, -),
P (E, ), B (&, .) and (&, -) we conclude that {0%> = 0% = 0 and similarly
pts = 0. Thus we eventually infer that there exists a constant C > 0 such that

(3.48) Wh(©", @*) > C(0;06%5+ ok 0ks),
for each
6" e M,(R), p"eM,(R).

By applying the results due to BERNADOU and CIARLET [9], we infer that a solution (a(®, w(®)
of the homogenized problem exists and is unique.
REMARK 3.1

The presented method of constructing the effective model for the &, Y-periodic shell
described in Sect. 3.1 is a generalization of the method by CAILLERIE [11, 12] and KoHN
and VoGELIUS [21, 22] to the case of shells. Note here that the model obtained applies
neither to shells whose periodicity segments @ (g, Y) are of shapes of curvilinear prisms nor
to the case when these segments are slender. To describe the former shells, one should
apply the simultaneous passage to a limit (A — 0, ¢ = 0). For the latter, one should carry
out the process of a reduction of the transverse dimension after homogenization.

4. Homogenization of a nonlinear shallow shell model

Similarly as in Sect. 3 we are to analyse a shell of gY-periodic stiffnesses A,, D, with
respect to curvilinear parametrization (£%). The behaviour of the shell will be analysed
within the framework of the Mushtari-Marguerre shell model. The constitutive relations
are assumed here in accordance with the relations (2.18) and (2.19)

@.n NP = AME, Y)yiu, M = DM(E, )y,  y = Efe.

The deformation measures y* and x° are associated with the displacement fields w’, w*
according to the relationships (2.7), (2.8). As in Sect. 3, we assume that the shell is clamped
along its boundary. The loads (f*f) are assumed to be s-independent.

The variational formulation of the considered boundary value problem reads:

find (u,w*) eV such that

(4.2) (P:{) Jai;(uﬁ, wg; ve’ 'I)l) =f'(vn, 'I)E) V(Vi, i)e) € V:

where

3) i, wi v,0) = [ [INPag(w, v, 0) + M2Pgp(@)]) adk,
Q
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1
4.9 Nup(W, ¥, ©) = U(py—bapv+ 'f(wmvw“wlﬂ%)-

The linear form f{.,.) is defined by Eq. (3.5) while »,(.) by the relationship (2.8).

Sufficient conditions for the existence and independent conditions for the uniqueness
of solutions of the (Py) problem have been put forward in the paper [10] by BERNADOU
and ODEN.

The solution (u®, w*) to the (Py) problem is sought in the form (3.7). Similarly, we
expand the trial functions (v°, 2°). Then we infer that the nonlinear terms in the strain-
displacement relations do not influence the asymptotic process. This process runs similarly
as it has been described in the previous section. Thus we shall not go here into details in
order to avoid repetitions. We shall report below only the main results of the asymptotic
homogenization procedure.

The homogenized problem reads:

find (@, w®)e¥V such that

h
@3 B e, wO, v, 9) = f(v, v) V(v,0) eV,
where
(4.6) ai(u, w;v,v) = f [NZ 10, ¥, 0) + M 2,5(0)] Y adE,
(7]
4.7 Nif = AiP¥(E)h,, M = DiF(8) .

Here the deformation measures y", »" are associated with the displacement fields (u(®, wt°)
according to the relations (2.7) and (2.8). The effective tensors A,, D, are determined

by the auxiliary functions W (£, y), 4*”(&, y). The latter are now solutions of the fol-
lowing independent basic cell problems:

find WO, ) e [HL(Y)? such that

/ aflap y 868 a){/ 0 ] 31)0,\
\A (5: y)laa ap+ ay.u ayﬁ /=

find (&, ) e HE(Y) such that

/ aflp v 95 a x”“’)l 2
(D (e, y)[a St |5, ay,,> 0, VoveH(Y).
The above local problems are similar to the basic cell problems occurring in the theory
of homogenization of von Kdrman plates, cf. [17]. Hence we infer that the problems
(Pf.) possess solutions determined up to an additive constant, now depending additionally
on &

The effective stiffnesses are given by

(4.8)  (Pio)

05 Vve [leer(Y)]za

4.9 (P&

(v4)
(+10) A8 = {aPor(g, y)[avaﬂ e ]\
Wy

afyA _ / afo A \
@1 DiPi()) = (e | ar0ir 55 ).
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It is easy to ascertain that the above formulae can be rearranged to the form (3.40), hence
the symmetry conditions (3.31) are preserved. Moreover, one can prove that the homo-
genized potential

1
(4.12) wh = > (NPyls + MiPols)

possesses the property (3.48).

Let us emphasize that the homogenized relations (4.7) are decoupled, similarly as the
original relations (4.1). Homogenization does not change here the form of the constitutive
relations. We conclude that the geometric von Karman-type nonlinearity does not entail
the coupling of the constitutive relations.

The functions ¥? and *® make it possible to determine higher order terms of the
asymptotic expansions, namely
) = WON(E, Ele) v,
W = g OB, £/e) .

The above formulae are in a certain sense particular cases of Eq. (3.22).

(4.13)

5. Example: homogenized stiffnesses for the Mushtari-Marguerre shell with elastic
characteristics periodic in one coordinate

Consider a Mushtari-Marguerre shell with stiffnesses AX*(&, &/e), DXP*(E, &le)
being ea-periodic in the &! direction with respect to the second variable. Thus

A.=A(Esy1), D::D(Esyl)’ N1 =EI/E’

where A(&, ) and D(&, ) are a-periodic.

We can find now the exact solutions to the local problems (P&.) formulated in Sect.
4. This is a rather simple exercise of homogenization, thus only the final results will be
reported. Let us define the auxiliary functions of the argument £ (to shorten notations this
dependence is suppressed in the expressions below)

o o[ 41212
gl = f — 41112 ﬁ, A = A1 1212 (q1112)2
¥ 0 A1t

“ dy
a P A1212A1122_A1112 2212 1
I A2 =1

0
0= f[A1111A2212_A1112A1122] ‘?1)1 ,
0

d=oay—f2, e=yd8+ap®—2p0p,
C — 2A1112A1122A2212_A1212(A1122)2_Allll(A2212)2'
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The effective membrane stiffnesses are

5 =

1111 _ @Y 1112 _ 41211 —ap
Ah - Ah Ak d >

1122 2211 y0—fo 2212 1222 ap—pé
Ah Ah d 5 h; Ah d s
ao

d b

A3?27 — 1 f[Azzzz+ ]dyl ed

Obviously the stiffnesses 43*** depend on & but this dependence has been suppressed.
Prior to reporting the effective bending stiffnesses, let us define auxiliary quantities:

A1212 A2121 ==

a

dy D1122
D, = Dulu ’ DZZI pliit dy1,
0 0
a
piiiz 1 pliizp22iz
D3=f D1111 dJ’u D4=;f(D2212_' pIiil )dyI’
0 0
1 5 D1112)2
Dy = — f [Duu (Dllll —]dyl,
0
1 < (D1122)2
:?I[Dzzzz_w dy,.
0
The effective bending stiffnesses are
1111 __ @ 1112 _ 1211=& 1122 _ 2211=_D_2_
Dh -— Dl ’ 'Dh| e D’l, D1 H Dh_-, Dll Dl H
D,D (D)
p?212 2443 1212 3
D, + D, * D Ds+ aD,

D,)?
DZ222 D ( 2 i
+ aD,

We recall that the above effective stiffnesses depend on & since the homogenized model
is nonhomogeneous. The above formulae are shorter in the orthotropic case for which
AIIIZ - A1222 — 0 and DllIZ — D2221 = 0

Because of its practical importance, it is worth displaying the corresponding results
explicitly.

The membrane effective stiffnesses are now given by

a a a
1 dy . A1122 dy -1
A = [’Ed AuIiT] , Ayt = (of Al dy, ) Au;l ’
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-1
A}212 = [ f dy ]
41212 >

a a
1 Auu)z 1 Al122 2 dy, !
A3 = f [A2222 T4 dy, + a f AL @ F:I— ’
0
A;}nz o A,?'.lll e 0.

The bending effective stiffnesses are

a

a a
1 dy -1 pii22 dy -1
D,}“‘:[z-fDl—dl] ; Dé‘”=( —pirir W1 fﬁﬁ ’
0 0 0

D}212 — _‘11_ f Dizgy
0

a e =
. (p1122y2 1 ptiz2 2 dy, \7!
D322 — —= f [DZZZZ—W d)’1+—a‘ “pit dyy ¢ pritl ’
o 9 -
D222 — p21it — o,

The difference between the formulae for 4}2'2 and D}?!2 (the other formulae are of iden-
tical form) follows from the fact that the flexural behaviour of the shell is constrained
by the Kirchhoff-Love assumptions. If we start from a shallow shell model with transverse
shear deformations allowed, then the effective stiffness D}2!2 will be defined by the formula

5 -1
5,}212=(i s ) .

a D1212
0

This fact has been recognized in the paper [29] concerning Reissner-like plates.
It is worth noting that the formulae derived in this section are applicable only when
the cell of periodicity is a shallow shell itself.

6. Concluding remarks

The asymptotic method applied in this paper was efficient by virtue of the fact that
we have worked with variational formulations. Working with strong formulations would
be a formidable task because of a great complexity of shell equations,

Let us call attention to the fact that our results are very “sensitive” to the definition
of the changes of the curvature tensor. As it is known from the ample literature on the
theory of shells, there exists a great number of alternative versions of the Kirchhoff-Love
theory which differ in the definition of this deformation measure, cf. [6, 23], see also [25].
For instance, in the model by Korter (1960, cf. [23]) we have

1 3
Qop = Wiap— 5~ Blttp o — bﬂ“ae"‘ bty t bﬁ”@ +bzyp14.
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Homogenization of this model by Koiter will result in quite different effective stiffnesses.
Speaking more precisely, the form e(., .), which couples the variational equations in local
problems, will be different. Moreover, the form b( -, -) will also change. According to the
analysis by KoITer [23], the error of the shell theory is not sensitive to addition or sub-
traction of terms of the type b{,u,;, in the definition of g,;. Our results are, we hope,
correct, at least within the framework of the considered version of the Kirchhoff-Love
shell model. Thus the effective stiffnesses characterize the properties of the shell as well
as they characterize the model of the shell.

This paper does not close the problems but, we hope, opens the field for further research.
For instance, it is a challenging task to examine the effect of coupling of the constitutive
relations (3.28) and (3.29) on the errors induced by the homogenized model of the shell.

The asymptotic method of homogenization is not so readily applicable to more com-
plicated shell models of not necessarily the Kirchhoff-Love type. On the other hand, the
method of I'-convergence, and particularly of epi-convergence [4], is applicable to a broad
class of linear and nonlinear shells, not necessarily elastic or obeying the Kirchhoff-Love

hypothesis, see [40].
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