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Localization problem of nonlocal continuum theories(*) 

K. WILMANSKI (WARSZAWA) 

THE AIM of the paper is to explore the primary physical consequences of the biadditivity and 
continuity assumptions in the nonlocal continuwn theory. We investigate the functions appear­
ing in the scalar balance equation. It is shown that the usual continuity assumption is not suffi­
cient for the flux to be separable into surface and volume parts. On the other hand we prove 
that both continuity and biadditivity constitute the sufficient conditions of uniqueness of such 
a decomposition. Finally we show the counterpart of the classical Cauchy's theorem for the 
surface tlux: in the nonlocal continuum. 

Celem pracy jest zbadanie pierwotnych konsekwencji fizycznych, wynikaj~cych z zaloZenia 
biaddytywno§ci i ciuto§ci nielokalnej teorii o5rodka ciuleao. Badamy funkcje pojawiaj~ce sitt 
w skalarnym r6wnaniu bilansu. Wykazuje sice, 2:e zwylde zato~nie ciuloSci nie wystarcza do 
podzialu strumienia na CZf(SC powierzchnio~ i objceto§cio~. Z drugiej strony dowodzi sit(, 
2:e biaddytywnosc i ciulosc stanowi~ warunki wystarczajllCC dla jednoznacznoSci tego podzialu. 
Wreszcie wykazujemy dla nielokalnego osrodka ciulego odpowiednik klasycznego twierdzenia 
Cauchy'ego dla strumienia powierzchniowego. 

Ue.JIIdO pa6cm.I .RBJVIeTCJI HCCJie,ttosamle nepsiNHbiX cPif3HqeCKHX nOCJie,ttcrsuit Bbl'l'eiWO­
una H3 IIJ>e.tmOJIO>KeHWI 0 6~HOcrH H HeupephiBHOcrH B HeJIOIWuaHOit TeOpHH 
CI1JIOWHOH cpe~. HCCJie.QYIOTCJI cP~ BXO~e B CKaJVIpHoe ypasaeHHe 68JI8Hca. 
,IloK83hiBae'J'C11, ttTO o6bl'IHble npe;:mono>KeHWI aenpephiBHOCTH ile,ttocraToliHhl A:JV1 pas,a;e­
JieHWI noTOKa Ha nosepmOCTHyiO H o6DeMByiO 'lacrH. C ,ttpyroit cropom.I ,ttOKaShiB&eTCR, ttTO 
6~HOCT& H HeupepbmHOCT& JIBJUIIOTCJI ,ttOCTaT011HbiMH YCJIOBWIMH A:Jijl OA:H03HaliHOC'fH 
3Toro pas,a;ene~~m~. H&KoHeQ, A:1VI aenoKam.Ho:H: CIIJionmoit cpe~ .l{OK83hiB&eTCJI aH&Jior 
KJiaccHtlecKoi TeOpeMbi KoWH A1IJ1 nosepmocrHoro noToKa. 

1. Preliminary remarks 

IN THE CONSTRUCTION of a continuous model of physical systems we may proceed in at 
least two ways: 

i) We may adopt the viewpoint of classical mechanics and assume that the material 
point is the primitive concept of the theory; in such a case we assume simultaneously the 
existence of such fields as the mass density, momentum density, specific internal ener­
gy etc. Moreover, assuming a so-called principle of local action we are able to determine 
such quantities as the momentum and internal energy of any collection of material points, 
possessing the non-zero volume measure, by performing spatial integration of the appro­
priate fields. If the spatially nonlocal interactions are taken into account, the above men­
tioned quantities will not be well-defined. Hence, this approach does not lead, in general, 
to the well-defined notion of a subbody. It is a serious disadvantage of the method be­
cause it cannot describe any measurements in the system. In the continuous model, meas-

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials. Poland, 
August 28tb-September 2nd, 1977. 
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uring certain quantities which characterize Jhe body means the creation of a sum of the 
body and a system which is assumed to be a measuring device; however this operation 
cannot be defined within the framework of the presented modei. 

On the . other hand; the model possesses the advantage of being described by the point 
functions, what makes possible at least formally, the effective solutions of the boundary 
value problems. 

ii) We may construct the continuous model basing on the notion of a subbody. This 
approach leads to such notions as the mass, momentum and internal energy of an arbitrary 
subbody and it clearly states the continuity assumptions. The notion of a material point 
in such a theory is not, in general, well-defined. If we assume again the principle of local 
action, both approaches become identical. 

The main advantage of the model described above is the possibility of measuring the 
characteristic quantities through the utilization of systems considered ~o be measuring 
devices. At the same time this model seems to reflect all features usually connected with 
the continuum theories. 

However, in the general case of spatially nonlocal interactions, the set functions descri­
bing the model cannot be represented by the point functions, which define the fields simi­
lar to these, of the first approach. The question of the existence of such representations is 
called the localization problem. It is of extreme importance for the effectiveness of this 
approach. There seems to be no other way of posing, for instance, the boundary value 
problems. 

The first type of models was extensively treated by D.G.B. EDELEN [1976] where 
other references can be found. The second type of models was proposed by M. E. GURTIN 

and W. 0. WILLIAMS [1967] who solved the simplest problem of localization. A review 
of papers on this subject can be found, for example, in my monograph [1974]. 

In the present work we deal with the continuous model of the second type. The main 
aim of the paper is to show systematically the transition form the general model to certain 
localizable problems. We present the procedure in the case of the scalar balance equation 
but it can be easily generalized to other cases. As we see further, the main cause of difficul­
ties is the presence of nonlocal interactions. Hence we should first give reasons for the 
necessity of their appearance. It seems to ~e that we can distinguish two physical type$ 
of nonlocalities in the configuration space. Tile first one is connected with the internal 
structure of the material, the dimensions of the sample (size effects) etc. Such nonlocalities 
depend weakly on the rate of the process which takes place in the materiaL The second 
type depends strongly on the rate of the process and the intensity of interactions increases 
with this rate. Thermal internal radiation is an exampie of such a nonlocality. 

Roughly speaking, the non-locality is the price we pay for fields participating in the 
process but neglected in the formal model. The simplest theory where such an effect can 
be observed is the thermomechanics of materials applied to describe shock waves of a very 
high amplitude. Such waves yield very often local ionization of the medium and, conse­
quently, generation of secondary electromagnetic waves. The latter can be accounted for 
either by the coupled .thermomechanical-electromagnetic field model or, approximately, 
by a spatially nonlocal purely thermomechanical model. The nonlocality of the latter 
follows from electrostrictive effe,cts advancing in the configuration space all thermomechan-
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LocALIZATION PROBLEMS OF NONLOCAL CONTINUUM TIIEORIES 7fJ 

ical impulses. It is schematicaiiy shown in Fig. 1. The initial source (i) generates a thertno­
mechanical shock wave (tmw) ofthe amplitude high enough to ionize the medium in the 
vicinity of the front (shw). Then the front (shw) becomes a coiiection of secondary sources (s) 
of electromagnetic waves (emw), changing the temperature_ and the deformation of the 
medium at points X in front of the shock wave. The last phenomenon is due to the electro--

tmw \. . emw X 

----)hw~® 

FIG. 1. 

striction of the material. In the local thermomechanical theory such phenomena are for­
bidden. The natural method of extension of this theory is to introduce nonlocal thermo­
mechanical interactions. It is obvious that in the case of known fields carrying "nonlocal'" 
impulses, it is better to use a proper coupled theory rather than to introduce spatial non­
localities. We have such a case in the example presented above. However, many physical 
phenomena cannot be explained by the coupling of contemporarily known fields either 
due to the complexity of coupled theories or due to the fact that this is different from· all 
known couplings. We face such a problem, for instance, in the elementary particle theory 
of quark interactions. 

Similar difficulties were predicted by statistical theories where the high deviation from 
thermodynamic equilibrium yields an increment of the number of independent variables. 
describing the state of the system. It means that the process in such a system is usuaily 
not a curve in the phase space of fixed dimension. 

The nonlocal theories seem to solve the problem of the existence of impulse carriers,. 
different from those allowed in the considered theory and changing with the . deviation 
from the equilibrium. This approach fits well in the pattern of phenomenological theories 
and, at least i11 the case of thermodynamic theories of materials seems to reflect the ex­
perimental evidence with sufficient accuracy. We return to the latter problem in more­
specialized papers. 

2. Scalar balance equation 

We limit our considerations to systems which are collections of points of the bounded 
subset of the three-dimensional Euclidean space E3

• The geometry of such a system is. 
characterized by the structure of subsystems. We assume this structure to be similar to 
that introduced by M. E. GURTIN and W. 0. WILLIAMS [1967]. Namely, we consider the: 
structure, a Boo lean algebra B, to be described by the following relations: 
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(2.1) 3 V </IV~ - =~' 3 V V A~=~' 
~~ a'eB 9'eB 9'eB 

V 3 91• :=V-~, 
a'eB 9'•eB 

K. WILMANsKI 

where int and n are the interior and closure, respectively, relative to the topology of E 3• 

The members of Bare regular subsets of E 3, i.e. they are closures of their interiors and 
their boundaries are finite unions of C2 - manifolds of the dimension 2 or less. For any 
boundary o~1 of 911 e B, we assume that there is a sequence {.sa11}r'::1 such that 

(2.2) 

where int and (.)are the interior and closure in the topology of a~ 1. Each J of the form 
(2.2) is called a material surface. We assume it to have orientation of the exterior n~rmal 
to ~1 , i.e. 

(2.3) orientation (int(o9'1n912) = -orientation (int(o9'2n91)). 

We say that two subsystems 9'1 and ·91'2 are non-overlapping if 

(2.4) 

We use the following notation: 

(2.5) sepB x B := {(&'1, 912) e B x 81911 A9'2 = q, }. 
We assume the existence of the following-functions: 

E( · ; t):B-+ R, 
(.2.5') 

Q( ·, ·; t): sep B x B -+ R 

:Satisfying the balance equation 

(2.6) 
. d 

E(9'; t) := dtE(~; t). 

Simultaneously, we assume the existence of a time derivative of the function E(&'; ·) 
for all instances in the considered interval. The function Q( ·, ·; t) is called a flux for the 
state function E( ·; t). Further, we do not consider the evolution properties and therefore 
the time is the parameter. To simplify the printing we drop this argument with the under­
standing that all considered properties are the same for any instant of ti,me. 

In addition to the above assumptions, we require some continuity conditions to be 
fulfilled. We introduce these requirements in the sequel of the paper as the needs arise. 
We start with the continuity assumption for the flux. 

Let v be the complete Lebesgue volume measure in E 3 and s be the complete Lebesgue 
surface measure on the two-dimensional manifolds in .E 3

• Then 
AXIOM: 

(2.7) ·3 V IQ(911,912)1 ~ a.v(9'1)v(9'2)+Ps(o911n9'2), v(V) < +oo. 
a.,fl>O (9't,8'2)eaePBX 8 

We assume a., p to be the least Lipschitz constants • 
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The above axiom yields a decomposition of the flux into the surface and volume parts, 
but it is not sufficient for the existence of Lebesgue-Radon-Nikodym derivatives of Q( ·, ·) 
with respect to v and s. The existence of such derivatives requires an assumption on the 
biadditivity of fluxes. We do not make this assumption for the reasons explained in my 
paper [1977]. Certain aspects of this problem are presented below in Sect. 3. 

3. ~urface and volume ftuxes 

Let us consider two non-overlapping subsystems 9 1 and 9 2 such that o~ r.9 2 :F q,. 
We introduce the descending family of subsystems {.511}?: 1 endowed with the following 
properties: 

i) V Jt,-< 92, 
I 

(3.1) ii) v o91r.9, = o91r.Jt, 
i 

CO 

iii) nd, = o91r.92. 
i•l 

The suriace o9 1 r.9 2 is material and, according to its definition, such a family can be cho­
sen from the algebra B. 

As we have pointed out in the paper [1977], there are at least two decompositions of 
the flux which follow from the Lipschitz continuity assumption. Assuming the existence 
of the following limits, 

limQ(91, .511), 

(3.2) 
1-+co 

limQ(91, 92-Jt,), 
i-+CO 

we can define the surface flux from the subsystem 9 2 to the subsystem 9 1 as 

(3.3) Q,(91, 9 2) := limQ(91 , Jt,) 
i-+CO 

or 

(3.4) Q,(91, 9 2) := Q(91, 9 2)-JimQ(91 , 9 2 -Jt,). 
i-+CO 

These definitions are not equivalent for non-additive fluxes Q(9 1 , • ). It has been shown 
on the simple counter-example in the paper [1977]. The problem is even more difficult 
when one of the limits (3.2) ceases to exist. If neither of them exists, there seems to be 
no way of defining the surface and volume parts of the fiux. 

It should be pointed out that the assumption on the existence of the limits (3.2) has not 
been explicitely made in the paper [1977]. This assumption is not required in the case of 
biadditive fiuxes because the Lipschitz continuity and biadditivity are sufficient for the 
existence of these limits. Namely, 

V Q(91 , Jt,)-Q(9t, Jt,) = -Q(91 , Jt,-JtJ)· 
111.111) 

)>i 

6 Arch. Mcch. Stos. nr 1179 
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On the other hand 

.91,-.91Jn&'1 = t/> 

and, according to the continuity assumption (2.7), we have 

IQ(&' I, .91,-.911)1 ~ a:v(&'1)v(.911-.911). 

Hence 

V 3j, i > N => IQ(&'1-, .911)-Q(&'t, .91,)1 < e. 
s>ON 

K. WILMANsKI 

According to the Bolzano-Cauchy's theorem, the sequence {Q(91, .911)}?:: 1 is convergent. 
Simultaneously 

Q(&'1, &'z -.91;) = Q(&'t, &'2)-Q(&'1, .9/i). 

It means that the sequence {Q(&'1, &'2 -d1)}r; 1 is also convergent. 
However, the Lipschitz continuity assumption (2.7) without the biadditivity of the 

flux does not suffice for the existence of the limits (3.2) (1). 
Let us consider three possible cases which lead to the decomposition of the non-additive 

flux. Our goal is to find .such functions Q5(&' 1 , • ) and Qu(&' 1, · ) that 

(3.5) 

and 

(3.6) 

As we have mentioned, the decomposition (3.5) is unique if the function Q(91 , • ) 

is additive. We do not make this assumption, i.e. 

(3.7) ,, 
We proceed now to the consideration of the case in which both limits (3.2) exist. Then, 

the decomposition (3.5) and the continuity assumption (3.6) yidd at once the following: 
LEMMA. If the surface flux Qs(&' 1, ·) and the volume flux Qu(&' 1 , ·) satisfying the con­

ditions (3.5) exist, then 

limQ(&'l.., .9/;) = limQs(&'1 , .91,), 

(3.8) 
1-+,CIJ i-+CIJ 

limQ(&'t, &'z-.91,) = limQu(&'1, &'z-.91,). 
l-+CIJ i-+CIJ 

P r o o f. The former relation follows from the completeness of the volume measure 

(3.9) lim v(.911) = 0, 
i-+00 

(1) The author is very grateful to W. 0. WILLIAMS for pointing out this inadvertence of the paper 
[1977]. 
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while the latter is an obvious consequenc~_ of the following relation 

(3.10) 

which holds for any two disjoint subsystems fJJ 1, fJJ 2- .91; • 

Let us consider the non-additivity of Q(91 , • ). According to the relation (3.10), 
we have 

Q(91, 92)~Q(&'l, .91;)-Q(&'l,-92-dt} = Qs(91,,&2) 

+Q.,(&l, 92)-Q.(91, d,)-Q.,(91, d,)-Q.,(91, 92-.91,). 

Shrinking down the family {d;}r;. 1 to the surface o91n92 , we arrive at 

(3.11) lim{Q(9t, f/J2)-Q(9t, .91,}-Q(9t, 92-d,}} 
i-+00 

= {Qs(9-t, 92)-limQ(9t, d,}}+ {Q.,(&t, 92)-limQ(9t, &2=.saf,)}. 
~00 ~00 

Obviously, the biadditivity assumption together with the formula (3.11) leads to the 
following relations: 

Qs(&1, &2) = limQ(91, d 1}, 

(3.12) 
i-+00 

Q.,(9t, 92) = limQ(91 , 92-d,). 
i-+00 

However, in the general case neither of the relations (3.12) holds. Without contradicting 
the formula (3.11), we can choose the decomposition (3.5) in such a way that one of the 
relations (3.12) will be satisfied. Let us discuss both possibilities. First, let us assume that 

(3.13) Q.(9t, &'2) := limQ(9t,.~,). 
i-+00 

FIG. 2. 

Then, for any two subsystems 9 2, 9 3 such that (Fig. 2) 

(3.14) o91n92 = o9tn93 and 9tA92 = 9tA 93 = t/J 

we have 
LEMMA 

(3.15) 

Proof. The family {.911n93 }~ 1 satisfies the same conditions as {d1}t;1. On the 
other hand, as we have proved in [1977], the definition (3.13) does not depend on the choice 
of {.saf1}t;1 satisfying Eq. (3.1). Hence 

Q.(91J fJJ3) := limQ(&1, d,n93) = Q.(&'h 9 2}• 
l-+00 

6* 
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84 K. wn.M.ANsx.1 

It means that the definition (3.13) yields the independence of the surface flux Q,( ·, · ) 
on the interaction of 9' 1 -with 9' 2 - o@ 1 • It describes solely the surface properties of the 
flux Q( 9' 1, · ), as predicted by physical intuition. Unfortunately, it does not mean that 
Q,( ·, · ) is local or even biadditive. It still contains the interactions among points on the 
surface and, in general, is not balanced 

3 Q,(9'v a'2) :1: -Q,(9'2, &'1). 
(a't,a'2)esepB x B 

According to the formula (3.11) and the definition (3.13), we have for non-additive 
ftuxes 

(3.16) 

The decomposition based on the definition (3.13) satisfies the continuity condition which 
is described by the following: 

THEoREM 

(3.17) 
3 V IQ.,(9'1, 9'z)l ~ <ifJ(9't)f1(9'z), 

; .. a& (.f'lta'z)&aoplx I 

where a:, Pare the least Lipschitz constants for Q( ·, ·)(see the formula (2.7)) and li is the 
least Lipschitz constant for Q.,( ·, · ). 

Proof. The former inequality follows at once from the definition (3.13) and the 
continuity of Q( ·, • ) : 

IimiQ(9'1J d,)l ~ lim{a:f1(a'1)f1(d,)+Ps(oa'tf"'d,)} = Ps(o9'tf"'9'2) 
, ... 00 1-+00 

with respect to the completeness of the Lebesgue volume measure fJ. 

The latter inequality is obvious in the case of two subsystems such that 

s(o9'11"'19'z) = 0. 

In such a case, according to the relation (3.10) and the continuity of Q( ·, · ), we have 

IQ.,(a't' 9'2)1 ~ 1Xf1(9't)f1(9'z). 

Let us consider the descending family of the subsystems {.911}?:, 1 such that 

V oa'1 f"'d1 = o9'1f"'d1 and limfl(d1) = 0. 
1,} i-+00 

Then 

and 

limQ.,(a'1 , .91,) = lim[Q(9't, .JI,)-Q,(9't, .91,)] = 0, 
l ... oo l ... oo 

according to the definition (3.13). 
Hence 

limfl(.s/1) = 0 ~ limQ.,(9'h .s/1) = 0. 
, ... 00 1-+00 
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It means 

It remains to prove that « ~ ex. With respect to the assumption that ex, p are the least 
Lipschitz constants for Q( ·, · ), we have 

3 V IQ(!11, a'2)l+e > exv(a't)v(9'2)+Ps(of1tr.9'2)· 
(a'.,!JI'2)EsepBxB t>O 

Simultaneously 

IQ(&'t, &'2)l ~ 1Qs(9t, &'2)l + IQ,(91, &'2)l ~ Ps(o9tr.&'2)+&v(9'1)v{9'2)· 

Hence 

V exv(91)v(9 2) + ps( o&' 1 n9 2) < &v(&' 1)v(&' 2) + Ps( ofJ' 1 n&' 2) + e' 
e>O 

and finally 
ex~ a.. 

Now, let us consider the second possibility of the decomposition under the assumption 
on the existence of both limits (3.2) 

(3.18) Q.,(9'1, 9 2) := limQ(&'1, 9'2-d,). 
i-+00 

For any two subsystems fJ' 2, &' 3 such that 

we have 
LEMMA 

(3.19) 

v(926,.93) and 91 A&'2 = 91 A93 = cf>, 

Proof. It is easy to see that we can always choose the family {d1}~ 1 in such a way 
that 

v(9'2-d16,.93-d1) = 0. 

For such a family, the lemma follows from the definition (3.18)8 

It means that the definition (3.18) yields the independence of the volume flux Q,( ·, · ) 
on the surface interaction of 9 1 and 9 2, i.e. the change of the surface o91 r.9 2 does 
not have any bearing on Q,( ·, · ) if it yields only the change of the surface measure of 
the contact surface. 

Making use of the formula (3.11), we see that in general 

(3.20) 3 Q.,(91, 9 2): = Q(91, 9 2)-Q.,(£1'1 , 9 2) =#= lim Q.(91 , sat,}. 
!JI'2eB 1-+oo 

The considered decomposition satisfies the continuity condition described by the 
following: 

THEOREM 

V IQ,(9t, 92)1 ~ exv(&'t)v(92), 
(!JI'~o!JI'2)esepBx B 

(3.21) 
3 v IQ,(&'l, 92)1 ~ ps(ofJ'lr.92), 

tr~fJ !JI'(1o!JI'2)esepBx B 
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where ex, {J are again the least Lipschitz constant for Q( · , · ) and P is the least Lipschitz 
constant for ~( · , · ). 

Proof. The former inequalityfollowsatoneefrom the definition and the relation (3.10). 
The latter requires an assumption on the completness of the Lebesgue surface measure. 

Then the proof is similar to that of Theorem (3.17)• 
The second case in which we can define the surface and volume fluxes is based on the 

assumption of the existence of the limit 

(3.22) 'Qs(91 , 92) := limQ(91, d 1). 
i-+00 

Investigating the first possibility considered above, we see that in our proofs we have 
not made use of the assumption on the existence of the limit of {Q(91 , 9 2 -di)}. Hence 
the definition (3.22) yields the same consequences and, most of all, the lemma (3.15) 
and Theorem (3.17) hold. 

On the other hand, the third case in which we assume the existence of the limit 

(3.23} Qu(91 , 9 2) := limQ(91, 92-di) 
i-+00 

leads to the same consequ~nces as the second possibility previously considered and, in 
particular, the lemma (3.19) and Theorem (3.21) hold. 

Summing up the above considerations, we can say that the physically reasonable de­
composition of the non-additive flux into · the surface and volume parts is possible if the 
limit 

IimQ(91, d,) 
i-+00 

exists for any family {d1 }~ 1 of subsystems descending to the material surface. In such 
a case we arrive at the desirable relation for the surface part 

(3.15) iJ91n92 = iJ91n9a => Qs(91, 92) = Qs(91, 9a), 

that is, the surface part of the flux depends on the contact surface iJ91 n9 2 but not o_n 
the whole subsystem 9 2 • For this reason we deal further only with the decomposition, 
defined by the relation (3.13), assuming the existence of the limit on the right-hand side 
of this relation. 

4. Representation of the surface ftux 

The classical theorems on the surface ftuxes, such as the Cauchy's theorem on the 
, linear relation between the unit normal vector of the surface and the density of the surface 
flux, require some additional assumptions. First of all, we make an assumption leading 
to the independence of the flux Qs( · , · ) on the subsystems, being in the surface contact. 
As we have mentioned at the beginning of this paper, all results in axiomatic thermody­
namics of continua are based on the biadditivity of the flux Q( · , · ). Our previous 
considerations have not required this property. Further, we assume the biadditivity of 
the surface part Q,( · , · ). It is still far weaker than the biadditivity of Q( · , · ), but it 
turns out to be sufficient for many classical properties of Q.( · , · ) to take place. Hence 
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AXIOM 

(4.1) V [!}J1 A[!}J2 = 4> A[!}J1 A[!}J3 = 4> A[!}J3 A[!}J2 = 4> => 
.9t..92,&3e8 

=> Qs([!JJ~ Y [!}J2' [!JJ3) = Qs([!JJ 1' [!}J3)+ Qs([!JJ2' [!JJ3) A Qs([!JJ 1' [!}J2 Y [!JJ3) = Qs([!JJ 1 '[!}J2) + 
+Qs([!JJ1, [!}J3). 

For any subsystem [!}J3 such that 

v([!}J3) = 0, [!}J3 -< [!}J1 and a[!}J2n[!}J1 = a[!}J2n[!}J3~ 
where [!}J1 and [!}J2 are any two non-overlapping sub~ystems, we have from Axiom (4.1) 

Qs([!JJ1, [!}J2) = Qs([!}J1-[!}J3 y[!}J3, [!}J2) = Qs([!}J1-[!}J3, [!}J2)+Qs([!JJ3, [!}J2). 

On the other hand, [!}J1 -[!}J3na[!}J2 = lj>. Hence 

Qs([!JJ1, [!JJ3) = Qs([!}J3, [!}J2). 

This proves the following: 
LEMMA. For any descending family of subsystems {at1 }J~=I satisfying the conditions 

i) 

(4.2) 
ii) 

we have 

V 811 < [!}J1 · and at1na[!}J2 = [!}J1na[!}J2, 
j 

00 n Blj = inta[!}J2n[!}J1, 
i=l 

limQs(BI1, [!}J2) = Qs([!JJ1, [!jJ2)• 
)-+00 

Taking into account the definition (3.13) and the above Lemma, we see that there 
exists a function H( · ), defined on the collection of material surfaces, induced by the fam­
ily B, such that 

(4.3) V H(arJ>JnfJ'2) = Qs([!}J1, [!}J2) and IH(a[!}J1n[!}J2)1 ~ f3s(arJ>1nfJ'2), 
(.?1'1,&2)€sepB x B 

with the property 

(4.4) 

where s1 and J 2 are any two non-overlapping material surfaces. 
However, without further assumptions the function H( ·) is not balanced, i.e. the 

change of the orientation of the surface a[!}J1nfJ'2 yields in general the different value of 
H( · ) in contrast to the classical surface fl.uxes. This means that 

3 H(afJJ1n[!}J2)+H(arJ>2n[!}J1) =1= o. 
(&\ ,&'2)esepBx B 

The balance relation for H( · ) can be proved if we assume in addition the Lipschitz 
volume continuity of E( ·).Namely, 

THEOREM. (Noll). If the derivative of the state function is Lipschitz volume continuous, i.e. 

(4.5) 3 V IE(&')I ~ yv(&'), 
r>O a'eB 

then the surface flux Q0 ( ·, ·) is balanced: 

V H(arJ>1nfJ'2) = -H(a&'2nfl\). 
(a't.a'2)esepBx B 
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P r o o f. Let us consider the function describing long-range interactions between two 
subsystems d;, a1, where d 1 is the member of the family defined by Eq. (3.1), while the 
subsystem a1 is the member of the family defined in Lemma ( 4.2). Then 

E(d, v a1)-E(d,)-E(LJ1) = Q(d, v a1, .9/f A£fj)-Q(d;, df)-Q(£f1 , ~j). 

According to the relation (3.2) and Axiom ( 4.1 ), we have 

i(d, v 111)-E(d1)-E(dl1) = -H(od,r'ldi1)-H(odl1r'ld,) 

+Qv(d, Y dlb df Adlj)-Qv(d,, .91f)-Qv(£fb dlj). 

Assuming the existence of the pertinent limits and making use of the continuity assump­
tions, we obtain at once 

H( afJ# 1 r'lfJ' 2) + H( a&~ 2 r'lfJ' 1) = o. 
A similar theorem has been proved by W. Noll for biadditive fluxes and additive state 

functions. 
We can summarize the above considerations as follows: when all above assumptions 

hold, the flux Q( · , · ) has the form 

(4.6) 

V Q(91, 92) = H(of1'1r'l92)+Qv(f1't, f!J2); 
(~t..¥2)esepBx 8 

H(o91r'\92) = -H(of1'2r'l91); 

3 IH( ofJ# 1 r'l9 2)! ~ {Js( 891 r'lf1' 2); 
{1>0 

V H(J1r'IJ2) = H(J1)+H(J2); 
.. 1 , .. 2 - mat. surf. 

"1""2=• 

The above decomposition admits long-range interactions, many body actions being 
described solely by Q11( • , • ). 

The biadditivity assumption on Qs( · , · ) yields some further properties of the surface 
flux H( · ). Considerations similar to these of M. E. GtiRTIN and W. 0. WILLIAMS 
[1967] lead to the localization of H( ·) on tlie material surface. According to Theorem 7 
of that paper (see also W. 0. WILLIAMS [1970], Proposition 6), we have 

(4.7) V 3q( ·, n): J-+ R such that H(J) = J q(x, n)dsx, 
n,Jnl=l 

where J is a material surface and n(x) denotes the unit normal to s at x e J. 

Now, the balance equation can be written in the following form: 

(4.8) 

Making use of the continuity assumptions of Theorem (4.5), we see at once that the 
limit 

(4.9) lim (~) {E(91)-Q11(9, &If)} = ~im (~) f q(x, n)dsx 
1-+oo V vi 1-+00 V "i a.¥, 
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exists for any Vitali sequence {~1 }r;. 1 of subsystems converging to the point x. The limit 
on the right-hand side is called by W. 0. WILLIAMS [1967] a divergence 

{4.10) divq(x) : = lim v(~·) f q(x, n)thx. 
i-+00 J 89', 

Hence the balance equation takes the form 

(4.11) V E(~) = J divq(x)dv.x+Qu(&', ~). 
S'eB 9' 

In the general case, this equation cannot be localized with respect to the nonlocalities 
described by Q.,( · , · ) and E( · ). The biadditivity of Qu( · , · ) leads to certain non-unique 
localizations (W. BARANSKI [1972, 1974]), delivered by M. E. GURTIN and W. 0. WILLIAMS. 
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