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Finite-amplitude oscillations of a spherical cavity
in a nearly-incompressible elastic material

D. F. PARKER (NOTTINGHAM)

THis PAPER analyses the influence of small compressibility on spherically symmetric oscillations
of an elastic material. In an ideally incompressible body, spherically symmetric finite amplitude
motions outside a traction-free cavity are strictly periodic [1]. Using a simple matching proce-
dure, we show how the radiation of infinitesimal dilatation waves at high speed to large radii
modifies these oscillations. A first-order ordinary differential equation for the decay of these
oscillations is derived using the method of two time scales. The result is checked against an
explicit analytic result for small amplitude disturbances, and indicates that even for rubberlike
materials the characteristic decay time is not many multiples of the period of the oscillations.

Niniejsza praca zawiera analize wplywu malej §ciSliwosci na drgania 0 kulistej symetrii wyste-
pujace w materiale sprezystym. W ciele idealnie niedciSliwym ruchy kulifcie symetryczne na
zewnatrz wolnej od naprezen pustki sq Sciéle periodyczne [1]. Stosujac prosta procedure dopaso-
wania pokazujemy jak promieniowanie infinitezymalnych fal dylatacyjnych przy duzej predkosci
na dalekie odleglosci modyfikuje te drgania. Wykorzystujac metode dwoch skali czasu,
wyprowadzono réwnanie réiniczkowe zwyczajne pierwszego rzgdu do opisu zapikania tych
drgaf. Wynik poréwnano ze znanym rozwiszanfem analitycznym dia zaburzed o malych
amplitudach. Wykazano, ze nawet dla materialow gumopodobnych charakterystyczny czas
zaniku nie przekracza kilku. okreséw drgan.

Hacrosan pabora CONEPHMT aHATH3 BIMAHHA MAIOH CHXEMACMOCTH HA KojeGauMsA, co che-
PHUECKOH CHMMeTpHelf, BLICTYMAIONIAE B YIPYIOM MaTepHane. B HAeansHO HEOKHMAEMOM
Tene chHEPHYIECKA CHMMETPHYHBIC JBHMKCHEA BHE CBOGOIHON OT HANPAXEHWH MyCTOTH ABJA-
KOTCA TOUHO mepHomudeckumu [1]. IIpumensaa mpocTyio mpoileAypPY COTJIACOBRHHA, HOKA3bI-
Bammmnymemﬂbmmmmmmommnpuﬁwmmﬁ CKODOCTH
HR [JANeKHX PaccToAHMAX Momudmumpyer ate woneGammsa. Hcmomssysa meprypGanuoHEBIi
MeTox Jtnyx MaciTaboB BpemeHH, BoiBeAeHb! Mubdepenpmanbible 00LIKHOBSHHBIC YPABHEHHA
[EPBOTO MOPANKA V1A OIMCAHMS 3aTYXAHHA STHX KojieGanuii. Peay/sTar cpaBHeH ¢ R3BECTHBIM
AHANTMTHYECHKHM pellleHHeM 1A BOSMYLUCHMN ¢ MAThIME amIumTyAame. Iloxasano, 4To ORKe
A PESHHOMOMOOHBIX MATEPHATIOB XAapPAKTEPHUCTHKA BPEMEHH 3ATYXAHWA He ABJAETCA MHOIO-
KPaTHOCTBIO NepHoja Konebammil.

1. Introduction

In [1}, KNowLES and JAKUB considered radially symmetric oscillations of an incompressible
material containing a spherical cavity..As in the work of Guo and SoLecki [2], who ana-
lysed motions of thick-walled spheres, the kinematic constraint of incompressibility com-
bines with spherical symmetry to reduce attention to the discussion of ordinany differential
equations. Under very weak conditions on the elastic constitutive law, it is then-shown that
any motion having constant pressure on the cavity wall is periodic.

In practice no.material is strictly incompressible, so that pressure disturbances travel
with a large (but finite) wavespeed. Consequently, there is radiation of energy. This radia-
tion must imply some decay of the amplitude of radial oscillations. It is the aim of this
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paper to show how small compressibility modifies the radial deformations — in particular,
showing that at large distances the dominant disturbance is an outgoing dilatational wave
of linear elasticity.

By a judicious, yet simple, use of matched asymptotic expansions, a first-order ordi-
nary differential equation governing the amplitude decay is derived. This equation is solv-
ed in the special case of small amplitude disturbances, and its prediction that the rate of

1/2
decay is inversely proportional to cavity radius, and directly proportional to (5— ) whe-
re o is the Poisson’s ratio, is checked with the aid of linear elasticity theory.

2. Basic formulation

We consider radially symmetric deformations of an isotropic elastic material which
in its reference configuration is unstressed, has density p, and possesses a cavity of ra-
dius . Then, we let r = r(R, t) (R = a) denote the radius at time ¢ of a shell which in the
reference configuration has radius R. The velocity v = dr/0t is purely radial and the ma-
terial has one principal direction of strain in the radial direction, with the principal stretch
A = dr/dR. All orthogonal directions are also principal, with equal stretches 4, = r/R.
If the corresponding principal engineering stresses (force per unit unstrained area) are T
and T,, the momentum equation takes the form

do or  2T-T
@.1) oo = __QTJ)._

The strain energy density may be expressed in the form W = W(A, 4) where the dil-
atation 4 = 447 and-the ratio A4 = 1,/4 completely determine all the strain invariants.
With this representation, the principal engineering stresses tdke the form
Ay OW ., OW 1 oW ) .4

~ A e T ~gyagy g

.2) T

showing that the mean normal Cauchy tension is
1(T T, oW
sl -
This suggests that the pressure p be defined by p = —3dW/dA. Then Eqgs. (2.2) agree with
the incompressible theory, in which dW/04 becomes meaningless becanse 4 = 1 but is
replaced in Eqgs. (2.2) by the parameter —p which is not functionally related to the deforma-
tion. The characteristic of nearly-incompressible materials is that A is only marginally
affected by the pressure, but large pressure changes must accompany any appreciable
change in A. Consequently, it is natural to use p as an independent state variable, rather
than 4.

To accomplish this, we introduce the enthalpy h(A, p) defined, as a Legendre transform
of W, by

h(A,p) = W(A,A)+pA, p= —oW/iAd.
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This leads to

oh oW oh
A= ™ =4
Over a wide range of pressure variations within nearly-incompressible materials we may
take 4—1 = —e*{p—k(A)}, where the small parameter ¢? is the reciprocal of the bulk
modulus, and is taken to be independent of A. The term k(A) (with k(1) = 0) is included
to allow the dilatation to depend slightly on A even when p = 0. For these materials, we
obtain

oh .

so that the enthalpy must have the form

h = p+g(A)—e* {-;—-p’ —pk(A)}-

This leads to
4- 1 } ..
(2.3) g(A)+ - k(A = g(M)+5&'p?,
so that the principal stresses are
1 .
Q4 T=-— {z D+epk' (D} -23p, Ty =57 {g'(D)+epk'(A)}—24,p,

where dashes denote ordinary derivatives. Here g(A) (with g(1) = 0, g’(1) = 0) is the strain
energy of the incompressible material described by the formal limit ¢ — 0.
Using the identity

2 Py o 24-1)
L= () -2
with the expressions (2.4) we obtain

2(7'; Ty _ {2(AR—AUT - —135{3'(/1)“’?"' @}

which allows Eq (2.1) to be rewritten as
R? 3v 3R i R*T
e 5+ E W+ ()} = (m( )

When the non-dimensional coordinates x = r/a and X' = R/a are introduced, this becomes

A , a (X°T
(2.5) oa® e a‘f {8 (A)+e*pk'(A)} = 'gf( )
This may be used, together with the kinematic relation
2.6) }"fz__;"i} = 4 = 1-e{p—k(A)},
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to construct asymptotic expansions in ¢ describing radially symmetric motions in which
no signal radiates inwards from large distances, and with the prescribed pressure
xr T
(vX)) S p+ A4 {g' (A)+&*pk’'(A)} = F(t)
1

X

on the cavity wall X = 1 (R = a).

3. Fundamental solutions

Since £ is small, Eq. (2.6) shows that either x ~ X so that radial displacements are small,
or else displacements have finite amplitude but involve virtually no change in volume.
In the incompressible limit ¢ = 0, Eq. (2.6) becomes a kinematic constraint implying that

= X3+9(1),
where #(?) is any function of time. Thus, for slightly compressible materials it is appropriate
to represent position in the form

x(X,t) = x*(X, t)+e*s(X, t; ¢),

where
1
@G.1) x* = {X+q(0)).
Then
i..ﬁf_ 7(t) 2 ox X 2 05
™ e A=z xﬂ*‘ X’

_x® g 8 zx“'2 as\™ 2 S 3.1:*2 Os
x*? os _2_{ 2[2x%s as sz _ 45 0Os
X2 9x x* X7 BX X"' X’

where a superposed dot denotes an ordinary derivative with respect to t. When these ex-
pressions are substituted into Eq (2.5), we obtain

(.2) gazx={ 7 _2 i};,.?i’ig xﬂ aX(X T) 0(e?).

and

3x* T 9 x¥7 X’
Thus, correct to O(¢), the motion corresponds to incompressible deformations which are
completely specified in terms of the generalized coordinate #(¢). Moreover, to this approx-
imation, Eq. (3.2) specifies the variation of pressure p with X (or R) at each instant ¢,
and may readily be integrated with respect to X and then ¢, as in [1] and [2]. However,
this procedure is unnecessary.
For all R=aX > a, the rate-of-working equatlon is

dti 0 f 24nR2dR}+-—{ f W%deﬂ} [4nR3To]T,
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where the right hand side expresses the difference between the rate of working on material

in R > R and the rate at which the prescribed pressure F(¢) in Eq. (2.7) supplies work.
In non-dimensional coordinates the equation becomes

(3.3) ;{l oa? lf (3" X’dX}+——{ f Wd.r} [xzrfif_]l

and correct to O(¢) the left hand side equals
1419
s 2
L e L 1 o
I+ (X+9P 12/

If we let X — oo and make the minor notational changes n(¢) = 1+y°(t), g(u) = 0a*Wo(u),
this corresponds to the expressions in Egs. (4.5) and (4.8) of [1], and so the only difficulty

in application is the appropriate determination of X2T dx/dt as X — co.

4. The outer region

The approximation x =~ x* = {X* +1;'(t)}3 used in deriving Eq. (3.4) éxhibits the
decay of x—X with radial distance, but treats such disturbances as exactly “in phase”
at all radii X. When X = O(e™*) this treatment cannot be correct, since pressure disturb-
ances travel with speed which is O(e-!). To allow for this, we examine separately the
behaviour of small amplitude disturbances at large X.

We introduce the stretched coordinate z = eX. Then, since {X*+9}® ~ X+%?}/1fz
for large X, it is appropriate to look for solutions of Egs. (2.5) and (2.6) in which x—X
is O(&?). Consequently, we set

x = X+e*w(z, t;€), p=eb(z,t;€), wherez=eX.
Then
A= 1+e&w/dz, A = 14&wfz, A-1= 0(),
and since g’(1) = 0, we have
g)=0@E*> and T= —g+0(),
so that Eq (2.5) leads to

a A
@1 e 8+ = 0().
Similarly, since k(1) = 0, we have k(4) = O(e®) and Eq (2.6) gives
@2 b= -2+ 2) o).

Thus, the formal solutipns
w = wo(z, )+&*wi(z, )+ ..., P = Po(z, 1) +&*ps(z, 1) + ...

7 Arch. Mech. Stos. nr 6/78
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may be sought. In these, Eq. (4.2) implies that
" 2
2°po = ~ 7z (z*wo)

and since Eq. (4.1) shows that

9o 3
a P, 941__ 2
oz ot (&*wo),

we have
O L aan 3|8 ) aﬁ,) ? .
ga’-w(z 'Po) = "‘9“23—:.!?(33”’0)} ] —3";(23 = z?(zpo).
Consequently, zp, is a solution of the wave equation, giving thus the general expressions

in which the functions m(t—z/c) and n(¢+z/c) describe outgoing and incoming spheri-
cally symmetric waves respectively and ¢2 = (pa®)~' corresponds to the physical speeds

1
dR/dt = +(e%¢) 2. This is hardly surprising since —¢p is the dominant contribution to
both T"and T, and so the material behaves essentially like a fluid with a bulk modulus 2.
As we require that no disturbances converge from large z, we set 7 = 0 and obtain

m'(t—z/c) cm'(t—z/c) % czm(t—z/c)

@3)  hea )= T, w0 = T -

The function m(t—z/c) may be related to 7(t) by standard matching procedures [3]:
the leading term 22w, in the outer expansion for x—X is written in terms of the inner va-
riable X = z/e, giving

- PO by
- i SO i)

c*m(t)
~ -—-‘-i-zu—w— a0

Similarly, the leading term x*(X, #)—X of the inner expansion (3.1) is written in terms of
the outer variable z = X, giving
1 1
x=X ~ {X*+9(0)P-X = X[{1-n()/22} - 1],
Lz e _ () _ 1)

e 322 3z2 3x:-

Then, to ensure that these two expressions agree, we must choose m(f) as

@4 m(t) = % .
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Moreover, with this choice; Egs. (4.3) show that the leading term £po(z, f) in the outer
expression for p has the inner form
cp. = T (t—2Xjc)  n"(®)
70 = T330:X) 32X’
which agrees with Eq. (3.2) as X — oo (and 4 — 1) where it becomes
L P i)
X ¢ 3x*°
This matching shows that an oscillation which at finite X is described by Eq. (3.1) with

an appropriate function #(f) gives rise to pressure waves which at finite z = £X (i.e.
X = O(¢™)) take the form

- en''(t—2z/c) = 7' (t—eX/c)

B 3c2z ex O’
en'(t—eXJc) - n(t—eX]c)
Xt T omeE -

The expressions (4.5) may be combined with the inner expressions to give the leading
terms in composite expansions valid for all X, giving, for example,

4.5)

1 ! (zf — -
X ~ {XS +73(‘)}3+ & (Z;C;X/c) i n(rsgk:)_ ggz

which is correct to O(e?) in both the inner and the outer regions. Equivalently this expres-
sion may be replaced by a simpler, but equally valid, expression

1

(4.6) x ~ {X*+n(t—eX/c)+e(X/c)y' (t—eX/c)}
which exhibits the wavelike nature of the disturbance at all X.

5. The intermediate expansion

To apply the rate-of-working equation (3.3), we must choose X such that both sides
of the equation may be correctly determined to the required accuracy. This is most simply
achieved by writing both the inner and the outer expansions for x and p in terms of an
intermediate variable y defined by

y=pX=ce"uz with p=o0() and e/u=o(l).
Then, from the expressions (3.1) we obtain
= 2¢ ~ 2 _’?(L) i’i ] ﬂ 5 3 _"_!SQ
x=x*+els~ X+p T T e v a4 l+,uy,,
which agree with the leading term obtained. by setting z = ex~'y in Eqs. (4.5). This illus-
trates how the regions of validity of the inner and outer expansions overlap, a property

which must be true to all orders of the expansion (at least for a suitable choice of ) in
order that KAPLUN’s [4] justification of the matching procedure may be applied. Likewise,

7*
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by choosing X = u~'y for any finite y and a suitable u, both sides of Eq. (3.3) may be
expressed in terms of the function #(#).

Firstly, we show that with this choice of X the expression (3.4) correctly expresses the
rate of energy increase correct to Q(e) for all ¢ = o(u).

Since p is O(1) for finite X and p ~ u#j(t)/3¢%y = #(t)/3c*X for all finite values of
y = pX, then pX is O(1) for all X. Moreover, since substitution of Eq. (3.1) into Eq. (2.6)
leads to

2 (x¥) ~ —X2{p—k(d)} = O,

we deduce that s = O(1) throughout 1 < X < u~'y. Consequently,

2 . 2
(-‘3%) = ( 3:“) [1+O(e2x*?)]

and
W= g()+ €%* = g(1+7/X){1+0()} +0(p?).

By setting /X3 = u—1 we then have

u-ly 1+uin/y

[ sasnmoxiax=—2q [ @-1gGd,

1 14n
and the left hand side of Eq. (3.3) becomes

g 1+7n .

GO S T [ g 2T lI

(1+9)? i G +4*n)°

p 144y
- 7{% [ w-ngau+ 0(e=m)}.
1+n

Here, the last term is o(¢) for all ¢ = o(u), and the remaining terms are those of Eq. (3.4)
The first two are those which survive in the limit X — co, the third is O(p) and is an esti-
mate of the kinetic energy in X > u~'y, while the fourth term is O(u®)(*).

If we use the first term of the inner expansion to evaluate the right hand side of Eq. (3.3)
withX = u~1y, the only significant term is one which cancels with the third term in Eq. (5.1).
However, the first term in the outer approximation gives more information, and determines
the right hand side up to a term of O(g). It gives
n'(—eylpe) __H@) | F)

3c2y s 3c2y te353
¥ g2 NO—eyfue) o (t—eyluc) o @), 0()
EAE T g P Sy ol gt R g

(*) We assume that g”’(1) exists, so that 3T/d4, dT/34,, etc.existat 4 = 1, 4, = 1 and so (u—1)"%g(x)
remains finite asu - 1.
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so that

2p 9% y‘ i) _ (f) ? n(t)

ﬁ(t)fz(t) L@@
93y 9c® -’
The first term differs from the-third term of Eq. (5.1) only by O(x*), and so substitution
expressions (5.1) and (5.2) into Eq. (3.3) gives, correct to O(s),

149

(5.3) i Ei Ui + x (u— l)—zg(u)dul 2 (t)';(f) Ft)n(t) '
dt £ 9 3
(1+n)® i

1
Notice that, although the derivation réquires that z = o(¢%), the first term on the right
hand side is independent of both ¥ and «, and so accounts for the rate at which energy is
radiated to large distances. Also, by using Eq. (2.7) and the identity x*(1, #) = 1+n(1),
it may be shown that the second term accounts for the rate of working on the cavity wall.

6. The decay of the oscillations

In the strictly. incompressible limit ¢ — 0, Eq. (5.3) may be reduced to -Eq. (4.2) of
KNowLEs and JakuB [1]. Its solutions are exactly periedic in two important classes of
situations — namely, when the internal pressure F(¢) is a function only of the cavity radius

1
(1+7)? (and hence of 7(t)), and during time intervals when F(¢) is constant. This second
case, with F(t) = p, as in [1), leads to
6.1) & _ +K(m)=N
= ,
(1+9)°

where N is a constant such that (18/4mpa’)N = 9¢*N/2na® measures the total energy,
and

149
©2) Ka) = 6¢*{n [ =17 "g@du—npa).

In the first case, with F(t) = Q’'(n), Eq. (6.1) still holds provided the term 7p, in Eq. (6.2)
is replaced by Q(n). Consequently, we may discuss the two situations together, having due
regard for the definition of K{(»).

The function K(n) will have a minimum at some value % (with 77 = 0 if F(£) = 0 at
the reference configuration 7 = 0), and under weak restrictions similar to those discussed
in: [1] will be concave. Consequently, to each value.N( > K(7)) there correspond two roots
7= ny(N), = m2(N) (with 7, <7 < n,) of the equation

K@) =
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The solution () of Eq. (6.1) oscillates periodically between these values, with period
6.3) T=T(N)=2 f _‘:" :
" ]/{(l +n) IN—- K@)}

These are the nonlinear oscillations investigated in [1].
The dominant effect of compressibility is to modify Eq. (6.1), replacing it by

il
6.4 = - +K(n)| = M’"
(l+r:)’

or, equivalently,

©4), . M. Y TSN
(+n)® 31 +n)’

Hence, defining N to be the quantity

(6.5 N=(l+n) "+K(n).

we see that dN/dt is small, so that Eq. (6.4) describes the slow modulation in amplitude
of the nonlinear oscillations(?). Appreciable changes in N take place only on the “slow”
time scale measured by v = ef. Consequently, solutions to Eq. (6.4) may be found by the
method of two time scales, in which we write

N= X’(r)-i—eﬁ(t, T;e), T=¢t.

Then N performs small oscillations about the smoothly varying value N(z) = N(et),
and without loss of generality we may insist that Nis strictly periodic in the fast variable ¢,
with mean value zero, for all fixed v and &. Correspondingly we write

n= ﬁ(’» ‘l’)-l-e;}(l', T;€),

N = g?+8(gq @ +0(e%),

and while insisting that 7 :is strictly penochc in t we may choose that

so0 that

(6.6) a+y? ) +K@G) = N(v).
Thus, when 7 is regarded as fixed, the oscillations (¢, ) are the periodic solutions of Eq.

(%) Equation (6.4) does not belong to one of the usual types of equations governing such phenomena —
the small parameter multiplies the derivative of the highest order. This suggests that the perturbation
& # 0 may be singular. However, the assumptions leading to Eq (6.2) do not allow rapid jumps in 5. Mdre
generally, under impulsive loading of the cavity wall as discussed in [1], the deformatioas (3.1) must be
replaced by wavelike disturbances even at finite X, so that Eq (5.3) is inappropriate during the correspond-
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(6.1) with the energy 18¢2N(z) and the period T(N) given by Eq. (6.3). Then, substituting
into Eq. (6.4), we obtain

dN oN 2e % %

1
= *e 3t+0() c ot o

in which the first term on the right is strictly periodic in 7. To ensure that N also is periodic,
we must have, correct to O(e),

+0(&?)

dN o %9
6.7 Fzmeanva]ueof—gw TR

w
-t [ 2055
T(N) J ° at ar3
Now, rearranging Eq. (6.6) as

(éﬁ: = 1+ (V) -K@)} = 9G),

we have
K Pi e O
2 3:2 = 9'(), 2W'i= 9 (n)%,
so that
©8) 298 20 _ o Gi)SG).

a: a’
(For simplicity, we have snppressed from g the explicit dependence on N(r).) Consequently,
from Egs. (6.3), (6.7) and (6.8) the equation governing decay of N (and hence of“ amplitude”
qz(ﬁ)—q,(ﬁ)) is found to be

EL (M) 1 (V)
69) B v =1 | yarrom,
i e

in which both integrals depend only on N, and the limits Ul (W), n2(N) are roots of p(n) =
Equation (6.9) is then a first-order ordinary differential equation for N, which is readily
soluble numerically once K(x) is fixed by the choice of a particular material and of a suit-
able*boundary condition on the cavity wall.

7. Linearization

As a specific example of the predictions of the previous sections we note here the form
of the eventual decay of free oscillations as the displacements become small. This allows
us also to check the predictions against an explicit solution derived from linear elasticity.

When x € 1, we have 4 ~ 1, so that

§(4) = - g" (XA~ 1P,
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leading to
149

[ =128 = 1-g" .
g3

Moreover, in free os¢illations with p, = 0 Eq. (6.2) gives
K(n) = 3c¢%g"(1)?,
and, since % is small, Eq. (6.6) may be approximated as

%)’ :
7.1) E‘) +3028'”(1);)2 = N(7).
This corresponds to () = a?(n3—n?), where a? = 3¢%g"(1) and N = a?2, so that

fa l .
-T f ; f 9" 9> (m)dy = —na’n3 = —anN
Zna ® ]/7?2 -

and Eq. (6.9) becomes
dN a? ~
= pal

Hence the decay of N has the form
N(z) ~ Noexp{—3cg”(1)}.
Since for a linear elastic material g’’(1) and &? are related to the Young’s modulus E
and Poisson’s ratio ¢ by
1
3

(1.2) E=%(l+a)g"(1) and 1-20 = — &2E,

4
we have g"’(1) = %E to O(e) and T ~ ma(3p/E)?, so that oscillations governed by Eq.
(7.1) have the form
l
(7.3) # ~ Nocosy(t)exp ——Z—Eir 5 4 E AE
1 dr 30q*
3o’a

In this approximation, both the period and the decay time are proportional to the cavity
radius g, and the amplitude decays by the same factor e~* during each timespan correspond-
ing to

39 a
a9 2ET ~ 2a (e’E )
20)2

perieds of oscillation. This number of oscillations is xndcpendent not only of the amplitude
of the oscillation and of the radius of the undeformed cavity, but also of the Young's
modulus of the material. It depends only on the amount by which the Poisson’s ratio differs

1
from -
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To check these results by means of the linear elasticity theory we write displacements
in the form r = R+ au, with u small. The relevant approximations are

_ Ou U _ 2 ot _ou
A“l‘ax"'zx‘”’ A-1=5=<o%
1 ? 3
= — "1 e 2_. 2
W= 5g'(NA-1)+ -7 = ——"—3(1”)( ) A= 2a)(ax X)

so that the equatipn for radially symmetric disturbances becomes (see also [5], p. 286)
-2 " Sl == 2
{e~2+2"(1)} BX(3X+2 ) oa r”

where ¢~2+g"(1) = —%-E{(l—k)f‘+2g!+o)“} may be expressed using Eq. (7.2) in

terms of the Lamé constants A, u as 4 2u. This is the wave equation in spherical polar
coordinates and so; like Egs. (4.1) and (4.2), has general solutions compesed of outgoing
and incoming waves. The disturbance corresponding: to‘a préscribed variation of pressure
(2.7) on X = 1 and propagating into a region at rest with # = 0 must consist only of an
outgoing wave and so, like Eq. (4.3), has the form

s(r-—X/co)} . _ £24g"(1)

=Y where ¢ = e

If, after some time #,, the pressure on the cavity wall becomes zero, the boundary condition
T = 0 becomes

{8"+s"(l)}%+ {26 2—g"()}u=0 at X=1

and leads to

(7.5 i-1-2-—— +25— k(——+s) =0, s=s(t-c5"),
Co

where k = {23"’—g'_‘(l)},!{a-’+g”(l)} is expressible in terms of the Lamé constants
as 21/(A+2u). The ordinary differential equation (7.5) has solutions s(f—cg!) oc
exp iw(t—c5') where

—-—2 —2+k(—-+l) 0,

c3
giving

3_,(1__,,):4 %kz)‘f R T

Co 1-—-
By taking the real part of s, we find that the general solution u has the form

(7.6) u= ;f A coswg(t}X/co-—fl) exp-—w;(t-—X{'cg)},

where 4 and ¢, are arbitrary constants, wg = |[Rew| and w; = Imew. This represents a spher-
1

ical wave propagating outwards with the speed adX/dt = ac, = £ {3p~*(1—0)/(1 +f.r)}E
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~s~lp 2 . The profile, at each fixed X, is a damped harmonic oscillation with angular

R T

and with amplitude which decays by the factor e~* during each time interval

N~

_l = (1_20.) lwi-‘l =( 3

1
These results confirm the predictions in Eqs. (7.3) and (7.4) and, since w; = mg(% E)z,

they show how the decay in amplitude is associated with the longer timescale 7= &f.
However, typical values {6] of 1-20 for rubberlike materials which frequently are consid-
ered to be nearly-incompressible are 1.2—2.8x10~%, These values indicate that (for
finite as well as infinitesimal displacements) the amplitude. of free oscillations will be halv-
1

ed after approximately (2::)"‘(1—20')-‘E log,2 ~ 7—10 periods of oscillation. Thus,
the effect is noticeable, even if the fractional decrease in frequency — 3 s’E=%(l-20)

is small compared with variations in the expression (4.11) of [1] for the period of the
oscillation.
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