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Geometrical and dynamical noolocality(*) 

D. ROGULA (WARSZAWA) 

THE PRINCIPAL aim of the paper is to clarify the mathematical nature of nonlocality in physical 
theories and to elucidate the relation between the notions of continua and pseudo-continua. 
The problem of operators of infinite singular order is also explained on the basis of non-classical 
continua. 

Podstawowym celem pracy jest wyjaSnienie sensu matematycznego nielokalnOSci w teoriach 
fizycmych oraz zwi~u mi~ po,Kciami kontinuum i pseudokontinuum. WyjaSniono r6wni~ 
po,Kcie operator6w osobliwych nieskol\czonego ~u na podstawie teorii kontinu6w niekla-
sycmych. · 

0cHOBHOit ~eJU.IO pa6oTbi .JIBIDICTC.JI oupe~eJICHHe MITCMITH'lCCKOrO CMbiCJia HCJJOKB.JD.­
HOCTH B cf»H3SNeCKHX K&K H OTHOWCHHH Me~y KOHTHliYOM H IXCCB~OKOHTHHYOM. Ha 
OCHOBC TeOpBH HCKJJICH11CCKHX KOHTHHYYMOB ~8110 Bbl.JICHCHHC UOH.JITWI OCOObiX OUC• 
paTOpOB 6ccKOHeqnoro I!Op~Ka. 

1. Introduction 

1.1. 

CONSIDER a physical theory based on a fJUldamental equation of the form 

(1.1) Ay=l, 

where y = y(x) and I= l(x) are functions of x e !J, the domain fJ being a certain region 
in (Euclidean) space. The symbol A denotes an operator which can be nonlinear. 

Equation (1.1) can play the role of a governing equation of the theory, or basic consti.;. 
tutive relation. As examples we can consider elasticity with y- displacements,l-: external 
forces, or y - deformations, I...:.... stresses, or electrostatics with y- electric field, I- free 
charge, or y - electric field, I- electric induction. 

1.2. 

In classical theories the operator A is usually local. It means that Eq. (1.1) states no 
direct relation between y(x) andl(x') for x ::1= x'. This colloquial definition of locality can 
be made more precise in the following way. 

Let Ybe the domain of A, i.e. the set offunctionsyfor which Ay is defined in the consid­
ered theory. To make our statement clear, we shall formulate our definition in two steps. 

(*)Paper presented at the EUROMECH 93 Colloquium on Noruocal'Ibeory of Materials, Poland. 
August 28tb-September 2nd, 1977. 
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66 , D. ROGULA 

DEFINITION 1.1. A linear operator A is local if 
(1.2) suppAy c suppy 

for eve!y y E Y. 
DEFINITION 1.2. An arbitrary (nonlinear) operator A is local if Eq. (1.2) is satisfied and 

(1.3) supp[A(y+tp)-A(y)] c supptp 

for every y, tp E Y. 

1.3. 

The need to describe the physical reality in a more adequate way gives rise to various 
modifications of the classical theoriP.s. The modified operators do not necessarily fulfill 
the locality conditions. 

1.4. 

To define an operator A means (i) to define t4e domain Y of A and (ii) to specify the 
action of A in Y. 

Hence, to modify ·an operator A means either (i) to modify the domain Y, or (ii) to 
modify the action of A, or still both. 

This opens two general ways of modifying the classical theories. 
The second of them, which can be called dynamical, consists in modifying the form 

of the operator A without making any substantial changes of the domain. In terms ()f 
material continua it corresponds to a modification of interactions of material particles. 

The first way, the geometrical (or kinematical) one, consists in making a substantial 
modification of the domain. Without changing the physical laws of interaction of particles, 
the set of admissible configurations (or motions) is controlled. 

1.5. 

Although ~he dynamical approach is nowadays most popular, it does not mean .that 
the geometrical one is not interesting. The impression that the physical contents of a theory 
can not be seriously changed by modifying the set of admissible functicns is due to consid­
ering not too significant modifications of Y. nie pseudo-continuum theory [I, 2] fur­
nishes an example of the contrary. Generally, from the atomistic point of view one can 
argue that the set of functions admissible in the classical continuum theory is definitely 
too large. In fact, many unphysical results of this theory are directly due to excessive 
freedom of the classical continuum in forming singularities, vibrations of very high fre­
quency, etc~ Therefore, the idea of forming the domain Yby a substantial restriction of the 
classical resources of functions seems to be promising. 

1.6. 

The Definitions 1.1 and 1.2 express the intuitive idea oflocality of an operator provided 
that Y contains funtions of arbitrarily small compact support, concentrated around an 
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GEOMETRICAL AND DYNAMICAL NONLOCALITY 67 

arbitrary point x e !J. If Y does not contain functions of compact support at all; then,there 
is no difference between local and nonlocal operators, although the conditions (1.2) and (1.3) 
are trivially satisfied. 

Bearing that in mind, we shall introduce the following definitions. 
DEFINITION 1.3. A space Y of functions over a domain [J is called local if for any x E [J 

and for any neighbourhood N such that !J ::::> N 3 x, there exists y E Y which satisfies 

(1.4) x esuppy c N(l>. 

DEFINITION I .4. A theory based on a fundamental equation of the form (I. I) is local if Y 
is a local space and A is a local operator. 

A theory which is not local will be considered to be nonlocal. From Definition 1.4 it 
follows that there are two basic reasons for the nonlocality of a theory: either. nonlocality 
of the space Y or nonlocality of the operator A. These two cases ·will be referred to as 
geometrical and dynamical nonlocality, respectively. 

2. ne spaces y 

2.1. 

To avoid considering too poor or too irregular spaces Y let us make the following 
assumptions. 

Let [J be an open region in a Euclidean space E, ii- its closure. Let CtX) denote the 
space of functions onE which have continuous derivatives of arbitrary ·order. In the case 
of [J with a boundary, by CtX) we shall understand the space of restrictions of these functions 
from E to D. If it is necessary to indicate. the region, we shall write explicitly C«J (D) or 
C00 (E). The same applies to other function spaces, such as Cg> which consists of.infinitely 
differentiable functions of compact support, or er which is composed of bounded coo .. 
functions. 

2.2. 

The spaces Y will be considered as configuration spaces of certain physical systeln.s, 
although other interpretations are al~o possible. In this paper we shall not profit much 
from the conceptual difference between a physical system and its configuration space. 
Thus we shall treat the corresponding expressions as synonyms. 

2.3. 

The spaces Y will be assumed to be linear, and endowed with an appropriate topology 
when necessary. 

DEFINITION 2.1. A system is called classical continuum if! 
(2.1) C0 c Y. 

(1) The concept of local space introduced here differs from that given by HolU.fANDEll [3]. 
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68 D. RooULA 

A classical continuum is always geometrically local. 
DEFiNITION 2.2. A. system is called non-classical continuum if ( i) there exists a function 

rp e C~ which does not bel~ng to Y, and (ii) Y contains all the functions of the form 

(2.2) elb · rp(x) 

(or their real counterparts) with arbitrary real k and rp(x) e Y. 
As to geometrical locality or nonlocality, both occur in non-classical continua. 
DEFINITION 2.3. A. system is called pseudo-continuum if there exists a compact set D 

in the k-space such that for any y e Y 

(2.3) suppy c D, 

where y denotes the Fourier transform of y (or, more generally, of a certain extension of y 
from D to E). 

Pseudo-continua are always nonlocal. 

We shall not be interested in functions which grow up very fast when lxl -+ oo. We 
shall consider (i) functions of tempered growth, i.e. such that there exist C and N {dependent 
on ffJ and p,) satisfy4lg the inequality 

(2.4) IO"rp(x)l ~ C(l + lxiH), 

(ii) functions which are bounded together with all their derivatives, 

(2.5) IO"rp(x)l ~ const, 

where the constant can depend on p,, and (iii) functions of fast decrease, i.e. such that for 
any p, and N there exists C satisfying the inequality 

(2.6) lo"rp(x)l ~ C(l + lxi-H). 

3. Construction of non-classical continua 

3.1. 

In this section we shall describe a spectrum of non-classical continua. In order to 
concentrate our attention on the basic facts, we shall avoid discussing multidimensional 
cases, restricting ourselves to one-dimensional E. The q-th order derivative of tp will be 
denoted by rp<t>. 

3.2. 

Let us start from the following observation. Let {b,} be an arbitrary positive sequence, 

(3.1) b,>O for q=O,l, ... , 

and x- an arbitrary point in E. We shall say that a function tp e C«> is majorized at x 
by the sequence {b,} if there exists a constant C such that 

(3.2) lrp<f>(x)l ~ Cb, 
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for any q ~ 0. With this definition one can assert that for any {b,} there exists a function 
f e Cf which is not majorized by .{b,}. A proof of this assertion can be given by constructing 
such a function [5]. 

Informally 4ipeaking the sequence of consecutive derivatives of an infinitely differen­
tiable function ( c: and, a fortiori, C 00

) can grow up arbitrarily fast. 

3.3. 

The above observation suggests the idea of constructing non-classical . continua by 
making use of the inequalities (3.2) with appropriate classes of sequences {b11}. In general, 
the constant C in the inequalities (3.2) can be dependent on x. This depednence, although 
insignificant on compact ii's, can be made use of for defining the behaviour of admissible 
functions at infinity. 

We shall be interested in functions which grow up not faster than polynomials when 
lxl-+ oo. 

Which sequences {h,} are interesting from the point of view of constructing non-classical 
continua? 

Let us consider first the {b,}'s which grow up more slowly than any power sequence, 
i.e. for any B > 0 there eXists C such that 

(3.3) B ~ CB'. 

Then f is an entire analytic function such that for any z and B 

(3.4) lf(x+z)l ~ CeiBt•, 

which means that it is either of the fractional order of growth or of the minimal exponential 
_type [6]. In both cases it follows that all the f'S which are not polynomials have to grow 
up faster than any polynomial when x -+ oo or x -+ - oo (i.e. at least in one real direc­
tion). 

Therefore we shall restrict ourselves to sequence.s {b11 } which grow up like power se­
quences or faster. Any such sequence can be represented in the form 

(3.5) 

where d1 is a non-decreasing sequence. 

3.5. 

Consider the sequences which satisfy the inequality (3.3) with a finite B. Then, from 
the inequality (3.4) it follows that f is an entire analytic function of a finite expcn(ntial 
type [6]. There exist functions of this type and of moderate growth for lxl-+ oo. By the 
Paley-Wiener-Schwartz theorem any such function has the Fourier transform of compact 
support [3]. 

Hence sequences {b,} satisfying the inequality (3.3) with a finite B define pseudo­
continua in the sense of the Definition 2.3. 
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3.6. 

Consider now the sequences {b1} of faster growth, i.e. of the form (3.5) with increasing d1, 

(3.6) limsupd1 = oo. 

Let 

(3.7) 

where 

(3.8) 

is the Taylor expansion of q; at a certain fixed point x. According to basic theorems on 
analytic functions, the radius of convergence of this series equals 

(3.9) R = liminfl~l- 1''· 
If R = oo, q; is an entire analytic function of the order given by 

(3.10) e = limsup qlnq . 
1 

In lc,l 
Appropriate calculations show that if .q; satisfies the inequality (3.2) ·then. 

(3.1'1) In ~ .;; I +limsup ( ~ lnb,-lnq), 

(3 12) 
1 

1 
.
1
. lnb1 . e~ -tmsupqlnq' 

By substituting Eq. (3.5) into the inequality (3.12) we obtain 

(3.13) In ! .;; I+B+Iimsup ( ~ lnd1 -lnq). 

(3.14) 
1 

1
. lnd1 -. ~ 1- tmsup--. e qlnq 

These formulae suggest the following choice of {d,}'s: 

(3.15) lnd, = {J 
qlnq 

which gives 

(3.16) d, = qflf. 

In order to obtain increasing sequences {d1 }, we must assume {J > 0. 

3.7. 

Now we can .define the following family of function spaces. 
DBFINm:ON 3.1. The space Qfl;B(E) consists ofa/1 the C00-functions of moderate growih 

such that 
. (3.17) 

for a certain C = C(x) of moderate growth and any ii > B (i.e. A 1i V CA q). 
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Extending the above definition by admitting fJ = 0 allows us to include also quasi­
continuum spaces Q0

•
8

• 

By substituting into Definition 3.1- phrases like "of bounded derivatives" ar ·"of fast 
decrease" in place of the phrase "of moderate growth", one can obtain valid definitions 
for the coresponding spaces with different behaviour of the functions at infinity. 

DEFINITION 3.2. The space (!(E) is the union of all spaces QP·B(E). 
DEFINITION 3.3. The spaces (!(li) and (!·B(ti) ar~ composed of corresponding restrictions 

of functions from (!(E) and (!· 8 (E), respectively. 
The spaces Q'1·8 and Q" will be briefly referred to as Q~spaces. 

4. Basic properties of Q-spaces 

4.1. 

If either {J' < fJ or {J' = fJ and B' < B, then the following inclusion 

(4.1) Q"',B' C QP,B 

holds and is proper. It follows from the fact that the space Q"·B·contains se:~, where SC:~ 
are the spaces [4] of C00-functions satisfying the inequalities 

( 4.2) lxiqJ<4>(x)l ~ CqPt}ji.Jt'" A" 
for a certain C and any B > B, A> ..:4.. The parameters« and A. m the relation (4.1) sat­
isfy ex ~ 0, A > 0, and otherwise are arbitrary. As the spaces SC:~ with ri.+ fJ ·> 1 are 
non-empty, so are all the spaces {!· 8

• 

This conclusion can be strengthened a little by taking into account the fact that se:~ 
contain only functions of fast decrease. 

4.2. 

By putting Eq. (3.16) into Eqs. (3.13) and (3.14) one obtains 

R = 0 for fJ > 1 , 

(4.3) 
1 

for fJ = 1' R~-
eB 

R=oo for fJ < 1 
and 

(4.4) 1 
(!~ 1-{J. 

Hence: 
if fJ > 1, then Q"·8 

- (unctions are not analytic; 
if fJ = 1, then (!·s- functions are either analytic with a finite radius of converg­

ence satisfying Eq. (4.3)2 , or entire analytic functions of infinite order; 
if fJ < 1, then (!· 8

- functions are entire analytic of finite order given by Eq. (4.4). 
When {J. varies from 1 to 0, the order (! varies from oo to 1. 

http://rcin.org.pl



72 D. RooULA 

Since the functions -belonging to (il·• with fJ ~ 1 are analytic (at least of a finitt; radius 
at any x), these spaces do not contain functions of compact support and, in consequence, 
are not local. 

4.4. 

Making use of the fact that sg;! consists of functions which vanish identically for lxl >A. 
[4], and taking ex = 0, fJ > 1 in Eq. (4.1), one concludes that for p > 1 any Qfl·• contains 
C(f -functions of arbitrarily small supports. Hence, according to Definition 1.1, the spaces 
(tl·• with fJ > 1 are local. 

5. Basic operatioJB in Q-spaces 

S.l. 

The spaces (!· 8 are linear. 

Consider the following rp -. 'P operations: 
(i) translation by arbitrary real a 

(5.1) VJ(x) = rp(x-a), 

(ii) differentiation 

(5.2) 'l'(x) = rp'(x). 

PlloPOSmON 5.1. The operations of translation and differentiation are 

(5.3) r:t·· ... r:t·· 
(i.e. defined on (!·• and having values in (!·") for all {J, B. 

P r o o f. For translation evident, for differentiation given in the Appendix. 

5.3. 

A function I is called multiplier in Q!·8 if the multiplication operation 

~~ rp-th 

is the relation (5.3). 
PlloPOSmON 5.2. Let P' < {J and 

(5.5) le (!'•8 

with an arbitrary B'. Then 1 is a multiplier in (j1·8 • 

PRoPOSITION 5.3. Let the relation (5.5) hold. Then the multiplication operation (5.4) is 

(5~6) (t'•B _. Q!'•B+B' 
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The proofs are given in the Appendi~. 
CoROLLARY 5.1. Polynomials are multipliers in all spaces Qf1·•. 
CoROLLARY 5.2. The function$ exp(ikx) with arbitrary real k are multipliers in any space 

QfJ,B with p > 0. 
P r o of. Follows from Prq>t siti< n 5.2 since the functions exp(ikx) belong to Q0 ·1:. 

It follows from this Corollary that all the spaces QIJ·• with {J > 0 are non-classical con­
tinua. 

5.4. 

Consider a scale transformation operation defined by the equation 

(5.7) 1p(x) = q{lx), A > 0. 

PROPOSITION 5.4. The scale transformation operation ( 5. 7) is 

(5.8) QP·· -+ ~·UJ. 

CoROLLARY 5.3. The scale transformation operation ( 5. 7) is 

(5.9) QfJ-+ (JP. 
Hence the spaces (JP are invariant with respect to the scale transformations, while QP·• 
are not. 

6. Concluding remarks 

A brief summary of Q-spaces and the corresponding terminology is given in Table 1. 
The last column indicates another interesting property of non-classical continua: while 
every differential operator in a classical continuum has to be of finite. order, non-classical 
continua admit linear differential operators of infinite order. These conclusions follow 
from the following simple considerations. 

Tablet 

Q-spaces P=O 

classical I non-classical 

terminology local I nonlocal 

continuum I~ continuum 

functions restricted entire 
finite 

C«:~ analytic exponential 
admitted C«> analytic type 

linear finite infinite 
differential order order - - -
operators 
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Let 
00 

(6.1) f(iJ) = ~ JqiJil 

be a formal differential operator of (possibly) infinite order. Then the action of Eq. (6.1) 
on a cao -function should be given by 

00 

(6.2) f(iJ)q; = ~ Jqq;<ll>. 

According to the observation formulated in the Subsection 3.2, for any {it} there exists 
q; e C(f such that Eq. (6.2) is divergent, except the case of 

(6.3) /q = 0 for every q > q0 • 

On the other hand, all q;'s belonging to a non-classical Q-space satisfy Eq. (3.17). In 
consequence, for any Q-space there exist infinite {ft}'s which make Eq. (6.2) convergent. 

All admissible differential operators are local, and this locality is essential in local 
spaces. In nonlocal spaces every linear operator can be equivalently expressedjn a differen­
tial form of order ~ oo. 

Beside.s the main aim, i.e. to understand . better the ~athematical nature of nonloca­
lity; the results presented here elucidate the relation between continuum and pseudo­
-continuum [l]. They also allow for a deeper insight into operators of infinite singular 
order [7], by interpreting them in ternis of non-classical continua. 

Appendix 
t. · Tbe · pro~f of~5.1 

Let. q; e (/·8 and y be given by the relation (5.2). Then for any e > 0 

jop(llj ..,; C(q + I f<l+l>(B+ e)l+l = C' <f'(B + e)1(q + r)P (I+ ~ r <; C" q/''(B + 2£)1 , 

where 

2. Tbe pro of s of Proposltloas 5.2 ..W.3 

Let q; e (/•8 , fe (/'•8
'. Then for any e, e' > 0 

q q 

liftp)<~>j.,; _2 ~) IJ<"II<f._.'l<; CC' 2 (:)t·•(q-pfi<-P>(B' +e')"(B+e)._, 
,.o ,.o 

q q 

..,; CC' 2 (:) qft''(q-pf<<-P> (B' +e')"(B+e)l-•.::; CC' 2 t) qP•qlfl'-.Plr 
,.o p-0 

x (B' +e')"(B + e)l-l ..,; CC'q"' t (:) [(B' + e')qP'-"J'(.B+ a)'-' 
p•O 

= CC'q111 [(B' +e')q"'-11+B+e]'. 
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Now, if {J' < {J, then 

where 

[ 
B'+e' ]q 

C" = CC'sup 1 + B+e qfl'-fJ , 

which proves Proposition 5.2. 
If {J = {J', then 

l(fcp)<q>j ~ CC'qflq[B+B'+e+e'], 

which proves Proposition 5.3. 
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