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Finite-amplitude oscillations of a spherical cavity 
in a nearly-incompressible elastic material 

D. F. PARKER (NOTTINGHAM) 

Tms PAPER analyses the influence of small compressibiJity on sphericaUy symmetric oscillations 
of an elastic material. In an id~ly incompressibl~ body, spherically symmetric finite amplitude 
motions outside a traction-free cavity are strictly periodic [1]. Using a simpl~ matching proce­
dure, we show how the radiation of infinitesimal dilatation waves at high speed to large radii 
modifies these oscillations. A first-order ordmary differential equation for t~e decay of . these 
~Jiations is derived using the method of two time scales. The result is checked against an 
~xplicit analytic res~t for small amplitude disturbances, and indicat~ tllat even for rubberlike 
materials the characteristic decay· time is· 'not many multiples of the period of the oscillations. 

Niniejsza praca zawiera anal~ wplywu nialej kisliwoSci na drga.nia o kulistej symetrii wyst~ 
puj~ce ' w materiale spr~tym. W ciele idealnie nieScisliwym ruchy kuliScic symetryc:zDe na 
ze~tr~ wolnej od napr~n pustki ~ 8cislc periodyczne [lJ. Stosuj~c pros~ prQCedur~ dopaso­
wania pokazujemy jak promieniowanie infinitezymalnych· tat· dylatacyjnycb priy duzej p~oSci 
na dalekie odlepo5ci modyfikuje tc drpnia. Wyko~ . metod~: · dw6ch skali ezasu~ 
wyprowadzono r6wnanie r6Zniczkowe ZW){C7J\j1,1e pjer:wszego ~~. <lo, opisu zap\kanja tych 
drpn. Wynik por6wnano ze znanym ro~em analitycmyi:rt dla zaburzen · o malych 
amplitudach. Wykazano, i;e nawet dla material6w gumopodobnych charakterystyczny czas 
zaniku nie przekracza kilku. okresow drgan. 

HaCTO,R~ pa6o'ra CO,llep>I<HT llHaJDI3 BJIHJIHHJI M&JIOH C>KHMaCMQnll Ha KOJie6aHHJI, CO c$e­
PIIli~OH ClfMMeTpHea·, BldcrymuolllHe B ynpyroM MBTep~e. B ~e&JIJ.Ho HeoKHMaeMOM 
TeJIC ccPePlftlCCKH CHMMe'l'pUWbiC .QBH>Kemlfl BHC CBoOOAHoA OT BIDPmm:md IJYcroThl amm­
IOTCH TO'IHO neplf:OAHtl~ (1). fipJDt~ IIpocry10 npo~,tzypy COrJIBCOBiliiiDI, IJO~­
B8CM K8K Jr3JiytiCHHC HHcpiiHRTC3H'M8JILHbix · 'rotmlT&IUIOBHhi BOmf. npH 6om.moi CKOI)OC'l'H 
sa .ll&JICKBX paccrommmc Mo.lllf:cp~yeT 3'1'11 KOJie6amm. Hcnomayg nepTYP6alnlollllhlii 
MCTO,ll .QByx MaCillT800B BpeMCRH, BbiBe,lleHbi .llJicpcpepe~HhiC OOhiKHOBeBHhiC ypaBRCIIHJI 
nepsoro nop~ .zvm onlf:camm 38zyXaRHR 3THX KOJiet5amrii. Peaym.TBT cpaBHeB c H3BeC1'BbiM 
llH3JIHTHttCCKBM peweHH:eM .zvUr soaM~emdt c MaJihiMH 8MIIJIHTY.ll8MB· llo1C838R0, llTO .z:ta>Ke 
.lVVI pc3HHODO,llOOHbiX MaTepHaJIOB XapaKTeplf:CTJn<a BpCMCHH: .. 3ll'fYX8liWI HC JIBJVICTCH MROI'O­
Kp8THOCTDIO nepH'OA!l KOJie6aHHji. 

1. Introduction 

IN [ 1 ), KNOWLES and JAKUB considered radially symmetric oscillations of an incompressible 
material containing a spherical cavity .. As in the work of Guo. al1d SoLEcKI [2), who · ana­
lysed motions of thick-walled spheres, the kinematic constraint of incompressibility com~ 
bines with spherical symmetry to reduce attention to the discussion of ordinai1y differential 
equations. Under very weak conditions on the elastic constitutive law~- :it is then ·shown that 
any motion having constant pressure on the cavity wall is periodic. 

In practice no . material is strictly incompressible, so .1bat pressure · disturbances travel 
with a large (but finite) wavespeed. Consequently, there is radiation of energy. This.· radia­
tion must imply some decay of .the amplitude of radial oscillations. It is the aim of this 
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7'18 D. F. PAJW!Jl 

paper to show how small compressibility modifies the radial deformations - in particular, 
showing that at large distances the dominant disturbance is an outgoing dilatational wave 
of linear elasticity. 

By a judicious, yet simple, use of matched asymptotic expansions, a first-order ordi­
nary differential equation governing the amplitude decay is derived. This equation is solv­
ed in. the special case of small amplitude disturbances, and its prediction that the rate of 

( )

112 

decay is inversely proportional to cavity radius, and directly proportional to ~ -a whe-

re a is the Poisson's ratio, is checked with the aid of linear elasticity theory. 

2. Basle formulation 

We consider radially symmetric deformations of an isotropic elastic material which 
in its reference co.uiauration is unstressed, has densitY e, and possesses a cavity of ra­
dius a. Then, we let r = r(R, t) (R ~· a) denote the radius at timet of a shell which in the 
reference configuration has radius R. The velocity v = er jet is purely radial and the ma­
terial has one principal direction of strain in the radial direction, with the principal stretch 
A = crfcR. All orthogonal dircctionsare also principal, with equal stretches .A 1 = rjR. 
If the corresponding principal engineering ,stresses (foroe per unit .:unstrained area) are T 
and T1 , the mom~tiqn equation takes tbe·torm 

(2.1) e av = aT + 2(T:.._ T1.>. 
at aR R 

The strain energy density may be expressed in ·the forft). W = W(A, J) where the dil­
atation Ll = .AAf and· ~tbe ratio A = A1 /l completely determine all the strain invariants. 
With this representation, the principal engineering s~ ·take 'tire form 

(2.2) 

showing that the mean normal Cauchy tension · is 

1 ( T T1) aw 
3 12+21r = a..1 · 1 ' 1 

This suggests that the pressure p be defined by p = -a Wf aL1. Then Eqs. (2.2) agree with 
the incompressible theory, in which awtaL1 becomes meaningless because L1 = l but is 
replaced in Eqs. (2.2) by the parameter - p which is not functionally related to the deforma­
tioo. The characteristic· of nearly-incomJ)RSsible materials is that L1 is only marginally 
affected by .the pressure, but large pressure changes must accompany any appreciablCi 
change in A .. Consequently, it is natural to use pas an independent state variable, rather 
than J. 

To accomplish this, we introduce the enthalpy h(A, p) defined, as a Legendre transform 
of W, by 

h(A,p):= W(A,L1)+pL1, p = -oWjcA. 
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This leads to 

oh ow 
oA = oA · and 

oh_ A 

op- LJ. 

Over :a wide range of pressure variations within nearly-incompressible materials we may 
take A -1 = -e2 {p-k(A)}, where the small parameter e2 is the reciprocal of the bulk 
modulus, and is taken to be independent of A. The term k(A) (with k(l) = 0) is included 
to allow the dilatation to depend slightly on A. even when p = 0. For these materials, we 
obtain 

oh 
Bp =A= 1-e2{p-k(A)}, 

so that the enthalpy must have the form 

h = p+ g(A)- e2 {+ p2
- pk(A)}. 

This leads to 

(2.3) 

so that the principal stresses are 

(2.4) T = - ~ {g'(A)+e2pk'(A)}-l~p, T1 = 2~ {g'(A)+elpk'(A)}-ll 1p, 

where dashes denote ordinary derivatives. Here g(A) (with g(l) = 0, g'(1) = 0) is the strain 
energy of the incompressible material described by the formal limit e -+ 0. 

Using the identity . 

_!__. (A2) = ._!__ (~) = _ _c_ 2(A-l) 
oR 1 oR R2 R2 RA 

with the expressions (2.4) we obtain 

2(T- T1) ~ f2(A-1) T __ 3_ { '(A) 2 k'(A)} 
R RA lR g +e P ' 

which allows Eq (2.1) to be rewritten as 

R2 av 3R2 
. . a (R2T) 

e-;:ra~ + """1:3 {g'tA)+e·2pk'(A)} = aR ---,:;:- . 

When the non.;.dimensionalcoordinates x = rfa and X= Rfa are introduced, this becomes 

x2 a2x 3X2 a (X2T) 
(2.5) ea2 Xl at2 + X3 {g'{A) + e2pk' (A)} = ax Xl ·. . 

This may be used, together with the kinemati~ relation 

(2.6) 
x2 ax .· . 
X2 ax =A. = 1-el{p-k(A)}, 
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to construct asymptotic expansions in e describing radially symmetric motions in which 
no signal radiates inwards from large distances, and with the prescribed pressure 

(2.7) 
X 2T T 

--2 = -~ = p+AL1-1 {g'(A)+e2pk'(A)} = F(t) 
X At 

on the cavity wall X = 1 (R = a). 

3. Fundamental solutions 

Since e is small, Eq. (2.6) shows that either x ~ X so that radial displacements are small, 
or else displacements have finite amplitude but involve virtually no change in volume. 
In the incompressible limit e = 0, Eq. (2.6) becomes a kinematic constraint implying that 

x 3 = X 3 +1)(t), 

where 1J(t) is any function of time. Thus, for slightly compressible materials it is appropriate 
to represent position in the form 

where 

(3.1) 
Then 

x(X, t) = x*(X, t)+e2s(X,t; e), 

1 

x* = {X3 +1J{t)}3 . 

V ax f}(t) 2 as 
a= 7ft= 3x*2 +e Tt' 

and 

x*2 as 2s (2x*s as s2 
) s2 as 

p-k(A) = - X 2 ax- X* ..... e2 
X 2 oX+ x*2 :..-e

4 
X 2 oX' 

where a superposed dot denotes an ordinary derivative with respect to t. When these ex­
pressions are substituted iilto Eq (2.5), we obtain 

I ·· 2 • 2 } 3X2 ( *3) a ( x2T) 
(3.2) ea2X2 3;*4- 9 ;., + x*3 g' ~3 . ·= oX """'X2 +0(e2). 

Thus, correet to 0( e), the motion corresponds to incompressible deformations which are 
completely specified in terms of the generalized coordinate 1J(t). Moreover, to this approx­
imation, , Eq. (3.2) specities the variation of pressure p with X (or R) at each instant t, 
and may readily be integrated with respect to X and. then t, as in [1] and [2]. However, 
this procedure is unnecesSary. 

For all R = qX >a, the rate-of-working equation is 
i i 

~ g e f v24d2dR}+ ~ {f W4nWiiR} = [4nR27V]:, 
a a 
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where the right hand side expresses the difference between the rate of working on material 

in R > ii and the rate at which the prescribed pressure F(t) in Eq. (2. 7) supplies work. 
In non-dimensional coordinates the equation becollles 

(3.3) !!_I_!_ a2 Jx(!x) 2 X2 dx} !!_{Jx W~dX}··=· [x2r~)x 
dt 2 e at + dt . at 1 ' 

1 1 

and correct to 0( e) the left hand side equals 
1+, 

(3.4) ea2 ! [ 7; I 1 
.! - _ 

1 !I]+ ~ { ~ J (u-t)-
2
g(u)d+ 

(1 "+ 1})3 (X3 + rJ)3 t··fflfXJ 

If we let X-+ oo and make the minor notational changes 1J(t) = l + y3 (t), g(u) = ea2 W0 (u), 
this corresponds to the expressions in Eqs. (4.5) and (4.8) of [l], and so the only difficulty 

in application is the appropriate determination of X 2 T ox/8t as X-+ oo. 

4. The outer region 
1 

The approximation x ~ x* = {X3 +1J(t)}3 used in deriving Eq. (3.4) exhibits the 
decay of x-X with radial distance, but treats such disturbances as exactly "in phase" 
at all radii X. When X= O(e-1) this treatment cannot be correct, since pressure disturb­
ances travel with speed which is O(s--1). To allow for this, we examine separately ~e 
behaviour of small amplitude disturbances at large X. 

We introduce the stretched coordinate z = eX. Then, since {X3 +'7 }f ~ X+ ! 1J/X2 

for large X, it is appropriate to look for solutions of Eqs. (2.5) and (2.6) in which x-X 
is O(s2). Consequently, we set 

X= X +e2w(z, t; e), p = ep(z, t; e), where z = sX. 

Then 

A= 1 +e3 owfoz, A1 = 1 +e3 wfz, A-l = O(s3
), 

and since g' (1) = 0, we have 

g'(A) = O(e3
) and T = -sp+O(e3

), 

so that :Eq (2.5) leads to 

(4.1) 

Similarly, since k(1) = 0, we have k(A) = O(e3) and Eq (2.6) giv.es 

(4.2) A ·( aw 2w) 2 P=- -+- +O(s). 
oz z 

Thus, the formal soluti~ns 

w = w0 (z, t)+e2w1(z, t)+ ... , p = p0 (z, t)+e2p 1(z, t) + ... 

7 Arch. Mech. Stos. nr 6n8 
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may be soujbt. J~these, - Eq. (4.2) implies that 

and since Eq. (4.1) shows that 

we h•ve 

10..2 0
2 

( 2" ) 2 0 { '8
2 

( 2 >} 0 ( 2 o.Po) . 0
2 

( A ~ ot2 z 'Po = -(!Q oz. ot2 z Wo = Tz z oz = z ()z2 ZPo>· 

Consequently, zp0 is a solution of the wave equation, giving thus the general expressions 

A ( ) m"(t-zfc)+n"(t+zfc) 
Po z, t = , 

z 

in which the functions m(l-z/c) and n(t+zfc) describe outgoing and_ incoming spheri­
cally symmetric waves respectively and c2 = (~) -l corresponds to the physical speeds 

1 

dRfdt = ± (e2e)- 2 • This is hardly surprising since - ep is the dominant contribution to 

both. Tand T1 , and so the material behaves essentially like a fluid with a bulk modulus e - 2
• 

As we require that no disturbances conterge from large z, we set 11 = 0 and obtain 

(4.3) A ( ) m"(l-z/c) 
Po z, I = ' z 

( ) 
cm'(l-zjc) c2m(l-z/c) 

w0 z, I = + 2 • z z 

The function m(t-z/c) may be related to 1}(1) by standard matching procedures [3]: 
the leading term e2w0 in the outer expansion for x-X is written in terms of the inner va­
riable X = z I e, giving 

c2m(l-eX/c) ecm'(l-eXfc) 
x..;.x,.., e2wo = X2 + X ' 

Similarly, the leading term x*(X, I)-X of the inner expansion (3.1) is written in terms of 
the outer variable z = eX, giving 

1 1 

x-X,.., {X3 +1J(I)}'-x = X[{l-e3f1(1)/z3
}
3-l], 

z £ 31](1) £ 21)(1) 1](1) 
- £JZ3 = ---p- = 3X2 • 

Then, to ensure that these two expressions agree, we must choose m(l) as 

(4.4) m(l) = 1](11 • 
3c 
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Moreover, with this choice, Eqs~ (4.3) show that the leading term ep0 (z, t) in the outer 
expression for p has the inner form 

" B'fJ"(t-sXfc) fJ"(t) 
epo = 3c2(sX) "" Jc2X' 

which agrees with Eq. (3.2) as X-+ oo (and A-+ 1) where it becomes 

ap 1 fJ"(t) 
ax"" -"Cl 3X2 • 

This matching shows that an oscillation ·which at finite X is described by Eq. (3.1) with 
an appropriate function fJ(t) gives rise to pressure waves which at finite z = eX (i.e. 
X = O(e ..... 1)) take the form 

EfJ"(t-z/c) fJ"(t- eX/c) 
P "" · 3c2z = Jc2 X ' 

(4.5) 
X EfJ'(t-eXfc) · fJ(t-eXfc) 

X ,.... + . 3cX + 3X2 • 

The expressions ( 4.5) may be combined with the inner expressions to give the leading 
terms in composite expansions valid for all .¥, giving, for example, 

{X 3 ( )}~ EfJ'(zt-eXfc) fJ(t-eXfc) 1J(t) 
X ,.... + fJ t + . 3cX + 3X2 - 3X2 

which is correct to O(e2) in both the inner and the outer regions. Equivalently this expres­
sion may be replaced by a simpler, but equally valid, expression 

1 

(4.6) x,.... {X3 +'fJ(t-eXfc)+e(X/c)1]'(t-eXfc)}3 

which exhibits the wavelike nature of the disturbance at all X. 

5. The intermediate expaasioa 

To apply the rate-of-working equation (3.3), we must choose X such that both sides 
of the equation may be correctly determined to the required accuracy. This is most simply 
achieved by writing both the inner and the outer expansions for · x and p in terms of an 
intermediate variable y defined by 

y = p.X = e-1pz with p = o(1) and efp = o(l). 

Then, from the expressions (3.1) we obtain 

x = x*+e2s,.... X+u2 1](t) 
r- 3yl , 

ox 2 f](t) 
Tt ""I' 3yl , 

A ,.... 1 + u 3 f}(t) 
r- y3 ' 

which agree with . the leading term obtained by setting z = ep - 1 y in Eqs. ( 4.5). This illus­
trates how the regions of validity of the inner and outer expansions overlap, a property 
which must be true to all orders of the expansion (at least for a suitable choice of p) in 
order that KAPLuN's [4] justification of the matching procedure may be applied. Likewise, 

7* 
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by choosing X= J.t-1y for any' finite y and a suitable J.t' both sides' of Eq. (3.3) may be 
expressed in terms of the function 'Y}(t). 

Firstly, we show that with this ohoice of X the expression (3.4) correctly expresses the 
rate of energy increase correct to O(e) for all e = · o(p). 

Since p is 0(1) for finite X and p f"'J p,ij(t)/3c2y = ij(t)f3c2X for aU finite values of 
y = J.tX, then pX is 0(1) for all X. Moreover, since substitution of Eq. (3.1) into Eq. (2.6) 
leads to 

a ax (x*Zs),.., -X2 {p-k(A)} = O(X):, 

we deduce that s = 0(1) throughout 1 ~X~ p-•y. Consequently, 

( ~~r = b!.r [l+O<•'x*'>l 

and 

1 
W= g(A)+-ft2p2 = g(1+7]/X3){l+O(e2)}+0(e2p 2

). 

By setting 1J/X3 = u-1 we then have 

p-ly 1+1'lf1fyl 

f g(l+rJ/X3)X2dX=- ! 71 f (u-1)- 2g(u)du, 
1 l+tJ 

and the.left hand side of Eq. (3.3) becomes 

d I ea2 ~2 7J 1J+'1 -2 Pea2 ~2 I 
(5.1) di IS .!. + 3 (u-1) g(u)du-18 . ! 

(l + 7})3 1 (Y3 + 1'3'YJ)3 

1 +pl,/yl 

- ~ {~ J (u-l)-2g(u)du+O(s2 /l')}. 
1+, 

Here, the last term is o(e) for all e = o(p), and the remaining terms are those of Eq. (3.4) 

The first two are those which survive in the limit X~ oo, the third is O{p) and is an esti­
mate of ·the kinetic energy in X> p.-~""y, while the fou~ term is O{/.t3)(1). 

If we use the first term of the inner expansion to evaluate the right han4 side of Eq. (3.3) 

with X= J.t-1y, the only significant term is one which cancels with the third termin Eq. (5.1). 
However, the first term in the outer approximation gives more infoonation, and determines 
the right hand side up to a term of O(e). It gives 

T 
'TJ"(t-eyfpc) ij(t) fi(t) 

f"'J -p--p, f"'J -IJ.--+t--3c2y . r Jc2y Jc3 

X 2 fJ(I-eyfpc). '1/'(t-eyfJ.tc) 2 rJ(t) · 2 ~(t) 
x- f"'J I' 3y2 +tp 3cy "'f' 3y2 - e 6c2 ' 

( 1) We a8swne that g"(l) exists, so that oT/oJ., artaA1 , etc. exist at). = 1, At = l and so (u-l)-2g(u) 
mnainS finite as u-..... 1. 
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so that 

(5.2) 

~(t)ij(t) i](t)"ij(t) 
"' -I' .9C2y + 8 9c3 ~ 

The first term 'differs from the'third ~rm ofEq. (S-:.t) only by O(p6), and so substitution 
expressions (5.1) and (5.2) into Eq. (3.3) gives, correct .to O(e), 

(5.3) ~I (!Q2 ~l !L lf+I'J ( -1)-2 ( )dui = i](t)"ij(t) F(t)fJ(t) 
dt I8 !. + 3 u g u 8 9c3 + 3 · 

(I +7])3 1 

1 

Notice that, although the derivation· requires that p, = o(e3
), tlie first term on the right 

hand side is independent of both y and JJ, an,d -so accoUilts for the rate at which energy is 
radiated to large distances. Also, by using Eq. (2.7) and the identity x3 (1, t) = 1 +TJ(t), 
it may be shown that the second term accounts for the rate of ·working on the cavity wall. 

6. The decay· .of the .. Olcillatio• 

In the strictly· incompressible limit . e .-+ 0, :Eq. (5.3) may be reduced to- Eq. (4.2) o_f 
KNOWLES and JAKUB [1]. Its solutions are exactly periQdic in two important classes of 
situations- namely, when the internal pressure F(t) is a function only of the cavity radius 

1 

(I+ '7)3 (and hence of 1J(t) ), .and during time intervals when F(t) is constant. This second 
case, with F(t) = p0 as in [I], leads to 

"2 

1J 
1 

+K(1J}i= N, (6.1) 

(1+1J)3 

where N is a constant such that (I8/4nea5)N = 9c2Nf2na3 measures the total energy, 
and 

1+., 

(6.2) K('IJ) = 6c2 {'7 J {u-I)-2g(u)du-1}Jlo}. 
1 

In the first case, with F(t) = Q'(TJ), Eq. (6.I) still holds provided the term 'YJPo in Eq. (6;2) 
is replaced by Q(1J). Consequently, we may discuss the two situations together, having due 
regard for the definition of K( 'YJ). 

The function K(TJ) will have a minimum at some value fj (with 1j = 0 if F(t) = 0 at 
the reference configuration '7 = 0), _and under- weak restrictions similar to thoSe discussed 
in: [1] will be C9ncave. Consequently, to each value,N( > K(ij)) there correspond two roots 
1J = '71(N), 1J ·=''12(N) (with '71 <Tj <-1J2) ·of·theoquation 

K(TJ) =N. 
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lbe solution fJ(I) of Eq. (6~ 1) oscillates periodically between these values, with period 

(6.3) 

These are the nonlinear oscillations investigated in [1]. 
The dominant effect of compressibility is to modify Eq. (6.1), ~placi~g it by 

(6.4) - +Ki(") = --d I i!~ I lsi,ij. 
dt ! ., c ' 

(1 +'I)' 

or, equivalently, 

(6.4), 

Hence, defining N to be the quantity 
1 

(6.5) N :a (1 +'1fitj2+K(f1), 

we see that dN/dt is small, so that Bq. (6.4) describes the $low:modulation ~.iD. amplitude 
of the nonlinear oscillations(2). Appreciable changes in N take place only on the "slow" 
time scale measured by T = st. Consequently, ·solutions to Bq .. (6.4) may be fouad by the 
method of two time scales, in which we write 

N = N('r)+s~(t, t; s), T = st. 

Then N performs small oscillations abOut the smoothly varyin_g value N(T) = N(st), 

and without loss of generality we may insist that N is strictly periodic in the fast variable t, 
with mean value zero, for all fixed T and s.. .CorrespOndingly we write 

fJ = ij(t, T) + BfJ(I, T; ·s), 

so that 

tj = ~ +•( ~ + ~)+0(•·>~ 
and while insisting that ~;is' strictly periodic in t we may choose ihat 

(6.6) 

Thus, when T is regarded as fixed, the oscillations fJ(t, T) are the. periodic solutions of Eq. 

(2) Equa~ion (6.4) does not betoug to~ of the? usual types of equations govemiq such phenomena -
ttie srDall ~er mUltiplies the &dvatiw of the blgbeSt order. 'Ibis suggests th1lt the: perturbatibn 
s '# 0 may bC siugular. However, the assumptions leadfDa to Eq (6.2) do not aUow rapidjunip8 in if. More 
ameraJly, under impulsive loadi.na of the.-ity wall ·ai dilcussed in (1), the deformatioas (3.1) must tJe 
replaced by wavelike disturbaaces even at fini&e X, so that Bq (S.3) is inappropriate durioa the correspond­
ilia short time intenals. 

http://rcin.org.pl



(6.1) with the energy 18c2N{'r) and the period T(N) given by Eq. (6.3). Then, subsptuting 
into Eq. (6.4), we obtain 

dN ail . 2 ·. 2s aii . a3ij 
e dT +sat+O(s) =cat 8t3 +0(s2) 

in which the first term on the right is ·striCtly periodic in t~ To ensure that N 8lso is periodic, 
we must have, correct to O(s), 

dN 2 :aij o3ij 
(6.7) -=mean value of---

dT c _at at 3 ' 

'l'(ii) 
I f 2 aij a:sij 

= T(N) 0 -;a, CJt3 dt. 

Now, rearranging Eq. (6.6) as ( ~ r = (I +_>i)~ {N( T)-K@} "' ,@. 
we have 

a3- ~ 

2 fJ "( .. ) '"I at' = , '1 at' 
so that 

(6.8) 
-~ aJ'"' . 

2. "'I f'J "('"')S(-) at at 3 = , fJ fJ • 

(For simplicity, we have suppressed. from rp the explicit dependence onN('f). )Consequently, 

from Eqs. (6.3), (6. 7) and (6.8) the equation governing decay of N (and hence of" amplitude" 

'1/2 (N) -7} 1 (N}) is found to be 

.. ,z<N> 1 " 2<il> 1 

(6.9) '!' f rp -2 {7J}d7J = ! f rp"(7J)rp2(1J}ti1J, 
,,(R) fh(ii) 

in which both integrals depend only onN, and the limits 7J 1(N}, 7J,.(ii}are rootsofrp(fJ) = 0. 

Equation (6.9) is ~ then a first;;.order ordinary differential eqUation for N, which is readily 
soluble numerically once K(1J) is fixed by the chbice of a particular material and of a suit­
able' boundary condition-on the cavity-wall. 

7. Linearization 

As a specific example of the predictions of the previous sections we note here the form 
of the eventual decay of free oscillations as the displacements become small. This allows 
us also to check the pr~ctions' against an explicit solution derived from linear elasticity. 

When x cC 1 , we have A ~· I , so that 

g(A) ~ ~ g"(l)(A-1)2, 
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leading to 
l+tt 

J (~t-1)"""'2g(u)du ~ .~ g"(l)1J. 
1 . 

Moreover, in free oscillations wjth p0 = 0 ~q. (6.2) giv~ 

K(fJ) = 3c2g"(l)fJ2
, 

and, since 1J is small, Eq. (6.6) may)be approximated as 

(7.1) r~ r +3c'g"(l)ij2 = N(.-). 

D~F. PAiw!a 

This corresponds to rp(1J) = «2 (fJl-fJ2
), where «2 = 3c2g"(l) and N = «2fJ~, so that 

~ ~ 1 

_!_ T = J d1J = ~ J rp"(1J)rp2(1J)d1J = -n«'1JJ = - «nN 
2 - -'12 (X y 1Ji - . ,,2 (X ' -tb 

and Eq. (6.9) becomes 

Hence the decay of N has the form 

N(-c) ~ N0 exp{ -3cg"(l)T}. 

Since for a linear elaspc material g"(1) and e2 are related to the Young's modulus E 
and Poisson's ratio a by 

(7.2) E = ~ (1 +a)g"(l) and 
1 

1-2u = 3 e2E, 

we have g"(l) = : E to O(e) and T""' na(3~/E)1, so that oscillations governed by Eq. 

(7.1) have the form 

(7.3) .... . ( . 2Ee ) ij ""'N0 cosw(t)exp .- -y-'. , 
Je2a 

In this approximation, both the period and the .decay time are proportional to the .~vity 

radius a, and the amplitude decays by the same factor e-1 during each timespan correspo.,.d­
ing to 

(7.4) 

1 1 

3~2a 1 (· 3 )2 
.2eET = 2n .e2E = .!. · 
· 2n(l- 2u)2' 

periods ofpscillation. This number of Q&cillat,io.o.s .is in~pendent .not omy of tl\e amplitude 
of the oscillation and of the radius of the . unde(ormed cavity, but also of the Young's 
modulus of the material. It depends only on the amount by which the Poisson's ratio differs 

1 
from 2 . 
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To check these results by means of the linear elasticity theory we write displacements 
in the form r = R + au, with u small. the relevant approximations are 

.d- 1 = ou . + 2 ~ = s1n, A- 1 = !!_ - !!!__ 
()X X r X ·oX' 

1 , \(A )1· 1 2 2 E ( u ou )
1 

E . ·( ou 2 u )
2 

W= 2g <11 -.I ·+2:s P = J(li-a> x- ax ~~(1-2a) ax+ x ' 
so that the equati4>n for radially symmetric disturbances becomes (see also [5], p. 286) 

{ -2 "(1)} a ( ou 2 u ) 1 o2u 
s + g ax ax + x = ea at 2 ' 

where e--.2 +g"(l)= !E{(1-2a)~1 +2<~+a)-1 } maybeexpressed using Eq. (7.2) in 

terms of the Lame constants ;.A; I' ·as i4-2JJ. This is the wavt equation in ·spherical polar 
coordinates ·and· ·so; like Eqs. · (4.1) and ( 4.2), has' general solutions compesed of outgoing 
and incoming wav-es .. The distu:rba11ee ·corresponding· to ··a pr~bed variation-of pressure 
(2.7) on X= 1 and pr~pagating .into a region at rest with u = 0 must consist only of an 
outgoing ·wave and so, like Eq. (4.3), has tbe form 

". = !_ {s(t:-Xfco)} where c~ = s--2+~'(1) . 
. ax . x . (!tl 

If, after some time t0 , the pressure on the cavity wall becomes zero, the boundary condition 
T = 0 becomes 

ou 
{s-2 +g"(l)} oX+ {2s-1 -g'!(1)}u = 0 at X= 1 

and leads to 

(7.5) sn 3' { s' ) 2 +2-·- +2s-k - +s = 0, s = s(t-c01'), 
Co Co · Co 

where k = {2s-2 -g'~(l)}/{s-2+g"(l)} is expressible iil terms or the tame constants 
as 2).j().+2JJ). the prdinary differential equation (7.5) has solutions s(t~c0 1) oc 
exp iro(t-c0 1) where 

w2 
iro ( iro ·) --,---2-. -2+k -. +I = 0, 

Co Co Co 
giving 

1 

!!.__ = i (t- _!_k) ±(1- __!__ k2)2 = ± f(I.:.!.'2a)+i(l;:-2q~. 
c0 2 4 l-a 

By taking the real part of s, we find that the general solution u has the form 

(7.6) o {A cosroR(t-Xfc0 -t1) ( X/ >} u = ax X exp-roi t- Co ' 

where A and 11 are arbitrary constants, roR = IRerol andro1 = lmro. Thisrepresentsaspher-
1 

ical wave propagating outwards with the speed adXfdt = ac0 = s-1 {Je-1(1- a)/(1 +a) }2 
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I. 

~ s-1~:-2 • The profile, at each fixed X, is a damped'hatmonic oscillation with angular 
frequency 

_ 1 { E }~ { 4E }~{ · · 2 2E l "El}-~ 
roR =a 3(1-al) = 3ea2 1+9e - 27 e ' 

and with amplitude which decays by the factor e - 1 durfug each time interval 

-1 - ~ -1 ( 3 )j -1 ro1 = (1 - 2a) ro.a = £ 2 E ro.a • 

1 

These results confirm the predictions in Eqa. (7.3) and (7.4) and, since w1 = ewa (! E)", 
they show·how the decay in. amplitude is associated with the longer timescale T·= st. 

However~ typical values {6]. of 1-2a for rubberlike materials wbich frequently are consid~ 
cred to be ~-incomp~ible - . are 1.2-2.8xl0-'-' Th~ value• : . .ind;icate that (for 
finUe as weU as infiniwaimal displace$ents) ~ amplitude. of free oscillations will be halv-

1 

ed after approximately (2n)-1{l-2af2Ioa.2 ~ 7-10 periods of oscillation. Thus, 

the effect is noticeable, even if the fractional decrease in frequency ! s2 E = ! (1-2a) 

is small compared with variations in the expression (4.11) of [1] for the period of the 
OICillation. 
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